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A solution of the Dirichlet problem on the upper half-space is constructed by the generalized
Dirichlet integral with a fast-growing continuous boundary function.

1. Introduction and Results

Let Rn (n ≥ 3) denote the n-dimensional Euclidean space with points x = (x′, xn), where
x′ = (x1, x2, . . . , xn−1) ∈ Rn−1 and xn ∈ R. The boundary and closure of an open setD of Rn are
denoted by ∂D and D, respectively. The upper half space is the set H = {(x′, xn) ∈ Rn : xn >
0}, whose boundary is ∂H. We identify Rn with Rn−1 × R and Rn−1 with Rn−1 × {0}, writing
typical points x, y ∈ Rn as x = (x′, xn), y = (y′, yn), where y′ = (y1, y2, . . . , yn−1) ∈ Rn−1 and
putting

x · y =
n∑

j=1

xjyj = x′ · y′ + xnyn, |x| = √
x · x, ∣∣x′∣∣ =

√
x′ · x′. (1.1)

Let B(r) denote the open ball with center at the origin and radius r, and let σ denote
(n − 1)-dimensional surface area measure. Let [d] denote the integer part of the positive real
number d. In the sense of Lebesgue measure, dy′ = dy1 · · ·dyn−1 and dy = dy′dyn.

Given a continuous function f on ∂H, we say that h is a solution of the (classical)
Dirichlet problem onH with f if Δh = 0 inH and limx∈H,x→ z′h(x) = f(z′) for every z′ ∈ ∂H.

The classical Poisson kernel for H is defined by P(x, y′) = 2xnω
−1
n |x − y′|−n, where

ωn = 2πn/2/Γ(n/2) is the area of the unit sphere in Rn.
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To solve the Dirichlet problem on H, as in [1–6], we use the following modified
Poisson kernel of order m defined by

Pm

(
x, y′) =

⎧
⎪⎪⎨

⎪⎪⎩

P
(
x, y′) when

∣∣y′∣∣ ≤ 1,

P
(
x, y′) −

m−1∑
k=0

2xn|x|k

ωn

∣∣y′∣∣n+k
Cn/2

k

(
x · y′

|x|∣∣y′∣∣

)
when

∣∣y′∣∣ > 1,
(1.2)

where m is a nonnegative integer, and Cn/2
k

(t) is the ultraspherical (Gegenbauer) polynomi-
als [7]. The expression arises from the generating function for Gegenbauer polynomials

(
1 − 2tr + r2

)−n/2
=

∞∑

k=0

Cn/2
k (t)rk, (1.3)

where |r| < 1 and |t| ≤ 1. The coefficient Cn/2
k (t) is called the ultraspherical (Gegenbauer)

polynomial of degree k associated with n/2, and the function Cn/2
k (t) is a polynomial of

degree k in t.
Put

Um

(
f
)
(x) =

∫

∂H

Pm

(
x, y′)f

(
y′)dy′, (1.4)

where f(y′) is a continuous function on ∂H.
Using the modified Poisson kernel Pm(x, y′), Yoshida (cf. [6, Theorem 1]) and Siegel

and Talvila (cf. [5, Corollary 2.1]) gave classical solutions of the Dirichlet problem on H,
respectively. Motivated by their results, we consider the Dirichlet problem for harmonic
functions of infinite order (e.g., see [8, Definition 4.1, page 2, Line 12] for the definition of
harmonic functions).

To do this, we define a nondecreasing and continuously differentiable function ρ(r) ≥
1 on the interval [0,+∞). We assume further that

ε0 = lim sup
r→∞

ρ′(r)r log r
ρ(r)

< 1. (1.5)

Let F(ρ, β) be the set of continuous functions f on ∂H such that

∫

∂H

∣∣f
(
y′)∣∣dy′

1 +
∣∣y′∣∣ρ(|y′ |)+n+β−1 < ∞, (1.6)

where β is a positive real number.
Now, we have the following.

Theorem 1.1. If f ∈ F(ρ, β), then the integralU[ρ(|y′ |)+β](f)(x) is a solution of the Dirichlet problem
onH with f .

If one puts [ρ(|y′|) + β] = m in Theorem 1.1, one immediately obtains the following (cf. [6,
Theorem 1] and [5, Corollary 2.1]).
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Corollary 1.2. If f is a continuous function on ∂H satisfying
∫
∂H |f(y′)|(1+ |y′|)−n−mdy′ < ∞, then

Um(f)(x) is a solution of the Dirichlet problem on H with f .

Theorem 1.3. Let u be harmonic inH and continuous on H. If u ∈ F(ρ, β), then one has

u(x) = U[ρ(|y′ |)+β](u)(x) + h(x), (1.7)

for all x ∈ H, where h(x) is harmonic inH and vanishes continuously on ∂H.

2. Proof of Theorem 1.1

We need to use the following inequality (see [5, page 3]):

∣∣Pm

(
x, y′)∣∣ ≤ Mxn|x|m

∣∣y′∣∣−n−m, (2.1)

for any x ∈ H and y′ ∈ ∂H satisfying |y′| ≥ max{1, 2|x|}, where M is a positive constant.
For any ε (0 < ε < 1 − ε0), there exists a sufficiently large positive number R such that

r > R, and by (1.5), we have

ρ(r) < ρ(e)(ln r)(ε0+ε), (2.2)

which yields that there exists a positive constant M(r) dependent only on r such that

k−β/2(2r)ρ(k+1)+β+1 ≤ M(r), (2.3)

for any k > kr = [2r] + 1.
For any x ∈ H and |x| ≤ r, we have by (1.6), (2.1), (2.3), 1/p + 1/q = 1, and Hölder’s

inequality

M
∞∑

k=kr

∫

{y′∈∂H:k≤|y′ |<k+1}

(2|x|)[ρ(|y′ |)+β]+1
∣∣y′∣∣[ρ(|y′ |)+β]+n

∣∣f
(
y′)∣∣dy′

≤ M
∞∑

k=kr

(2r)ρ(k+1)+β+1
(∫

{y′∈∂H:k≤|y′ |<k+1}

∣∣f
(
y′)∣∣p

∣∣y′∣∣ρ(|y′ |)+n+pβ/2−1dy
′
)1/p

×
(∫

{y′∈∂H:k≤|y′ |<k+1}

∣∣y′∣∣−q{[ρ(|y′ |)+β]+n−(ρ(|y′ |)+n−1)/p−β/2}
dy′
)1/q

≤ M
∞∑

k=kr

(2r)ρ(k+1)+β+1

kβ/2

∫

{y′∈∂H:k≤|y′ |<k+1}

∣∣f
(
y′)∣∣

∣∣y′∣∣ρ(|y′ |)+n+β/2−1dy
′

≤ 2MM(r)
∫

{y′∈∂H:|y′ |≥kr}

∣∣f
(
y′)∣∣

1 +
∣∣y′∣∣ρ(|y′ |)+n+β/2−1dy

′ < ∞.

(2.4)
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Thus, U[ρ(|y′ |)+β](f)(x) is finite for any x ∈ H. Since P[ρ(|y′ |)+β](x, y′) is a harmonic
function of x ∈ H for any fixed y′ ∈ ∂H, U[ρ(|y′ |)+β](f)(x) is also a harmonic function of
x ∈ H.

To verify the boundary behavior of U[ρ(|y′ |)+β](f)(x), we fix a boundary point z′ ∈ ∂H,
choose a large t > |z′| + 1, and write

U[ρ(|y′ |)+β]
(
f
)
(x) = X(x) − Y (x) + Z(x), (2.5)

where

X(x) =
∫

{y′∈∂H:|y′ |≤t}
P
(
x, y′)f

(
y′)dy′,

Y (x) =
[ρ(|y′ |+β)]−1∑

k=0

2xn|x|k
ωn

∫

{y′∈∂H:1<|y′ |≤t}

1
∣∣y′∣∣n+k

Cn/2
k

(
x′ · y′

|x|∣∣y′∣∣

)
f
(
y′)dy′,

Z(x) =
∫

{y′∈∂H:|y′ |>t}
P[ρ(|y′ |+β)]

(
x, y′)f

(
y′)dy′.

(2.6)

Notice that X(x) is the Poisson integral of f(y′)χB(t)(y′), where χB(t) is the character-
istic function of the ball B(t). So it tends to f(z′) as x → z′. Since Y (x) are polynomial times xn

and Z(x) = O(xn), both of them tend to zero as x → z′. Thus, the function U[ρ(|y′ |)+β](f)(x)
can be continuously extended to H such that U[ρ(|y′ |)+β](f)(z′) = f(z′), for any z′ ∈ ∂H.
Theorem 1.1 is proved.

3. Proof of Theorem 1.3

Consider that the function u(x) − U[ρ(|y′ |)+β](u)(x), which is harmonic in H, can be continu-
ously extended to H and vanishes on ∂H.

The Schwarz reflection principle [9, page 68] applied to u(x) −U[ρ(|y′ |)+β](u)(x) shows
that there exists a harmonic function h(x) in H such that h(x∗) = −h(x) = −(u(x) −
U[ρ(|y′ |)+β](u)(x)) for x ∈ H, where ∗ denotes reflection in ∂H just as x∗ = (x′,−xn).

Thus, u(x) = h(x) +U[ρ(|y′ |)+β](u)(x) for all x ∈ H, where h(x) is a harmonic function
on H vanishing continuously on ∂H. We complete the proof of Theorem 1.3.
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