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This paper is concerned with a common element of the set of fixed point for an asymptotically
pseudocontractive mapping in the intermediate sense and the set of solutions of the mixed
equilibrium problems in Hilbert spaces. The strong convergence theorem for the above two sets is
obtained by a general iterative scheme based on the shrinking projection method, which extends
and improves that of Qin et al. (2010) and many others.

1. Introduction

Throughout this paper, we always assume that C be a nonempty closed convex subset of a
real Hilbert spaceH with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. For
a sequence {xn} in H, we denote the strong convergence and the weak convergence of {xn}
to x ∈ H by xn → x and xn ⇀ x, respectively. The domain of the function ϕ : C → R ∪ {+∞}
is the set

domϕ =
{
x ∈ C : ϕ(x) < +∞}

. (1.1)

Let ϕ : C → R ∪ {+∞} be a proper extended real-valued function, and let Φ be a bifunction
from C × C into R such that C ∩ domϕ/= ∅, where R is the set of real numbers. The so-called
the mixed equilibrium problem is to find x ∈ C such that

Φ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.2)
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The set of solution of problem (1.2) is denoted by MEP(Φ, ϕ), that is,

MEP
(
Φ, ϕ

)
=
{
x ∈ C : Φ

(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C

}
. (1.3)

It is obvious that if x is a solution of problem (1.2) then x ∈ domϕ. As special cases of problem
(1.2), we have the following.

(i) If ϕ = 0, then problem (1.2) is reduced to find x ∈ C such that

Φ
(
x, y

) ≥ 0, ∀y ∈ C. (1.4)

We denote by EP(Φ) the set of solutions of equilibrium problem, which problem (1.4)
was studied by Blum and Oettli [1].

(ii) If Φ(x, y) = 〈Bx, y − x〉 for all x, y ∈ C where a mapping B : C → H, then problem
(1.4) is reduced to find x ∈ C such that

〈
Bx, y − x

〉 ≥ 0, ∀y ∈ C. (1.5)

We denote by VI(C,B) the set of solutions of variational inequality problem, which
problem (1.5)was studied by Hartman and Stampacchia [2].

(iii) If Φ = 0, then problem (1.2) is reduced to find x ∈ C such that

ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.6)

We denote by Argmin(ϕ) the set of solutions of minimize problem.

Recall that PC is the metric projection of H onto C; that is, for each x ∈ H there exists
the unique point in PCx ∈ C such that ‖x − PCx‖ = miny∈C‖x − y‖. A mapping T : C → C
is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C, and uniformly L-Lipschitzian if
there exists a constant L > 0 such that for each n ∈ N, ‖Tnx − Tny‖ ≤ L‖x − y‖ for all x, y ∈ C,
and a mapping f : C → C is called a contraction if there exists a constant α ∈ (0, 1) such that
‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x.
We denote by F(T) the set of fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}. If C is a
nonempty bounded closed convex subset of H and T is a nonexpansive mapping of C into
itself, then F(T) is nonempty (see [3]).

Iterative methods are often used to solve the fixed point equation Tx = x. The
most well-known method is perhaps the Picard successive iteration method when T is a
contraction. Picard’s method generates a sequence {xn} successively as xn+1 = Txn for all
n ∈ N with x1 = x chosen arbitrarily, and this sequence converges in norm to the unique
fixed point of T . However, if T is not a contraction (for instance, if T is a nonexpansive), then
Picard’s successive iteration fails, in general, to converge. Instead, Mann’s iteration method
for a nonexpansive mapping T (see [4]) prevails, generates a sequence {xn} recursively by

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.7)

where x1 = x ∈ C chosen arbitrarily and the sequence {αn} lies in the interval [0, 1]. Recall
that a mapping T : C → C is said to be
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(i) asymptotically pseudocontractive [5, 6] if there exists a sequence kn ⊂ [1,∞) with
limn→∞kn = 1 such that

〈
Tnx − Tny, x − y

〉 ≤ kn
∥
∥x − y

∥
∥2

, ∀x, y ∈ C, ∀n ∈ N; (1.8)

it is easy to see that (1.8) is equivalent to

∥
∥Tnx − Tny

∥
∥2 ≤ (2kn − 1)

∥
∥x − y

∥
∥2 +

∥
∥(I − Tn)x − (I − Tn)y

∥
∥2

, ∀x, y ∈ C, (1.9)

for all n ∈ N,

(ii) asymptotically pseudocontractive in the intermediate sense [7] if there exists a sequence
kn ⊂ [1,∞)with limn→∞kn = 1 such that

lim sup
n→∞

sup
x,y∈C

(〈
Tnx − Tny, x − y

〉 − kn
∥∥x − y

∥∥2
)
≤ 0; (1.10)

if we define

τn = max

{

0, sup
x,y∈C

(〈
Tnx − Tny, x − y

〉 − kn
∥∥x − y

∥∥2
)}

, (1.11)

then limn→∞τn = 0 and it follows that (1.10) is reduced to

〈
Tnx − Tny, x − y

〉 ≤ kn
∥∥x − y

∥∥2 + τn, ∀x, y ∈ C, ∀n ∈ N; (1.12)

it is easy to see that (1.12) is equivalent to

∥∥Tnx − Tny
∥∥2 ≤ (2kn − 1)

∥∥x − y
∥∥2 +

∥∥(I − Tn)x − (I − Tn)y
∥∥2 + 2τn, ∀x, y ∈ C, (1.13)

for all n ∈ N; it is obvious that if τn = 0 for all n ∈ N, then the class of asymptotically
pseudocontractive mappings in the intermediate sense is reduced to the class of
asymptotically pseudocontractive mappings.

The Mann’s algorithm for nonexpansive mappings has been extensively investigated
(see [8–10] and the references therein). One of the well-known results is proven by Reich [10]
for a nonexpansive mapping T on C, which asserts the weak convergence of the sequence
{xn} generated by (1.7) in a uniformly convex Banach space with a Frechet differentiable
norm under the control condition

∑∞
n=1 αn(1 − αn) = ∞. It is known that the Mann’s iteration

(1.7) is in general not strongly convergent (see [11]). The strong convergence guaranteed has
been proposed by Nakajo and Takahashi [12], they modified the Mann’s iteration method
(1.7) which is to find a fixed point of a nonexpansive mapping by a hybrid method, which
called that the shrinking projection method (or the CQ method) as the following theorem.
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Theorem NT. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a
nonexpansive mapping of C into itself such that F(T)/= ∅. Suppose that x1 = x ∈ C chosen arbitrarily
and {xn} the sequence defined by

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x1), ∀n ∈ N,

(1.14)

where 0 ≤ αn ≤ α < 1. Then {xn} converges strongly to PF(T)(x1).

Subsequently, Schu [5]modified Ishikawa’s iteration method (see [13]) for the class of
asymptotically pseudocontractive mappings as the following theorem.

Theorem S. Let C be a nonempty bounded closed convex subset of a real Hilbert space H.
Let T : C → C be a completely continuous uniformly L-Lipschitzian such that L > 0 and
asymptotically pseudocontractive mapping defined as in (1.9) with the sequence {kn} ⊂ [1,∞) such
that limn→∞ kn = 1. Let qn = 2kn − 1 for all n ∈ N. Suppose that x1 = x ∈ C chosen arbitrarily and
{xn} the sequence defined by

yn = βnT
nxn +

(
1 − βn

)
xn,

xn+1 = αnT
nyn + (1 − αn)xn, ∀n ∈ N,

(1.15)

where {αn}, {βn} ⊂ (0, 1) such that ε ≤ αn ≤ βn ≤ b for some ε > 0 and b ∈ (0, L−2(
√
1 + L2 − 1))

and
∑∞

n=1(q
2
n − 1) < ∞. Then {xn} converges strongly to some fixed point of T .

Quite recently, Zhou [14] showed that every uniformly L-Lipschitzian and asymptot-
ically pseudocontractions which are also uniformly asymptotically regular has a fixed point
and the fixed point set is closed and convex, and he also introduced iterative scheme to find a
fixed point of a uniformly L-Lipschitzian and asymptotically pseudocontractive mapping as
the following theorem.

Theorem Z. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let T :
C → C be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping
with a fixed point defined as in (1.8) with the sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1.
Suppose that x1 = x ∈ C chosen arbitrarily and {xn} the sequence defined by

yn = (1 − αn)xn + αnT
nxn,

Cn =
{
z ∈ C : αn(1 − (1 + L)αn)‖xn − Tnxn‖2 ≤

〈
xn − z, yn − Tnyn

〉

+(kn − 1)(diamC)2
}
,
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Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x1), ∀n ∈ N,

(1.16)

where {αn} ⊂ [a, b] such that 0 < a < b < 1/(1 + L). Then {xn} converges strongly to PF(T)(x1).

To be more precisely, Qin et al. [7] showed in the framework of a real Hilbert spaces
H for the uniformly L-Lipschitzian and asymptotically pseudocontractive mapping in the
intermediate sense that the fixed point set is closed and convex (see Lemma 1.4 in [7]) and the
demiclosedness principle holds (see Lemma 1.5 in [7]), and they also introduced an iterative
scheme to find a fixed point of a uniformly L-Lipschitzian such that L > 0 and asymptotically
pseudocontractive mapping in the intermediate sense on a nonempty bounded closed convex
C ⊂ H defined as in (1.13) with the sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) such that
limn→∞ kn = 1 and limn→∞τn = 0, and let qn = 2kn − 1 for all n ∈ N as follows:

x1 = x ∈ C chosen arbitrarily,

zn =
(
1 − βn

)
xn + βnT

nxn,

yn = (1 − αn)xn + αnT
nzn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥2 ≤ ‖xn − z‖2 + αnθn

+αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnxn − xn‖2

}
,

Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x1), ∀n ∈ N,

(1.17)

where θn = (qn[1+βn(qn −1)]−1) · (diamC)2 +2(βnqn +1)τn < ∞. They proved that under the
sequences {αn}, {βn} ⊂ (0, 1) such that a ≤ αn ≤ βn ≤ b for some a > 0 and b ∈ (0, L−2(

√
1 + L2−

1)), if F(T) is nonempty, then the sequence {xn} generated by (1.17) converges strongly to a
fixed point of T .

Inspired and motivated by the works mentioned above, in this paper, we introduce a
general iterative scheme (3.1) below to find a common element of the set of fixed point for an
asymptotically pseudocontractive mapping in the intermediate sense and the set of solutions
of mixed equilibrium problems in Hilbert spaces. The strong convergence theorem for the
above two sets is obtained by a general iterative scheme based on the shrinking projection
method which extends and improves Qin et al. [7] and many others.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. For solving the mixed
equilibrium problem, let us assume that the bifunction Φ : C × C → R, the function ϕ : C →
R ∪ {+∞} and the set C satisfy the following conditions:

(A1) Φ(x, x) = 0 for all x ∈ C;
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(A2) Φ is monotone; that is, Φ(x, y) + Φ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

Φ
(
tz + (1 − t)x, y

) ≤ Φ
(
x, y

)
; (2.1)

(A4) for each x ∈ C, y �→ Φ(x, y) is convex and lower semicontinuous;

(A5) for each y ∈ C, x �→ Φ(x, y) is weakly upper semicontinuous;

(B1) for each x ∈ C and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such
that for any z ∈ C \Dx,

Φ
(
z, yx

)
+ ϕ

(
yx

) − ϕ(z) +
1
r

〈
yx − z, z − x

〉
< 0; (2.2)

(B2) C is a bounded set.

Lemma 2.1 (see [15]). LetH be a Hilbert space. For any x, y ∈ H and λ ∈ R, we have

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 − λ(1 − λ)

∥∥x − y
∥∥2

. (2.3)

Lemma 2.2 (see [3]). Let C be a nonempty closed convex subset of a Hilbert space H. Then the fol-
lowing inequality holds:

〈
x − PCx, PCx − y

〉 ≥ 0, ∀x ∈ H, y ∈ C. (2.4)

Lemma 2.3 (see [16]). Let C be a nonempty closed convex subset of a Hilbert spaceH,Φ : C×C →
R satisfying the conditions (A1)–(A5), and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0, define a mapping Sr : C → C
as follows:

Sr(x) =
{
z ∈ C : Φ

(
z, y

)
+ ϕ

(
y
) − ϕ(z) +

1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
, (2.5)

for all x ∈ C. Then, the following statement hold:

(1) for each x ∈ C, Sr(x)/= ∅;
(2) Sr is single-valued;

(3) Sr is firmly nonexpansive; that is, for any x, y ∈ C,

∥∥Srx − Sry
∥∥2 ≤ 〈

Srx − Sry, x − y
〉
; (2.6)

(4) F(Sr) = MEP(Φ, ϕ);

(5) MEP(Φ, ϕ) is closed and convex.
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Lemma 2.4 (see [3]). Every Hilbert spaceH has Radon-Riesz property or Kadec-Klee property, that
is, for a sequence {xn} ⊂ H with xn ⇀ x and ‖xn‖ → ‖x‖ then xn → x.

Lemma 2.5 (see [7]). Let C be a nonempty closed convex of a real Hilbert spaceH, and let T : C →
C be a uniformly L-Lipschitz and asymptotically pseudocontractive mapping in the intermediate sense
such that F(T) is nonempty. Then I − T is demiclosed at zero. That is, whenever {xn} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I − T)xn} strongly converges to some y, it
follows that (I − T)x = y.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, Φ a bifunction
from C × C into R satisfying the conditions (A1)–(A5), and ϕ : C → R ∪ {+∞} a proper lower
semicontinuous and convex function with either (B1) or (B2) holds. Let T : C → C be a uniformly L
-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping in the intermediate sense
defined as in (1.13) with the sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) such that limn→∞ kn = 1
and limn→∞ τn = 0. Let qn = 2kn − 1 for all n ∈ N. Assume that Ω := F(T) ∩ MEP(Φ, ϕ) be a
nonempty bounded subset of C. For x1 = x ∈ C chosen arbitrarily, suppose that {xn}, {yn}, {zn}, and
{un} are generated iteratively by

un ∈ C such that

Φ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

zn =
(
1 − βn

)
un + βnT

nun,

yn = (1 − αn)un + αnT
nzn,

Cn+1 =
{
z ∈ Cn ∩Qn :

∥∥yn − z
∥∥2 ≤ ‖xn − z‖2 + αnθn

+αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

}
,

Qn+1 = {z ∈ Cn ∩Qn : 〈xn − z, x1 − xn〉 ≥ 0},
C1 = Q1 = C,

xn+1 = PCn+1∩Qn+1(x1), ∀n ∈ N,

(3.1)

where θn = (qn[1 + βn(qn − 1)] − 1) · Δ2
n + 2(βnqn + 1)τn and Δn = sup{‖xn − z‖ : z ∈ Ω} < ∞

satisfying the following conditions:

(C1) {αn}, {βn} ⊂ (0, 1) such that a ≤ αn ≤ βn ≤ b for some a > 0 and b ∈ (0, L−2(
√
1 + L2 −

1));

(C2) {rn} ⊂ [r,∞) for some r > 0;

(C3)
∑∞

n=1 |rn+1 − rn| < ∞.

Then the sequences {xn}, {yn}, {zn}, and {un} converge strongly tow = PΩ(x1).
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Proof. Pick p ∈ Ω. Therefore, by (3.1) and the definition of Srn in Lemma 2.3, we have

un = Srnxn ∈ domϕ, (3.2)

and by Tp = p, and Lemma 2.3 (4), we have

Tnp = p = Srnp. (3.3)

By (3.2), (3.3), and the nonexpansiveness of Srn , we have

∥
∥un − p

∥
∥ =

∥
∥Srnxn − Srnp

∥
∥ ≤ ∥

∥xn − p
∥
∥. (3.4)

By (3.3), Lemma 2.1, the uniformly L-Lipschitzian of T , and the asymptotically pseudocon-
tractive mapping in the intermediate sense of T , we have

∥∥yn − p
∥∥2 =

∥∥(1 − αn)(un − p) + αn(Tnzn − p)
∥∥2

= (1 − αn)
∥∥un − p

∥∥2 + αn

∥∥Tnzn − p
∥∥2 − αn(1 − αn)‖Tnzn − un‖2

≤ (1 − αn)
∥∥un − p

∥∥2 + αn

(
qn
∥∥zn − p

∥∥2 + ‖zn − Tnzn‖2 + 2τn
)

− αn(1 − αn)‖Tnzn − un‖2,
(3.5)

‖zn − Tnzn‖2 =
∥∥(1 − βn

)
(un − Tnzn) + βn(Tnun − Tnzn)

∥∥2

=
(
1 − βn

)‖un − Tnzn‖2 + βn‖Tnun − Tnzn‖2

− βn
(
1 − βn

)‖Tnun − un‖2

≤ (
1 − βn

)‖un − Tnzn‖2 + βnL
2‖un − zn‖2

− βn
(
1 − βn

)‖Tnun − un‖2

=
(
1 − βn

)‖un − Tnzn‖2

+ βn
(
β2nL

2 + βn − 1
)
‖Tnun − un‖2,

(3.6)

∥∥zn − p
∥∥2 =

∥∥(1 − βn
)(
un − p

)
+ βn

(
Tnun − p

)∥∥2

=
(
1 − βn

)∥∥un − p
∥∥2 + βn

∥∥Tnun − p
∥∥2 − βn

(
1 − βn

)‖Tnun − un‖2

≤ (
1 − βn

)∥∥un − p
∥∥2 + βn

(
qn
∥∥un − p

∥∥2 + ‖un − Tnun‖2 + 2τn
)

− βn
(
1 − βn

)‖Tnun − un‖2

=
[
1 + βn

(
qn − 1

)]∥∥un − p
∥∥2 + β2n‖Tnun − un‖2 + 2βnτn.

(3.7)
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Substituting (3.6) and (3.7) into (3.5), and by the condition (C1) and (3.4), we have

∥
∥yn − p

∥
∥2 ≤ ∥

∥un − p
∥
∥2 + αn

(
qn
[
1 + βn

(
qn − 1

)] − 1
)∥∥un − p

∥
∥2

+ 2αn

(
βnqn + 1

)
τn + αnβn

(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

− αn

(
βn − αn

)‖un − Tnzn‖2

≤ ∥
∥un − p

∥
∥2 + αn

((
qn
[
1 + βn

(
qn − 1

)] − 1
)∥∥un − p

∥
∥2

+2
(
βnqn + 1

)
τn
)
+ αnβn

(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

≤ ∥
∥un − p

∥
∥2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

≤ ∥∥xn − p
∥∥2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2,

(3.8)

where θn := (qn[1 + βn(qn − 1)] − 1) ·Δ2
n + 2(βnqn + 1)τn and Δn := sup{‖xn − z‖ : z ∈ Ω}.

Firstly, we prove that Cn ∩ Qn is closed and convex for all n ∈ N. It is obvious that
C1 ∩ Q1 is closed, and by mathematical induction that Cn ∩ Qn is closed for all n ≥ 2, that is
Cn ∩Qn is closed for all n ∈ N. Let εn = αnθn + αnβn(βnqn + β2nL

2 + βn − 1)‖Tnun − un‖2. Since
for any z ∈ C, ‖yn − z‖2 ≤ ‖xn − z‖2 + εn is equivalent to

∥∥yn − xn

∥∥2 + 2
〈
yn − xn, xn − z

〉 − εn ≤ 0, (3.9)

for all n ∈ N. Therefore, for any z1, z2 ∈ Cn+1 ∩Qn+1 ⊂ Cn ∩Qn and ε ∈ (0, 1), we have

‖yn − xn‖2 + 2
〈
yn − xn, xn − (εz1 + (1 − ε)z2)

〉 − εn

= ε
(∥∥yn − xn

∥∥2 + 2
〈
yn − xn, xn − z1

〉 − εn
)

+ (1 − ε)
(∥∥yn − xn

∥∥2 + 2
〈
yn − xn, xn − z2

〉 − εn
)
≤ 0,

(3.10)

for all n ∈ N, and we have

〈xn − (εz1 + (1 − ε)z2), x1 − xn〉 = ε〈xn − z1, x1 − xn〉 + (1 − ε)〈xn − z2, x1 − xn〉 ≥ 0, (3.11)

for all n ∈ N. Since C1 ∩ Q1 is convex, and by putting n = 1 in (3.9), (3.10), and (3.11), we
have C2 ∩ Q2 is convex. Suppose that xk is given and Ck ∩ Qk is convex for some k ≥ 2. It
follows by putting n = k in (3.9), (3.10), and (3.11) that Ck+1 ∩ Qk+1 is convex. Therefore, by
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mathematical induction, we have Cn ∩Qn is convex for all n ≥ 2, that is, Cn ∩Qn is convex for
all n ∈ N. Hence, we obtain that Cn ∩Qn is closed and convex for all n ∈ N.

Next, we prove that Ω ⊂ Cn ∩Qn for all n ∈ N. It is obvious that p ∈ Ω ⊂ C = C1 ∩Q1.
Therefore, by (3.1) and (3.8), we have p ∈ C2, and note that p ∈ C = Q2, and so p ∈ C2 ∩Q2.
Hence, we have Ω ⊂ C2 ∩ Q2. Since C2 ∩ Q2 is a nonempty closed convex subset of C, there
exists a unique element x2 ∈ C2 ∩Q2 such that x2 = PC2∩Q2(x1). Suppose that xk ∈ Ck ∩Qk is
given such that xk = PCk∩Qk(x1), and p ∈ Ω ⊂ Ck ∩Qk for some k ≥ 2. Therefore, by (3.1) and
(3.8), we have p ∈ Ck+1. Since xk = PCk∩Qk(x1), therefore, by Lemma 2.2, we have

〈xk − z, x1 − xk〉 ≥ 0, (3.12)

for all z ∈ Ck ∩Qk. Thus, by (3.1), we have p ∈ Qk+1, and so p ∈ Ck+1 ∩Qk+1. Hence, we have
Ω ⊂ Ck+1 ∩ Qk+1. Since Ck+1 ∩ Qk+1 is a nonempty closed convex subset of C, there exists a
unique element xk+1 ∈ Ck+1 ∩Qk+1 such that xk+1 = PCk+1∩Qk+1(x1). Therefore, by mathematical
induction, we obtain Ω ⊂ Cn ∩ Qn for all n ≥ 2, and so Ω ⊂ Cn ∩ Qn for all n ∈ N, and we
can define xn+1 = PCn+1∩Qn+1(x1) for all n ∈ N. Hence, we obtain that the iteration (3.1) is well
defined.

Next, we prove that {xn} is bounded. Since xn = PCn∩Qn(x1) for all n ∈ N, we have

‖xn − x1‖ ≤ ‖z − x1‖, (3.13)

for all z ∈ Cn ∩Qn. It follows by p ∈ Ω ⊂ Cn ∩Qn that ‖xn − x1‖ ≤ ‖p − x1‖ for all n ∈ N. This
implies that {xn} is bounded, and so are {yn}, {zn}, and {un}.

Next, we prove that ‖xn − xn+1‖ → 0 and ‖un − un+1‖ → 0 as n → ∞. Since xn+1 =
PCn+1∩Qn+1(x1) ∈ Cn+1 ∩Qn+1 ⊂ Cn ∩Qn, therefore, by (3.13), we have ‖xn −x1‖ ≤ ‖xn+1 −x1‖ for
all n ∈ N. This implies that {‖xn − x1‖} is a bounded nondecreasing sequence; there exists the
limit of ‖xn − x1‖, that is

lim
n→∞

‖xn − x1‖ = m, (3.14)

for some m ≥ 0. Since xn+1 ∈ Qn+1, therefore, by (3.1), we have

〈xn − xn+1, x1 − xn〉 ≥ 0. (3.15)

It follows by (3.15) that

‖xn − xn+1‖2 = ‖(xn − x1) + (x1 − xn+1)‖2

= ‖xn − x1‖2 + 2〈xn − x1, x1 − xn〉

+ 2〈xn − x1, xn − xn+1〉 + ‖xn+1 − x1‖2

≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.

(3.16)
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Therefore, by (3.14), we obtain

‖xn − xn+1‖ −→ 0 as n −→ ∞. (3.17)

Indeed, from (3.1)we have

Φ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.18)

Φ
(
un+1, y

)
+ ϕ

(
y
) − ϕ(un+1) +

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0, ∀y ∈ C; (3.19)

substituting y = un+1 into (3.18) and y = un into (3.19), we have

Φ(un, un+1) + ϕ(un+1) − ϕ(un) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

Φ(un+1, un) + ϕ(un) − ϕ(un+1) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.20)

Therefore, by the condition (A2), we get

0 ≤ Φ(un, un+1) + Φ(un+1, un)

+
〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉

≤
〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
.

(3.21)

It follows that

0 ≤
〈
un+1 − un, (un − un+1) + (un+1 − xn) − rn

rn+1
(un+1 − xn+1)

〉

= 〈un+1 − un, un − un+1〉

+
〈
un+1 − un, (un+1 − xn+1) + (xn+1 − xn) − rn

rn+1
(un+1 − xn+1)

〉
.

(3.22)

Thus, we have

‖un+1 − un‖2 ≤
〈
un+1 − un, (xn+1 − xn) +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
(
‖xn+1 − xn‖ +

∣∣∣∣1 −
rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
)
.

(3.23)
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It follows by the condition (C2) that

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ + |rn+1 − rn|
rn+1

‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ +
(
M

r

)
|rn+1 − rn|,

(3.24)

where M = supn≥1‖un − xn‖ < ∞. Therefore, by the condition (C3) and (3.17), we obtain

‖un − un+1‖ −→ 0 as n −→ ∞. (3.25)

Next, we prove that ‖Tnun−un‖ → 0 and ‖Tun−un‖ → 0 as n → ∞. Since xn+1 ∈ Cn+1,
by (3.1), we have

∥∥yn − xn+1
∥∥2 ≤ ‖xn − xn+1‖2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2,

(3.26)

it follows by the condition (C1) that

a2(1 − bqn − b2L2 − b
)‖Tnun − un‖2

≤ αnβn
(
1 − βnqn − β2nL

2 − βn
)‖Tnun − un‖2

≤ ‖xn − xn+1‖2 + αnθn −
∥∥yn − xn+1

∥∥2

≤ ‖xn − xn+1‖2 + bθn.

(3.27)

Since limn→∞ qn = 1 and the condition (C1), we have limn→∞(1−bqn−b2L2−b) = 1−2b−b2L2 >
0. Therefore, from (3.27) by (3.17) and limn→∞ θn = 0, we obtain

‖Tnun − un‖ −→ 0 as n −→ ∞. (3.28)

By the uniformly L-Lipschitzian of T , we have

‖un − Tun‖ ≤ ‖un − un+1‖ +
∥∥∥un+1 − Tn+1un+1

∥∥∥ +
∥∥∥Tn+1un+1 − Tn+1un

∥∥∥

+
∥∥∥Tn+1un − Tun

∥∥∥

≤ (1 + L)‖un − un+1‖ +
∥∥∥un+1 − Tn+1un+1

∥∥∥ + L‖Tnun − un‖.

(3.29)

Therefore, by (3.25) and (3.28), we obtain

‖un − Tun‖ −→ 0 as n −→ ∞. (3.30)
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Next, we prove that ‖yn − xn‖ → 0, ‖un − zn‖ → 0 and ‖un − xn‖ → 0 as n → ∞.
From (3.26), by the condition (C1), we have

∥
∥yn − xn+1

∥
∥2 ≤ ‖xn − xn+1‖2 + bθn + b2

(
bqn + b2L2 + b − 1

)
‖Tnun − un‖2; (3.31)

it follows that

∥
∥yn − xn

∥
∥2 =

∥
∥(yn − xn+1

)
+ (xn+1 − xn)

∥
∥2

=
∥
∥yn − xn+1

∥
∥2 + 2

〈
yn − xn+1, xn+1 − xn

〉
+ ‖xn+1 − xn‖2

≤ ∥
∥yn − xn+1

∥
∥2 + 2

∥
∥yn − xn+1

∥
∥‖xn+1 − xn‖ + ‖xn+1 − xn‖2

≤ 2‖xn+1 − xn‖
(‖xn+1 − xn‖ +

∥
∥yn − xn+1

∥
∥) + bθn

− b2
(
1 − bqn − b2L2 − b

)
‖Tnun − un‖2.

(3.32)

Therefore, by (3.17), limn→∞ θn = 0, and limn→∞(1 − bqn − b2L2 − b) = 1 − 2b − b2L2 > 0, we
obtain

∥∥yn − xn

∥∥ −→ 0 as n −→ ∞. (3.33)

From (3.1), we have ‖un − zn‖ = βn‖un − Tnun‖; therefore, by (3.28), we obtain

‖un − zn‖ −→ 0 as n −→ ∞. (3.34)

By (3.2), (3.3), and the firmly nonexpansiveness of Srn , we have

∥∥un − p
∥∥2 ≤ 〈

Srnxn − Srnp, xn − p
〉
=
〈
un − p, xn − p

〉

=
1
2

(∥∥un − p
∥∥2 +

∥∥xn − p
∥∥2 − ‖un − xn‖2

)
,

(3.35)

it follows that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2. (3.36)

Therefore, from (3.8), we have

‖yn − p‖2 ≤ ‖un − p‖2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

≤ ‖xn − p‖2 − ‖un − xn‖2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2;

(3.37)
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it follows by the condition (C1) that

‖un − xn‖2 ≤
∥
∥xn − p

∥
∥2 − ∥

∥yn − p
∥
∥2 + αnθn

+ αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

≤ ∥
∥xn − yn

∥
∥(

∥
∥xn − p

∥
∥ +

∥
∥yn − p

∥
∥) + bθn

− b2
(
1 − bqn − b2L2 − b

)
‖Tnun − un‖2.

(3.38)

Therefore, by (3.33), limn→∞ θn = 0, and limn→∞(1 − bqn − b2L2 − b) = 1 − 2b − b2L2 > 0, we
obtain

‖un − xn‖ −→ 0 as n −→ ∞. (3.39)

Since {un} is bounded, there exists a subsequence {uni} of {un} which converges weakly to
w. Next, we prove that w ∈ Ω. From uni ⇀ w and ‖uni − Tuni‖ → 0 as i → ∞ by (3.30),
therefore, by Lemma 2.5, we obtain w ∈ F(T). From (3.1), we have

0 ≤ Φ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉
, ∀y ∈ C; (3.40)

it follows by the condition (A2) that

Φ
(
y, un

) ≤ Φ
(
y, un

)
+ Φ

(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉
, ∀y ∈ C

≤ ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉
, ∀y ∈ C.

(3.41)

Hence,

ϕ
(
y
) − ϕ(uni) +

〈
y − uni ,

uni − xni

rni

〉
≥ Φ

(
y, uni

)
, ∀y ∈ C. (3.42)

Therefore, from (3.39) and by uni ⇀ w as i → ∞, we obtain

Φ
(
y,w

)
+ ϕ(w) − ϕ

(
y
) ≤ 0, ∀y ∈ C. (3.43)

For a constant t with 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)w. Since y,w ∈ C, thus, yt ∈ C.
So, from (3.43), we have

Φ
(
yt,w

)
+ ϕ(w) − ϕ

(
yt

) ≤ 0. (3.44)
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By (3.44), the conditions (A1) and (A4), and the convexity of ϕ, we have

0 = Φ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ (
tΦ

(
yt, y

)
+ (1 − t)Φ

(
yt,w

))
+
(
tϕ
(
y
)
+ (1 − t)ϕ(w)

) − ϕ
(
yt

)

= t
(
Φ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

))
+ (1 − t)

(
Φ
(
yt,w

)
+ ϕ(w) − ϕ

(
yt

))

≤ t
(
Φ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

))
;

(3.45)

it follows that

Φ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

) ≥ 0. (3.46)

Therefore, by the condition (A3) and theweakly lower semicontinuity of ϕ, we haveΦ(w,y)+
ϕ(y) − ϕ(w) ≥ 0 as t → 0 for all y ∈ C, and hence, we obtain w ∈ MEP(Φ, ϕ), and so w ∈ Ω.

Since Ω is a nonempty closed convex subset of C, there exists a unique w ∈ Ω such
that w = PΩ(x1). Next, we prove that xn → w as n → ∞. Since w = PΩ(x1), we have
‖x1 −w‖ ≤ ‖x1 − z‖ for all z ∈ Ω; it follows that

‖x1 −w‖ ≤ ‖x1 −w‖. (3.47)

Since w ∈ Ω ⊂ Cn ∩Qn, therefore, by (3.13), we have

‖x1 − xn‖ ≤ ‖x1 −w‖. (3.48)

Since ‖xni −uni‖ → 0 by (3.39) and uni ⇀ w, we have xni ⇀ w as i → ∞. Therefore, by (3.47),
(3.48) and the weak lower semicontinuity of norm, we have

‖x1 −w‖ ≤ ‖x1 −w‖ ≤ lim inf
i→∞

‖x1 − xni‖ ≤ lim sup
i→∞

‖x1 − xni‖ ≤ ‖x1 −w‖. (3.49)

It follows that

‖x1 −w‖ = lim
i→∞

‖x1 − xni‖ = ‖x1 −w‖. (3.50)

Since xni ⇀ w as i → ∞, therefore, we have

(x1 − xni) ⇀ (x1 −w) as i −→ ∞. (3.51)

Hence, from (3.50), (3.51), Kadec-Klee property, and the uniqueness ofw = PΩ(x1), we obtain

xni −→ w = w as i −→ ∞. (3.52)

It follows that {xn} converges strongly to w and so are {yn}, {zn}, and {un}. This completes
the proof.
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Remark 3.2. The iteration (3.1) is the difference with the iterative scheme of Qin et al. [7] as
follows.

(1) The sequence {xn} is a projection sequence of x1 onto Cn∩Qn for all n ∈ N such that

C1 ∩Q1 ⊃ C2 ∩Q2 ⊃ · · · ⊃ Cn ∩Qn ⊃ · · · ⊃ Ω. (3.53)

(2) A solving of a common element of the set of fixed point for an asymptotically
pseudocontractive mapping in the intermediate sense and the set of solutions of
the mixed equilibrium problems by iteration is obtained.

We define the condition (B3) as the condition (B1) such that ϕ = 0. If ϕ = 0, then
Theorem 3.1 is reduced immediately to the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, and let Φ a
bifunction from C × C into R satisfying the conditions (A1)–(A5) with either (B2) or (B3) holds. Let
T : C → C be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive
mapping in the intermediate sense defined as in (1.13) with the sequences {kn} ⊂ [1,∞) and {τn} ⊂
[0,∞) such that limn→∞ kn = 1 and limn→∞ τn = 0. Let qn = 2kn − 1 for all n ∈ N. Assume that
Ω := F(T) ∩ EP(Φ) be a nonempty bounded subset of C. For x1 = x ∈ C chosen arbitrarily, suppose
that {xn}, {yn}, {zn}, and {un} are generated iteratively by

un ∈ C such that Φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

zn =
(
1 − βn

)
un + βnT

nun,

yn = (1 − αn)un + αnT
nzn,

Cn+1 =
{
z ∈ Cn ∩Qn :

∥∥yn − z
∥∥2 ≤ ‖xn − z‖2 + αnθn

+αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

}
,

Qn+1 = {z ∈ Cn ∩Qn : 〈xn − z, x1 − xn〉 ≥ 0},
C1 = Q1 = C,

xn+1 = PCn+1∩Qn+1(x1), ∀n ∈ N,

(3.54)

where θn = (qn[1 + βn(qn − 1)] − 1) · Δ2
n + 2(βnqn + 1)τn and Δn = sup{‖xn − z‖ : z ∈ Ω} < ∞

satisfying the following conditions:

(C1) {αn}, {βn} ⊂ (0, 1) such that a ≤ αn ≤ βn ≤ b for some a > 0 and b ∈ (0, L−2(
√
1 + L2 −

1));

(C2) {rn} ⊂ [r,∞) for some r > 0;

(C3)
∑∞

n=1 |rn+1 − rn| < ∞.

Then the sequences {xn}, {yn}, {zn}, and {un} converge strongly tow = PΩ(x1).

If Φ = 0, then Corollary 3.3 is reduced immediately to the following result.
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Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive mapping in the
intermediate sense defined as in (1.13) with the sequences {kn} ⊂ [1,∞) and {τn} ⊂ [0,∞) such
that limn→∞ kn = 1 and limn→∞ τn = 0. Let qn = 2kn − 1 for all n ∈ N. Assume that F(T) be a
nonempty bounded subset of C. For x1 = x ∈ C chosen arbitrarily, suppose that {xn}, {yn}, and {zn}
are generated iteratively by

zn =
(
1 − βn

)
xn + βnT

nxn,

yn = (1 − αn)xn + αnT
nzn,

Cn+1 =
{
z ∈ Cn ∩Qn :

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + αnθn

+αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnxn − xn‖2

}
,

Qn+1 = {z ∈ Cn ∩Qn : 〈xn − z, x1 − xn〉 ≥ 0},
C1 = Q1 = C,

xn+1 = PCn+1∩Qn+1(x1), ∀n ∈ N,

(3.55)

where θn = (qn[1 + βn(qn − 1)] − 1) ·Δ2
n + 2(βnqn + 1)τn, Δn = sup{‖xn − z‖ : z ∈ F(T)} < ∞ and

{αn}, {βn} ⊂ (0, 1) such that a ≤ αn ≤ βn ≤ b for some a > 0 and b ∈ (0, L−2(
√
1 + L2 − 1)). Then

the sequences {xn}, {yn} and {zn} converge strongly to w = PF(T)(x1).

We introduce the equilibrium problem to the optimization problem:

min
x∈C

ζ(x), (3.56)

where C is a nonempty closed convex subset of a real Hilbert space H and let ζ : C →
R ∪ {+∞} is a proper convex and lower semicontinuous. We denote by Argmin(ζ) the set
of solution of problem (3.56). We define the condition (B4) as the condition (B3) such that
Φ : C × C → R is a bifunction defined by Φ(x, y) = ζ(y) − ζ(x) for all x, y ∈ C. Observe that
EP(Φ) = Argmin(ζ). We obtain that Corollary 3.3 is reduced immediately to the following
result.

Corollary 3.5. Let C is a nonempty closed convex subset of a real Hilbert space H, and ζ : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function with either (B2) or (B4) holds. Let
T : C → C be a uniformly L-Lipschitzian such that L > 0 and asymptotically pseudocontractive
mapping in the intermediate sense defined as in (1.13) with the sequences {kn} ⊂ [1,∞) and {τn} ⊂
[0,∞) such that limn→∞ kn = 1 and limn→∞ τn = 0. Let qn = 2kn − 1 for all n ∈ N. Assume that
Ω := F(T) ∩ Argmin(ζ) be a nonempty bounded subset of C. For x1 = x ∈ C chosen arbitrarily,
suppose that {xn}, {yn}, {zn} and {un} are generated iteratively by

un ∈ C such that ζ
(
y
) − ζ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

zn =
(
1 − βn

)
un + βnT

nun,
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yn = (1 − αn)un + αnT
nzn,

Cn+1 =
{
z ∈ Cn ∩Qn :

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + αnθn

+αnβn
(
βnqn + β2nL

2 + βn − 1
)
‖Tnun − un‖2

}
,

Qn+1 = {z ∈ Cn ∩Qn : 〈xn − z, x1 − xn〉 ≥ 0},
C1 = Q1 = C,

xn+1 = PCn+1∩Qn+1(x1), ∀n ∈ N,

(3.57)

where θn = (qn[1 + βn(qn − 1)] − 1) · Δ2
n + 2(βnqn + 1)τn and Δn = sup{‖xn − z‖ : z ∈ Ω} < ∞

satisfying the following conditions:

(C1) {αn}, {βn} ⊂ (0, 1) such that a ≤ αn ≤ βn ≤ b for some a > 0 and b ∈ (0, L−2(
√
1 + L2 −

1));

(C2) {rn} ⊂ [r,∞) for some r > 0;

(C3)
∑∞

n=1 |rn+1 − rn| < ∞.

Then the sequences {xn}, {yn}, {zn}, and {un} converge strongly tow = PΩ(x1).
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