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The uniform bounds on eigenvalues of ̂B−1
h2

̂AN2 are shown both analytically and numerically by the
P1 finite element preconditioner ̂B−1

h2 for the Legendre spectral element system ̂AN2u = f which is
arisen from a coupled elliptic system occurred by an optimal control problem. The finite element
preconditioner is corresponding to a leading part of the coupled elliptic system.

1. Introduction

Optimal control problems constrained by partial differential equations can be reduced to
a system of coupled partial differential equations by Lagrange multiplier method ([1]). In
particular, the needs for accurate and efficient numerical methods for these problems have
been important subjects. Many works are reported for solving coupled partial differential
equations by finite element/difference methods; or finite element least-squares methods ([2–
5], etc.). But, there are a few literature (for examples, [6, 7]) on coupled partial differential
equations using the spectral element methods (SEM) despite of its popularity and accuracy
(see, e.g., [8]).

One of the goals in this paper is to investigate a finite element preconditioner for the
SEM discretizations. The induced nonsymmetric linear systems by the SEM discretizations
from such coupled elliptic partial differential equations have the condition numbers which
are getting larger incredibly not only as the number of elements and degrees of polynomials
increases but also as the penalty parameter δ decreases (see [5] and Section 4). Hence, an
efficient preconditioner is necessary to improve the convergence of a numerical method
whose number of iterations depends on the distributions of eigenvalues (see [9–12]).
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Particularly, the lower-order finite element/difference preconditioning methods for spectral
collocation/element methods have been reported ([9, 10, 13–17], etc.).

The target-coupled elliptic type equations are as follows:

−Δu + b · ∇u + u +
1
δ
v = 0 in Ω,

−Δv − ∇ · (vb) + v − u = −û in Ω,

u = v = 0 on ∂Ω,

(1.1)

which is the result of Lagrange multiplier rule applied to a L2 optimal control problem subject
to an elliptic equation (see [1]). Applying the P1 finite element preconditioner to our coupled
elliptic system discretized by SEM using LGL (Legendre-Gauss-Lobatto) nodes, we show
that the preconditioned linear systems have uniformly bounded eigenvalues with respect to
elements and degrees.

The field of values arguments will be used instead of analyzing eigenvalues directly
because the matrix representation of the target operator, even with zero convection term,
is not symmetric. We will show that the real parts of eigenvalues are positive, uniformly
bounded away from zero, and the absolute values of eigenvalues are uniformly bounded
whose bounds are only dependent on the penalty parameter δ in (1.1) and the constant vector
b in (1.1). Because of this result, one may apply a lower-order finite element preconditioner
to a real optimal control problem subject to Stokes equations which requires an elliptic type
solver.

This paper is organized as follows: in Section 2, we introduce some preliminaries and
notations. The norm equivalences of interpolation operators are reviewed to show the norm
equivalence of an interpolation operator using vector basis. The preconditioning results are
presented theoretically and numerically in Section 3 and Section 4, respectively. Finally, we
add the concluding remarks in Section 5.

2. Preliminaries

2.1. Coupled Elliptic System

Because we are going to deal with a coupled elliptic system, the vector Laplacian, gradient
and divergence operators for a vector function u = [u, v]T , where T denotes the transpose,
are defined by

Δu :=
[

uxx + uyy
vxx + vyy

]

, ∇u :=
[

ux vx
uy vy

]

, ∇ · u :=
[

ux + uy
vx + vy

]

. (2.1)

With the usual L2 inner product 〈·, ·〉 and its norm ‖ · ‖, for vector functions u := [u, v]T and
w := [w, z]T , define

〈

u,w
〉

:= 〈u,w〉 + 〈v, z〉, ∥

∥u
∥

∥

2 := ‖u‖2 + ‖v‖2 (2.2)
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and, for matrix functions U and V , define

〈U,V 〉 =
4

∑

k=1

〈uk, vk〉, ‖U‖2 :=
4

∑

k=1

‖uk‖2, where U =
[

u1 u2

u3 u4

]

, V =
[

v1 v2

v3 v4

]

. (2.3)

We use the standard Sobolev spaces like H1(Ω) and H1
0(Ω) on a given domain Ω with

the usual Sobolev seminorm | · |1 and norm ‖ · ‖1. The main content of this paper is to provide
an efficient low-order preconditioner for the system (1.1).

Multiplying the second equation by 1/δ, the system (1.1) can be expressed as

Au := −AΔu + B
(

b · ∇u
)T + (A + C)u = f in Ω, (2.4)

where

A =

⎡

⎣

1 0

0
1
δ

⎤

⎦, B =

⎡

⎣

1 0

0 − 1
δ

⎤

⎦, C =

⎡

⎢

⎣

0
1
δ

− 1
δ

0

⎤

⎥

⎦
, f =

⎡

⎣

0

− 1
δ
û

⎤

⎦, (2.5)

with the zero boundary condition u = 0 on ∂Ω. Let B be another decoupled uniformly elliptic
operator such that

Bu := −AΔu + Au in Ω (2.6)

with the zero boundary condition.

2.2. LGL Nodes, Weights, and Function Spaces

Let {ηk}Nk=0 and {ωk}Nk=0 be the reference LGL nodes and its corresponding LGL weights in
I = [−1, 1], respectively, arranged by −1 =: η0 < η1 < · · · < ηN−1 < ηN := 1. We use {tj}Ej=0 as
the set of knots in the interval I such that −1 =: t0 < t1 < · · · < tE−1 < tE := 1. Here E denotes
the number of subintervals of I. Denote N by the degree of a polynomial on each subinterval
Ij := [tj−1, tj] and G := {ξj,k}E,Nj = 1,k = 0 by the set of kth-LGL nodes ξj,k in each subinterval Ij
(j = 1, . . . , E) arranged by

ξj,0 := tj−1 < ξj,1 < · · · < ξj,N−1 < tj =: ξj,N, (2.7)

where

ξj,k =
hj

2
ηk +

1
2
(

tj−1 + tj
)

, hj = tj − tj−1, (2.8)
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and the corresponding LGL weights {ρj,k}E,Nj=1,k=0 are given by

ρj,k :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

hj

2
ωN +

hj+1

2
ω0, k =N, j = 1, . . . , E − 1,

ρj−1,N, k = 0, j = 2, . . . , E,

hj

2
ωk, otherwise.

(2.9)

Let Pk be the space of all polynomials defined on I whose degrees are less than or equal to k.

The Lagrange basis for PN on I is given by { ̂φi(t)}
N

i=0 satisfying

̂φi
(

ηj
)

= δij for i, j = 0, 1, . . . ,N, (2.10)

where δij denotes the Kronecker delta function.
We define Ph

N as the subspace of continuous functions whose basis {φμ}N+1
μ=0 is

piecewise continuous Lagrange polynomials of degree N on Ij with respect to G and define
Vh
N as the space of all piecewise Lagrange linear functions {ψμ}N+1

μ=0 with respect to G. Note

that these basis functions have a proper support. See [9, 18] for detail. Let P0
N,h := H1

0(I)∩Ph
N

and V0
N,h

:= H1
0(I) ∩ Vh

N . With the notation V ×V := {[u, v]T | u, v ∈ V}, define P0
N,h and V0

N,h

as subspaces of P0
N,h

× P0
N,h

and V0
N,h

× V0
N,h

, respectively. The basis functions for P0
N,h and

V0
N,h are given respectively by

φ
p
(t) :=

{
[

φp(t), 0
]T
, for p ≤ N,

[

0, φp−N(t)
]T
, for p > N,

ψ
p
(t) :=

{
[

ψp(t), 0
]T
, for p ≤ N,

[

0, ψP−N(t)
]T
, for p > N,

(2.11)

where p = 1, 2, . . . , 2N. For two dimensional (2D) case, let [[P0
N,h

]] := P0
N,h

⊗ P0
N,h

and
[[V0

N,h]] := V0
N,h⊗ V0

N,h be tensor product function spaces of one-dimensional function spaces
and let [[P0

N,h]] and [[V0
N,h]] be subspaces of [[P0

N,h]] × [[P0
N,h]] and [[V0

N,h]] × [[V0
N,h]],

respectively. Now let us order the interior LGL points in Ω by horizontal lines as {Ξμ̃}N2

μ̃=1 :=

{(ξμ, ξν)}N,N
μ=1,ν=1, where μ̃ = μ+N(ν−1) for μ, ν = 1, 2, . . . ,N. Accordingly, the basis functions for

[[P0
N,h]] and [[V0

N,h]] are also arranged as the same way. Then, with the notations φμ̃(x, y) :=
φμ(x)φν(y) and ψμ̃(x, y) := ψμ(x)ψν(y), the basis functions of [[P0

N,h]] and [[V0
N,h]] are given,

respectively, by

Φp̃

(

x, y
)

:=

⎧

⎨

⎩

[

φp̃
(

x, y
)

, 0
]T
, for p̃ ≤ N2,

[

0, φp̃−N2
(

x, y
)]T

, for p̃ > N2,

Ψp̃

(

x, y
)

:=

⎧

⎨

⎩

[

ψp̃
(

x, y
)

, 0
]T
, for p̃ ≤ N2,

[

0, ψp̃−N2
(

x, y
)]T

, for p̃ > N2,

(2.12)

where p̃ = 1, . . . , 2N2.
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2.3. Interpolation Operators

We denote C(Ω) as the set of continuous functions in Ω := I × I. Let IN2 : C(Ω) → [[PN]] :=
PN ⊗ PN be the usual reference interpolation operator such that (IN2u)(ηi, ηj) = u(ηi, ηj)
for u ∈ C(Ω) (see, e.g., [17]). The global interpolation operator Ih

N2 : C(Ω) → [[P0
N,h]]

is given by Ih
N2u(x, y) =

∑N2

μ̃=1 uμ̃φμ̃(x, y), where uμ̃ = u(ξμ, ξν). Hence, it follows that
(Ih

N2u)(ξμ, ξν) = u(ξμ, ξν) for u ∈ C(Ω). With this interpolation operator Ih
N2 , let us define

the vector interpolation operator Ih
N2 : C(Ω) × C(Ω) → [[P0

N,h]] such that, for u := [u, v]T ∈
C(Ω) × C(Ω),

(

Ih
N2u

)

(

ξμ, ξν
)

:=
[

Ih
N2u

(

ξμ, ξν
)

,Ih
N2v

(

ξμ, ξν
)

]T
= u

(

ξμ, ξν
)

. (2.13)

Let ̂Φ
˜i(x, y) = ̂φij(x, y) = ̂φi(x) ̂φj(y) and ̂Ψ

˜i(x, y) = ψ̂ij(x, y) = ψ̂i(x)ψ̂j(y), where ˜i = i + (N +
1)j and i, j = 0, . . . ,N, be the basis of [[PN]] and [[VN]], respectively. Let us denote MN2 and
Mh2 by the mass matrices such that

MN2

(

˜i, ˜j
)

=
〈

̂Φ
˜i,

̂Φ
˜j

〉

, Mh2

(

˜i, ˜j
)

=
〈

̂Ψ
˜i,

̂Ψ
˜j

〉

(2.14)

and denote SN2 and Sh2 by the stiffness matrices such that

SN2

(

˜i, ˜j
)

=
〈

∇ ̂Φ
˜i,∇ ̂Φ

˜j

〉

, Sh2

(

˜i, ˜j
)

=
〈

∇ ̂Ψ
˜i,∇ ̂Ψ

˜j

〉

, (2.15)

where ˜i, ˜j = 1, . . . , (N + 1)2.
According to Theorems 5.4 and 5.5 in [17], there are two absolute positive constants c0

and c1 such that for any U = [u1, . . . , u(N+1)2]T ,

c0〈MN2U,U〉 ≤ 〈Mh2U,U〉 ≤ c1〈MN2U,U〉,
c0〈SN2U,U〉 ≤ 〈Sh2U,U〉 ≤ c1〈SN2U,U〉,

(2.16)

and for all u ∈ [[VN]],

c0‖u‖ ≤ ‖IN2u‖ ≤ c1‖u‖, c0‖u‖1 ≤ ‖IN2u‖1 ≤ c1‖u‖1 . (2.17)

The extension of (2.17) to the interpolation operator Ih
N2 leads to

c0‖u‖ ≤
∥

∥

∥IhN2u
∥

∥

∥ ≤ c1‖u‖, c0‖u‖1 ≤
∥

∥

∥IhN2u
∥

∥

∥

1
≤ c1‖u‖1 (2.18)

for all u ∈ [[V0
N,h]], where the constants c0 and c1 are positive constants independent of E

and N (see [18]).
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Theorem 2.1. For all u ∈ [[V0
N,h]], there are positive constants c0 and c1 independent of E and N

such that

c0
∥

∥u
∥

∥ ≤
∥

∥

∥IhN2u
∥

∥

∥ ≤ c1
∥

∥u
∥

∥, c0
∥

∥u
∥

∥

1 ≤
∥

∥

∥IhN2u
∥

∥

∥

1
≤ c1

∥

∥u
∥

∥

1. (2.19)

Proof. By the definitions of the interpolation operator Ih
N2 and the norms, we have

∥

∥

∥IhN2u
∥

∥

∥

2
=

∥

∥

∥IhN2u
∥

∥

∥

2
+

∥

∥

∥IhN2v
∥

∥

∥

2
,

∥

∥

∥IhN2u
∥

∥

∥

2

1
=

∥

∥

∥IhN2u
∥

∥

∥

2

1
+

∥

∥

∥IhN2v
∥

∥

∥

2

1
, (2.20)

which completes the proof because of (2.18).

3. Analysis on P1 Finite Element Preconditioner

The bilinear forms corresponding to (2.4) and (2.6) are given by

α
(

u,w
)

=
〈

A∇uT ,∇wT
〉

+
〈

B
(

b · ∇u
)T
,w

〉

+
〈

(A + C)u,w
〉

=
〈

f,w
〉

, (3.1)

β
(

u,w
)

=
〈

A∇uT ,∇wT
〉

+
〈

Au,w
〉

, (3.2)

where u := [u(x, y), v(x, y)]T , w := [w(x, y), z(x, y)]T and A,B,C are the same matrices in
(2.4) and f = [0, û(x, y)]T . Note that the bilinear form β(·, ·) in (3.2) is symmetric but the
bilinear form α(·, ·) in (3.1) is not symmetric. The following norm equivalence guarantees the
existence and uniqueness of the solution in H1

0(Ω) ×H1
0(Ω) for the variational problem (3.1).

Proposition 3.1. For a real valued vector function u(x, y) = [u, v]T ∈ H1
0(Ω) ×H1

0(Ω), we have

∥

∥u
∥

∥

1 ≤ α(u,u) ≤ 1
δ

∥

∥u
∥

∥

2
1. (3.3)

Proof. Since b is a constant vector, [u, v]T ∈ H1
0(Ω) × H1

0(Ω), and u is a real valued vector
function, we have

α
(

u,u
)

= β
(

u,u
)

+
〈

B
(

b · ∇u
)T
,u

〉

+
〈

Cu,u
〉

= β
(

u,u
)

+ 〈b · ∇u, u〉 − 1
δ
〈b · ∇v, v〉 + 1

δ
(〈v, u〉 − 〈u, v〉)

= β
(

u,u
)

= ‖u‖2
1 +

1
δ
‖v‖2

1.

(3.4)

Hence, (3.3) is proved because 0 < δ ≤ 1.
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Lemma 3.2. If u = [u, v]T is a complex valued function in H1
0(Ω) × H1

0(Ω), then we have the
following estimates:

Re
(

α
(

u,u
))

= β
(

u,u
)

,

∣

∣α
(

u,u
)∣

∣ ≤
(

1 +
1
2
|b| + 1

δ

)

β
(

u,u
)

,
(3.5)

where |b| =
√

b2
1 + b

2
2.

Proof. Let us decompose u and v in u as u(x, y) = p(x, y) + iq(x, y) and v(x, y) = r(x, y) +
is(x, y), where p, q, r, and s are real functions and i2 = −1. Then we have

〈b · ∇u, u〉 = i
∫

Ω
b1

(

qxp − pxq
)

+ b2
(

pyq − qyp
)

dΩ, (3.6)

− 1
δ
〈b · ∇u, u〉 = − i

δ

∫

Ω
b1(sxr − rxs) + b2

(

rys − syr
)

dΩ, (3.7)

1
δ
(〈v, u〉 − 〈u, v〉) = i

(

2
δ

∫

Ω
sp − qr dΩ

)

. (3.8)

Hence, one may see that the real part of α(u,u) is β(u,u) and the pure imaginary part is the
sum of (3.6), (3.7), and (3.8). By Cauchy-Schwarz inequality, ε-inequality, and the range of
0 < δ ≤ 1, we have

∣

∣

∣

∣

〈b · ∇u, u〉 − 1
δ
〈b · ∇v, v〉 + 1

δ
(〈v, u〉 − 〈u, v〉)

∣

∣

∣

∣

≤ |b|‖∇u‖‖u‖ + 1
δ
|b|‖∇v‖‖v‖ + 1

δ
(2‖v‖‖u‖)

≤ 1
2
|b|

(

‖∇u‖2 + ‖u‖2 +
1
δ

(

‖∇v‖2 + ‖v‖2
)

)

+
1
δ

(

‖u‖2 + ‖v‖2
)

≤
(

1
2
|b| + 1

δ

)

β
(

u,u
)

.

(3.9)

Hence (3.5) is proved.

Let σ(A) and F(A) be the spectrum (or set of eigenvalues) and field of values of the
square matrix A, respectively. Let ̂AN2 and ̂Bh2 be the two dimensional stiffness matrices on
the spaces [[P0

N,h]] and [[V0
N,h]] induced by (3.1) and (3.2), respectively. Then, we have the

following.
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Lemma 3.3. ForU(/= 0) ∈ C
2N2

, one has

σ
(

̂B−1
h2

̂AN2

)

⊂ W, (3.10)

where

W :=

⎧

⎨

⎩

〈

̂AN2U,U
〉

〈

̂Bh2U,U
〉 | U/= 0

⎫

⎬

⎭

. (3.11)

Proof. Since ̂Bh2 is symmetric positive definite, there exists a unique positive definite square
root ̂B1/2

h2 of ̂Bh2 . So, we have

〈

̂AN2U,U
〉

〈

̂Bh2U,U
〉 =

〈

̂AN2U,U
〉

〈

̂B1/2
h2 U, ̂B

1/2
h2 U

〉 =

〈

̂B−1/2
h2

̂AN2 ̂B−1/2
h2 V, V

〉

〈V, V 〉 , where V = ̂B1/2
h2 U, (3.12)

for U(/= 0) ∈ C
2N2

. Now let ̂B−1/2
h2 be a short-hand notation for (̂B1/2

h2 )
−1

. Therefore, from the
relation of spectrum and field of values (see [19] or [11]), it follows that

σ
(

̂B−1
h2

̂AN2

)

= σ
(

̂B−1/2
h2

̂AN2 ̂B−1/2
h2

)

⊂ F
(

̂B−1/2
h2

̂AN2 ̂B−1/2
h2

)

= W, (3.13)

which completes the proof.

The following theorem shows the uniform bounds of eigenvalues which is indepen-
dent of both N and E for our preconditioned system

̂B−1
h2

̂AN2uN = ̂B−1
h2 f

N. (3.14)

Theorem 3.4. Let {λp}2N2

p=1 be the set of eigenvalues of

̂B−1
h2

̂AN2 , (3.15)
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then, there are constants c0, C0, and Λδ independent of E andN, such that

0 < c0 < Re
(

λp
)

< C0,
∣

∣λp
∣

∣ ≤ Λδ, (3.16)

where Λδ = C(1 + ‖b‖ + 1/δ).

Proof. Let u(x, y) ∈ [[V0
N,h]] be represented as u(x, y) =

∑2N2

p=1 upΨp(x, y). Then, its piecewise
polynomial interpolation can be written as

(

Ih
N2u

)

(

x, y
)

=
2N2
∑

p=1

upΦp

(

x, y
)

. (3.17)

Let U = [u1, . . . , u2N2]T . From the definitions of the bilinear forms, we have

〈

̂AN2U,U
〉

= α
(

Ih
N2u, IhN2u

)

,
〈

̂Bh2U,U
〉

= β
(

u,u
)

. (3.18)

This implies that

wλ :=

〈

̂AN2U,U
〉

〈

̂Bh2U,U
〉 =

α
(

Ih
N2u, IhN2u

)

β
(

u,u
) . (3.19)

By Theorem 2.1 and Lemma 3.2, the real part of wλ satisfies

Re(wλ) =
β
(

Ih
N2u, IhN2u

)

β
(

u,u
) ∼ 1, (3.20)

where the notation a ∼ b means the equivalence of two quantities a and b which does not
depend on E and N. Again, from Theorem 2.1 and Lemma 3.2, the absolute value of wλ

satisfies

|wλ| =

∣

∣

∣α
(

Ih
N2u, IhN2u

)∣

∣

∣

β
(

u,u
) ≤

(1 + (1/2)|b| + (1/δ)) β
(

Ih
N2u, IhN2u

)

β
(

u,u
)

≤ C
(

1 + |b| + 1
δ

)

.

(3.21)

Therefore, from Lemma 3.3, the real parts and the absolute values of eigenvalues of ̂B−1
h2

̂AN2

satisfy (3.16).
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Remark 3.5. Let the one dimensional (1D) bilinear forms for u,w ∈ H1
0(−1, 1) ×H1

0(−1, 1) be

α1
(

u,w
)

=
〈

Au′,w′〉 +
〈

B bu′,w
〉

+
〈

(A + C)u,w
〉

, (3.22)

β1
(

u,w
)

=
〈

Au′,w′〉 +
〈

Au,w
〉

, (3.23)

and denote ̂AN and ̂Bh by the 1D stiffness matrices on the spaces P0
N,h and V0

N,h corresponding
to the bilinear forms (3.22) and (3.23), respectively. Then one can easily get the same results
as Theorem 3.4 for 1D case. Since the proof is similar to 2D case, we omit the statements.

Now, for actual numerical computations, we need 2D stiffness and mass matrices
expressed as the tensor products of 1D matrices (see [20] for details). For this, let us denote
1D spectral element matrices as

SN =
〈

φ′
μ(t), φ

′
ν(t)

〉

, RN =
〈

φ′
μ(t), φν(t)

〉

, MN =
〈

φμ(t), φν(t)
〉

(3.24)

and 1D finite element matrices

Sh =
〈

ψ ′
μ(t), ψ

′
ν(t)

〉

, Rh =
〈

ψ ′
μ(t), ψν(t)

〉

, Mh =
〈

ψμ(t), ψν(t)
〉

, (3.25)

where {φμ}N
μ=1 and {ψν}N

ν=1 are the Lagrange basis of the spaces P0
N,h

and V0
N,h

, respectively.

For actual computations for SN , RN , and MN , the inner product 〈·, ·〉 on the space P0
N,h

will be computed using LGL quadrature rule at LGL nodes. Without any confusion, such
approximate matrices can be denoted by same notations in the next section. We note that the
approximate matrices SN , RN , and MN and the exact matrices SN , RN , and MN are equivalent,
respectively, because of the equivalence of LGL quadrature on the polynomial space we used.
For example, the mass matrix MN can be computed using the LGL weights {ρj,k} only.

4. Numerical Tests of Preconditioning

4.1. Matrix Representation

In this section we discuss effects of the proposed finite element preconditioning for the
spectral element discretizations to the coupled elliptic system (1.1). For this purpose, first
we set up one dimensional matrices ̂AN and ̂Bh corresponding to (3.22) and (3.23) using the
matrices in (3.24). One may have

̂AN =

⎡

⎢

⎣

SN + bRN + MN
1
δ

MN

− 1
δ

MN
1
δ
(SN − bRN + MN)

⎤

⎥

⎦

2N×2N

,

̂Bh =

⎡

⎣

Sh + Mh 0

0
1
δ
(Sh + Mh)

⎤

⎦

2N×2N

.

(4.1)
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Let b = [b1, b2]
T be a constant vector in (1.1), then the 2D matrices ̂AN2 and ̂Bh2 can be

expressed as

̂AN2 =

⎡

⎢

⎣

SN2 + RN2 + MN2
1
δ

MN2

− 1
δ

MN2
1
δ
(SN2 − RN2 + MN2)

⎤

⎥

⎦

2N2×2N2

,

̂Bh2 =

⎡

⎣

Sh2 + Mh2 0

0
1
δ
(Sh2 + Mh2)

⎤

⎦

2N2×2N2

,

(4.2)

where

Sk2 = Mk

(

y
) ⊗ Sk(x) + Sk

(

y
) ⊗ Mk(x), Mk2 = Mk

(

y
) ⊗ Mk(x) (k =N or h),

RN2 = b1MN

(

y
) ⊗ RN(x) + b2RN

(

y
) ⊗ MN(x).

(4.3)

4.2. Numerical Analysis on Eigenvalues

The linear system ̂AN2uN = fN and the preconditioned linear system ̂B−1
h2

̂AN2uN = ̂B−1
h2 f

N

will be compared in the sense of the distribution of eigenvalues. As proved in Section 3, it
is shown that the behaviors of spectra of ̂B−1

h2
̂AN2 are independent of the number of elements

and degrees of polynomials.
One may also see the condition numbers of these discretized systems by varying the

penalty parameter δ. The condition numbers of ̂AN2 are presented in Figure 1 for fixed δ = 1
(left) and fixed E = 3 (right) as increasing the degrees N of polynomials. It shows that such
condition numbers depend on N, E, and δ. In particular, the smaller δ is, the larger condition
number it yields.

Figures 2 and 4 show the spectra of the resulting preconditioned operator ̂B−1
h2

̂AN2 for
the polynomials of degrees N = 4, 6, 8, 10 and E = 4 when δ = 1 and δ = 10−4, respectively.
Also, Figures 3 and 5 show the spectra of ̂B−1

h2
̂AN2 for E = 4, 6, 8, 10 and N = 4 for δ = 1 and

δ = 10−4, respectively. The same axis scales are presented for the same δ when b = [1, 1]T .
As proven in Theorem 3.4, the eigenvalues of ̂B−1

h2
̂AN2 are independent of N and E, but they

depend still on the penalty parameter δ.
By choosing the convection coefficient b = [10, 10]T , in Figure 6, the distributions of

eigenvalues of ̂AN2(left) and ̂B−1
h2

̂AN2(right) are presented for penalty parameters δ = 1, 10−3

to examine their dependence. In this figure, we see that the distributions of eigenvalues
(both real and imaginary part) of ̂AN2 are strongly dependent on δ. The real parts of
such eigenvalues are increased in proportion to 1/δ. On the other hand, as predicted by
Theorem 3.4, the real parts of the eigenvalues of ̂B−1

h2
̂AN2 are positive and uniformly bounded

away from 0. Moreover, the real parts are not dependent on δ and b (see Figures 2–6), and
their moduli are uniformly bounded. The numerical results show that the imaginary parts
of the eigenvalues are bounded by some constants which are dependent on δ and b. These
phenomena support the theory proved in Theorem 3.4.



12 Journal of Applied Mathematics

4 6 8 10 12 14
0

1000

2000

3000

4000

C
on

d
it

io
n 

nu
m

be
r

E = 1
E = 2
E = 3

Degree of polynomial (N)

(a)

4 6 8 10 12 14
0

2

4

6

8

10

12

C
on

d
it

io
n 

nu
m

be
r

×104

δ = 1
δ = 0.1
δ = 0.01

Degree of polynomial (N)

(b)

Figure 1: The condition numbers of the matrix ̂AN2 when b = [1, 1]T .
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Figure 2: The eigenvalues of ̂B−1
h2

̂AN2 for N = 4, 6, 8, 10 and E = 4 when δ = 1,b = [1, 1]T .

5. Concluding Remarks

An optimal control problem subject to an elliptic partial differential equation yields coupled
elliptic differential equations (1.1). Any kind of discretizations leads to a nonsymmetric linear
system which may require Krylov subspace methods to solve the system. In this paper, the
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Figure 3: The eigenvalues of ̂B−1
h2

̂AN2 for E = 4, 6, 8, 10 and N = 4 when δ = 1,b = [1, 1]T .
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Figure 4: The eigenvalues of ̂B−1
h2

̂AN2 for N = 4, 6, 8, 10 and E = 4 when δ = 10−4,b = [1, 1]T .
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Figure 5: The eigenvalues of ̂B−1
h2

̂AN2 for E = 4, 6, 8, 10 and N = 4 when δ = 10−4,b = [1, 1]T .
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Figure 6: The eigenvalues of ̂AN2(left) and ̂B−1
h2

̂AN2(right) for δ = 1 (top) and δ = 10−3 (bottom) when
b = [10, 10]T and N = 12, E = 4.
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spectral element discretization is chosen because it is very accurate and popular, but the
resulting linear systems have large condition numbers. This situation now becomes one
of disadvantages if one aims at a fast and efficient numerical simulation for an optimal
control problem subject to even a simple elliptic differential equation. To overcome such
a disadvantage, the lower-order finite element preconditioner is proposed so that the
preconditioned linear system has uniformly bounded condition numbers independent of the
degrees of polynomials and the mesh sizes. One may also take various degrees of polynomials
on subintervals with different mesh sizes. In this case, similar results can be obtained without
any difficulties. This kind of finite element preconditioner may be used for an optimal control
problem subject to Stokes flow (see, e.g., [13]).
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