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We study some properties for parametric generalized vector equilibrium problems and the
convergent behavior for the correspondent solution sets of this problem under some suitable
conditions. Several existence results and the topological structures of the efficient solutions set
are established. Some new results of existence for weak solutions and strong solutions are derived.
Finally, we give some examples to illustrate our theory including the example studied by Fang
(1992), who established the perturbed nonlinear program (Pμ) and described successfully that the
optimal solution of (Pμ) will approach the optimal solution of linear program (P).

1. Introduction and Preliminaries

In recent years, the topological structures of the set of efficient solutions for vector equilibrium
problems or generalized systems or variational inequality problems have been discussed in
several aspects, as we show in [1–29]. More precisely, we divide this subject into several
topics as following. First, the closedness of the set of efficient solutions are studied in [1, 4,
6, 13–16, 27]. Second, the lower semicontinuity of the set of efficient solutions are studied in
[1, 9, 10, 19, 21, 23–26, 30]. Third, the upper semicontinuity of the set of efficient solutions
are studied in [1, 4, 7, 8, 16, 21, 23–26, 30]. Fourth, the connectedness of the set of efficient
solutions are studied in [2, 3, 17, 20, 27, 29]. Fifth, the existence of efficient solutions are
studied in [5, 6, 8–12, 16–18, 22, 27, 29, 31].

Gong and Yao [19] establish the lower semicontinuity of the set of efficient solutions
for parametric generalized systems with monotone bifunctions in real locally convex
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Hausdorff topological vector spaces. They also discuss the connectedness of the efficient
solutions for generalized systems, we refer to [20]. Luc [27, Chapter 6] investigates the
structures of efficient point sets of linear, convex, and quasiconvex problems and also points
out that the closedness and connectedness of the efficient solutions sets are important
in mathematical programming. Huang et al. [8] discuss a class of parametric implicit
vector equilibrium problems in Hausdorff topological vector spaces, where the mappings
f and K are perturbed by parameters, say η and μ, respectively. They establish the upper
semicontinuity and lower semicontinuity of the solution mapping for such problems and
derive the closedness of the set of efficient solutions. Li et al. [1] discuss the generalized
vector quasivariational inequality problem and obtain both upper semicontinuous and lower
semicontinuous properties of the set of efficient solutions for parametric generalized vector
quasivariational inequality problems. The closedness of the set of efficient solutions is also
derived. Cheng [2] discusses the connectedness of the set of weakly efficient solutions
for vector variational inequalities in R

n. In 1992, Fang [32] established the perturbed
nonlinear program

(
Pμ

)
and described successfully that the optimal solution of

(
Pμ

)
will

approach the optimal solution of linear program (P). We will state the result in Example 3.7
below. We further point out that, in some suitable conditions, such convergent behavior
will display continuity. Furthermore, the correspondent solution sets will preserve some
kinds of topological properties under the convergent process. These results will show the
convergent behavior about the sets of solutions by two kinds of parameters. As mentioned
in [20], for the connectedness, “there are few papers which deal with this subject.” But from
above descriptions, we can understand and the topological structures of the sets of efficient
solutions for some problems are more and more popular and interesting subjects. On the
other hand, for our recent result [15], we study the generalized vector equilibrium problems
in real Hausdorff topological vector space settings. The concepts of weak solutions and strong
solutions are introduced. Several new results of existence for weak solutions and strong
solutions of the generalized vector equilibrium problems are derived. These inspired us to
discuss the parametric generalized vector equilibrium problems (PGVEPs). Let us introduce
some notations as follows. We will use these notations through all this paper.

Let X,Y , and Z be arbitrary real Hausdorff topological vector spaces, where X and Z
are finite dimensional. LetΔ1, andΔ2 be two parametric sets,K : Δ2 → 2X be amappingwith
nonempty values, K = ∪η∈Δ1K(η), C : K → 2Y a set-valued mapping such that for each x ∈
K, C(x) is a proper closed convex and pointed cone with apex at the origin and intC(x)/= ∅.
For each x ∈ K, we can define relations “≤C(x)” and “�C(x)” as follows: (1) z≤C(x)y ⇔ y − z ∈
C(x) and (2) z�C(x)y ⇔ y − z /∈ C(x). Furthermore, we use the following notations:

y≥C(x)z ⇐⇒ z≤C(x)y, y/≥C(x)z ⇐⇒ z�C(x)y. (1.1)

Similarly, we can define the relations “≤intC(x)” and “�intC(x)” if we replace the set C(x) by
intC(x). If the mapping C(x) is constant, then we denote it by C. The mappings f : Δ1 ×
Z × K ×K → Y and T : K → 2Z are given. The parametric generalized vector equilibrium
problem (PGVEP, for short) is as follows: For every (ξ, η) ∈ Δ1 × Δ2, we will like to find an
x ∈ K(η) such that

f
(
ξ, s, x, y

)
/∈ − intC(x), (1.2)
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for all y ∈ K(η) and for some s ∈ T(x). Such set of weak efficient solutions for (PGVEP) is
denoted by Γw(ξ, η). If we find x ∈ K(η) and some s ∈ T(x) such that

f
(
ξ, s, x, y

)
/∈ − intC(x), (1.3)

for all y ∈ K(η). Such set of efficient solutions for (PGVEP) is denoted by Γ(ξ, η). Our main
purpose is to find some topological structures for these two sets, Γw(ξ, η) and Γ(ξ, η), of
efficient solutions of the parametric generalized vector equilibrium problem. Furthermore,
we try to find some sufficient conditions lead them to be nonempty or closed or connected or
even compact sets.

2. Some Properties for Γw(ξ, η)

Theorem 2.1. Let X,Y,Z,C,K,K, T , and f be given as in Section 1, the parametric spaces Δ1,Δ2

be two Hausdorff topological vector spaces. Let the mapping f : Δ1 × Z × K ×K → Y be such that
(ξ, s, x, y) → f(ξ, s, x, y) is continuous and y → f(ξ, s, x, y) is C(x)-convex for every (ξ, s, x) ∈
Δ1 × Z ×K, the mapping T : K → 2Z be an upper semicontinuous with nonempty compact values,
and the mapping K : Δ2 → 2X is continuous with nonempty compact and convex values. Suppose
that the following conditions hold the following:

(a) for any ξ ∈ Δ1, x ∈ K, there is an s ∈ Tx, such that f(ξ, s, x, x) /∈ (− intC(x));

(b) the mapping x → Y \ (− intC(x)) is closed [33] onK.

Then, we have

(1) for every (ξ, η) ∈ Δ1 × Δ2, the weak efficient solutions for (PGVEP) exist, that is, the set
Γw(ξ, η) is nonempty, where Γw(ξ, η) = {x ∈ K(η) : f(ξ, s, x, y) /∈ − intC(x) for some
s ∈ T(x) for all y ∈ K(η)}.

(2) Γw : Δ1 ×Δ2 → 2X is upper semicontinuous on Δ1 ×Δ2 with nonempty compact values.

Proof. (1) For any fixed (ξ, η) ∈ Δ1 × Δ2, we can easy check that the mappings (s, x) →
f(ξ, s, x, y), y → f(ξ, s, x, y) satisfy all conditions of Corollary 2.2 in [15] with K = K and
D = conv(K). Hence, from this corollary, we know that Γw(ξ, η) is nonempty.

(2) For any fixed (ξ, η) ∈ Δ1 × Δ2, we first claim that Γw(ξ, η) is closed in K(η), hence
it is compact. Indeed, let a net {xα} ⊂ Γw(ξ, η) and xα → p for some p ∈ X. Then, xα ∈ K(η)
and f(ξ, sαy, xαy, y) /∈ − intC(xα) for all y ∈ K(η) and for some sαy ∈ T(xα). Since K(η) is
compact, p ∈ K(η). For each α and for each y ∈ K(η), there exists an sαy ∈ T(xα) such that
f(ξ, sαy, xα, y) ∈ Y \ (− intC(xα)). Since T is upper semicontinuous with nonempty compact
values, and the set {xα}∪ {p} is compact, T({xα}∪ {p}) is compact. Therefore, without loss of
generality, we may assume that the net {sαy} converges to some sy. Then sy ∈ T(p). Since the
mapping (s, x) → f(ξ, s, x, y) is continuous, we have

lim
α

f
(
ξ, sαy, xα, y

)
= f

(
ξ, sy, p, y

)
. (2.1)

Since f(ξ, sαy, xα, y) ∈ Y \ (− intC(xα)), xα → p and the mapping x → Y \ (− intC(x)) is
closed, we have

f
(
ξ, sy, p, y

) ∈ Y \ (− intC
(
p
))
. (2.2)
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This proves that p ∈ Γw(ξ, η), and hence Γw(ξ, η) is closed. Since K(η) is compact, so is
Γw(ξ, η).

We next prove that themapping Γw : Δ1×Δ2 → 2K(η) is upper semicontinuous. That is,
for any (ξ, η) ∈ Δ1 ×Δ2, if there is a net {(ξβ, ηβ)} converges to (ξ, η) and some xβ ∈ Γw(ξβ, ηβ),
we need to claim that there is a p ∈ Γw(ξ, η) and a subnet {xβν} of {xβ} such that xβν →
p. Indeed, since xβ ∈ K(ηβ) and K : Δ2 → 2X are upper semicontinuous with nonempty
compact values, there is a p ∈ K(η) and a subnet {xβν} of {xβ} such that xβν → p.

If we can claim that p ∈ Γw(ξ, η), then we can see that Γw : Δ1 × Δ2 → 2X is upper
semicontinuous on Δ1 × Δ2, and complete our proof. Indeed, if not, there is a y ∈ K(η) such
that for every s ∈ T(p)we have

f
(
ξ, s, x, y

) ∈ − intC
(
p
)
. (2.3)

Since K is lower semicontinuous, there is a net {yβν} with yβν ∈ K(ηβν) and yβν → y.
Since xβν ∈ Γw(ξβν , ηβν), we have xβν ∈ K(ηβν) and, for each yβν ,

f
(
ξβν , sβν , xβν , yβν

) ∈ Y \ (− intC
(
xβν

))
, (2.4)

for some sβν ∈ T(xβν).
Since T is upper semicontinuous and the net xβν → x, without loss of generality, we

may assume that sβν → s for some s ∈ T(x). Since the mapping (ξ, s, x, y) → f(ξ, s, x, y) is
continuous, we have

lim
βν

f
(
ξβν , sβν , xβν , yβν

)
= f

(
ξ, s, p, y

)
. (2.5)

From (2.4) and the closedness of the mapping x → Y \ (− intC(x)), we have

f
(
ξ, s, p, y

) ∈ Y \ (− intC
(
p
))
, (2.6)

which contradicts (2.3). Hence, we have p ∈ Γw(ξ, η).

3. Some Properties for Γ(ξ, η)

In the section, we discuss the set Γ(ξ, η) of the efficient solutions for (PGVEP), where Γ(ξ, η) =
{x ∈ K(η) : there is an s ∈ T(x), such that f(ξ, s, x, y) /∈ − intC(x) for all y ∈ K(η)}. The sets
of minimal points, maximum points, weak minimal points, and weak maximum points for
some set Awith respect to the cone C(x) are denoted by MinC(x)A, MaxC(x)A, MinC(x)

w A, and
MaxC(x)w A, respectively. For more detail, we refer the reader to Definition 1.2 of [28].

Theorem 3.1. Under the framework of Theorem 2.1, for each (ξ, η) ∈ Δ1 × Δ2, there is an x ∈
Γw(ξ, η) with s ∈ T(x). In addition, if T(x) is convex, the mapping s → −f(ξ, s, x, y) is properly
quasi C(x)-convex (Definition 1.1 of [28]) on T(x) for each (ξ, y) ∈ Δ1 × K(η). Assume that the
mapping (s, y) → f(ξ, s, x, y) satisfies the following conditions:
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(i)

MaxC(x)
⋃

s∈T(x)
MinC(x)

w

⋃

y∈K(η)

{
f
(
ξ, s, x, y

)} ⊂ MinC(x)
w

⋃

y∈K(η)

{
f
(
ξ, s, x, y

)}
+ C(x) (3.1)

for every s ∈ T(x);

(ii) for any fixed x ∈ K(η), if δ ∈ MaxC(x)
⋃

s∈T(x){f(ξ, s, x, y)} and δ cannot be comparable
with f(ξ, s, x, y) which does not equal to δ, then δ�intC(x)0;

(iii) if MaxC(x)
⋃

s∈T(x) MinC(x)
w

⋃
y∈K(η){f(ξ, s, x, y)} ⊂ Y \ (− intC(x)), there exists an s ∈

T(x) such that MinC(x)
w

⋃
y∈K(η){f(ξ, s, x, y)} ⊂ Y \ (− intC(x)).

Then, we have

(a) for every (ξ, η) ∈ Δ1 ×Δ2, the efficient solutions exists, that is, the set Γ(ξ, η) is nonempty,
furthermore, it is compact;

(b) the mapping Γ : Δ1 × Δ2 → 2X is upper semicontinuous on Δ1 × Δ2 with nonempty
compact values;

(c) for each (ξ, η) ∈ Δ1 × Δ2, the set Γ(ξ, η) is connected if C : K(η) → 2Y is constant, and
for any (ξ, η) ∈ Δ1 ×Δ2, x ∈ K(η) and s ∈ T(K(η)), f(ξ, s, x,K(η)) + C is convex.

Proof. (a) Fixed any (ξ, η) ∈ Δ1×Δ2, we can easy see that all conditions of Theorem 2.3 of [15]
hold, hence from Theorem 2.3 of [15], we know that Γ(ξ, η) is nonempty and compact.

(b) Let {(ξα, ηα)} ⊂ Δ1 × Δ2 be a net such that (ξα, ηα) → (ξ, η) and {xα} be a net with
xα ∈ Γ(ξα, ηα). Since xα ∈ K(ηα) and K : Δ2 → 2X are upper semicontinuous with nonempty
compact values, there are an x ∈ K(η) and a subnet {xαι} of {xα} such that xαι → x. Since
T : K → 2Z is upper semicontinuous with nonempty compact values, T({xαι} ∪ {x}) is
compact. Since sαι ∈ T(xαι), there is an s ∈ T(x) such that a subnet of {sαι} converges to s.
Without loss of generality, we still denote the subnet by {sαι}, and hence sαι → s.

If x /∈ Γ(ξ, η), then there is a y ∈ K(η) such that

f
(
ξ, s, x, y

) ∈ − intC(x). (3.2)

Since K(η) is compact, there is a net, say {yαι}, in K(η) converges to y. Since the mapping
(ξ, s, x, y) → f(ξ, s, x, y) is continuous, and the mapping x → Y \ (− intC(x)) is closed, we
have

f
(
ξ, s, x, y

)
= lim

αι

f
(
ξαι , sαι , xαι , yαι

) ∈ Y \ (− intC(x)), (3.3)

which contracts (3.2). Thus, x ∈ Γ(ξ, η).
In order to prove (c), we introduce Lemmas 3.2–3.4 as follows.
Let Y	 be the topological dual space of Y . For each x ∈ K,

C	(x) =
{
g ∈ Y	 : g

(
y
) ≥ 0 ∀y ∈ C(x)

}
. (3.4)
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Let C	 = ∩x∈KC	(x), then C	 is nonempty and connected. If C	 : K → 2Y
	
is a constant

mapping, then C	(x) = C	 for all x ∈ K. In the sequel, we suppose that C	 is not a singleton.
That is, C	 \ {0}/= ∅, and hence it is connected. For each g ∈ C	 \ {0}, let us denote the set of
g-efficient solutions to (PGVEP) by

Sξ,η(g
)
=

{

x ∈ K
(
η
)
: sup
s∈T(x)

g
(
f
(
ξ, s, x, y

)) ≥ 0 for every y ∈ K
(
η
)
}

. (3.5)

Lemma 3.2. Under the framework of Theorem 3.1,

Sξ,η(g
)
/= ∅, (3.6)

for every g ∈ C	 \ {0}.

Proof. From (a) of Theorem 3.1, we know that, for each (ξ, η) ∈ Δ1 × Δ2, there is an x ∈ K(η)
with s ∈ T(x) such that

g
(
f
(
ξ, s, x, y

)) ≥ 0, (3.7)

for all y ∈ K(η) and for all g ∈ C	 \ {0}. Thus, x ∈ Sξ,η(g) for every g ∈ C	 \ {0}. Hence,
Sξ,η(g)/= ∅ for every g ∈ C	 \ {0}.

Lemma 3.3. Suppose that for any (ξ, η) ∈ Δ1 × Δ2 and y ∈ K(η), f(ξ, T(K(η)), K(η), y) are
bounded. Then, the mapping Sξ,η : C	 \ {0} → 2K(η) is upper semicontinuous with compact values.

Proof. Fixed any (ξ, η) ∈ Δ1 × Δ2. We first claim that the mapping Sξ,η : C	 \ {0} → 2K(η) is
closed. Let xν ∈ Sξ,η(gν), xν → x and gν → g with respect to the strong topology σ(Y	, Y ) in
Y	.

Since xν ∈ Sξ,η(gν), there is an sν ∈ T(xν) such that g(f(ξ, sν, xν, y)) ≥ 0 for all y ∈
K(η). Since T is upper semicontinuouswith nonempty compact values, by a similar argument
in the proof of Theorem 3.1(b), there is an s ∈ T(x) such that a subnet of {sν} converges to s.
Without loss of generality, we still denote the subnet by {sν}.

For each y ∈ K(η), we define Pf(ξ,T(K(η)),K(η),y)(g) = supz∈f(ξ,T(K(η)),K(η),y)|g(z)| for
all g ∈ Y	. We note that the set f(ξ, T(K(η)), K(η), y) is bounded by assumption, hence
Pf(ξ,T(K(η)),K(η),y)(g) is well defined and is a seminorm of Y	. For any ε > 0, let Uε = {g ∈
Y	 : Pf(ξ,T(K(η)),K(η),y)(g) < ε} be a neighborhood of 0 with respect to σ(Y	, Y ). Since gν → g,
there is a α0 ∈ Λ such that gν − g ∈ Uε for every ν ≥ ν0. That is, Pf(ξ,T(K(η)),K(η),y)(gν − g) =
supz∈f(ξ,T(K(η)),K(η),y)|(gν − g)(z)| < ε/2 for every ν ≥ ν0. This implies that

∣∣(gν − g
)(
f
(
ξ, sν, xν, y

))∣∣ <
ε

2
, (3.8)

for all ν ≥ ν0. Since the mapping (s, x) → f(ξ, s, x, y) is continuous and (sν, xν) → (s, x), we
have

f
(
ξ, sν, xν, y

) → f
(
ξ, s, x, y

)
. (3.9)
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By the continuity of g, we have

∣
∣g
(
f
(
ξ, sν, xν, y

)) − g
(
f
(
ξ, s, x, y

))∣∣ <
ε

2
, (3.10)

for some ν1 and all ν ≥ ν1. Let us choose ν2 = max{ν0, ν1}. Combining (3.8) and (3.10), we
know that, for all ν ≥ ν2,

∣
∣gν

(
f
(
ξ, sν, xν, y

)) − g
(
f
(
ξ, s, x, y

))∣∣

≤ ∣
∣gν

(
f
(
ξ, sν, xν, y

)) − g
(
f
(
ξ, sν, xν, y

))∣∣

+
∣
∣g
(
f
(
ξ, sν, xν, y

)) − g
(
f
(
ξ, s, x, y

))∣∣

<
ε

2
+
ε

2

= ε.

(3.11)

That is gν(f(ξ, sν, xν, y)) → g(f(ξ, s, x, y)). Since gν(f(ξ, sν, xν, y)) ≥ 0, there is an s ∈ T(x)
such that g(f(ξ, s, x, y)) ≥ 0, which proves that x ∈ Sξ,η(g). Therefore, the mapping Sξ,η :
C	\{0} → 2K(η) is closed. By the compactness and Corollary 7 in [33, page 112], the mapping
Sξ,η is upper semicontinuous with compact values.

Lemma 3.4. Suppose that for any (ξ, η) ∈ Δ1 × Δ2, x ∈ K(η) and s ∈ T(K(η)), f(ξ, s, x,K(η)) +
C(x) is convex. Then

Γ
(
ξ, η

) ⊇
⋃

g∈C	\{0}
Sξ,η(g

)
. (3.12)

Furthermore, if C : K(η) → 2Y is constant, then we have

Γ
(
ξ, η

)
=

⋃

g∈C	\{0}
Sξ,η(g

)
. (3.13)

Proof. We first claim that Γ(ξ, η) ⊇ ∪g∈C	\{0}Sξ,η(g).
If x ∈ ∪g∈C	\{0}Sξ,η(g), there is a g ∈ C	 \ {0} such that x ∈ Sξ,η(g). Then, there is a

g ∈ C	 \ {0} such that

g
(
f
(
ξ, s, x, y

)) ≥ 0 (3.14)

for all y ∈ K(η). This implies that f(ξ, s, x, y) /∈ − intC(x) for all y ∈ K(η). Indeed, if there is
a y ∈ K(η) such that f(ξ, s, x, y) ∈ − intC(x). Since g ∈ C	 \ {0}, we have g(f(ξ, s, x, y)) < 0
which contracts (3.14). Thus, x ∈ Γ(ξ, η). This proves (3.12) holds.

Second, if C : K(η) → 2Y is constant, we claim that Γ(ξ, η) ⊆ ∪g∈C	\{0}Sξ,η(g).
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If x ∈ Γ(ξ, η), then x ∈ K(η) with s ∈ T(x) and f(ξ, s, x, y) /∈ − intC for all y ∈ K(η),
that is, f(ξ, s, x,K(η)) ∩ (− intC) = ∅. Hence,

(
f
(
ξ, s, x,K

(
η
))

+ C
) ∩ (− intC) = ∅. (3.15)

Since f(ξ, s, x,K(η)) + C is convex, by Eidelheit separation theorem, there is a g ∈
Y	 \ {0} and ρ ∈ R such that

g
(
w′) < ρ ≤ g

(
f
(
ξ, s, x, y

)
+w

)
, (3.16)

for all y ∈ K(η), w ∈ C, w′ ∈ − intC. Then,

(
g − ρ

)(
w′) < 0 ≤ (

g − ρ
)(
f
(
ξ, s, x, y

)
+w

)
, (3.17)

for all y ∈ K(η), w ∈ C, w′ ∈ − intC.
Without loss of generality, we denote g − ρ by g, then

g
(
w′) < 0 ≤ g

(
f
(
ξ, s, x, y

)
+w

)
, (3.18)

for all y ∈ K(η),w ∈ C,w′ ∈ − intC. By the left-hand side inequality of (3.18) and the linearity
of g, we have g(m) > 0 for all m ∈ intC. Since C is closed, for any m in the boundary of C,
there is a net {mν} ⊂ intC such that mν → m. By the continuity of g, g(m) = g(limνmν) =
limνg(mν) ≥ 0. Hence, for all w ∈ C, g(w) ≥ 0, that is g ∈ C	 \ {0}.

By the right-hand side inequality of (3.18), for allw ∈ C, there is an s ∈ T(x) such that
g(f(ξ, s, x, y) +w) ≥ 0 for all y ∈ K(η). This implies that g(f(ξ, s, x, y)) ≥ 0 for all y ∈ K(η)
if we choose w = 0. Hence, sups∈T(x)g(f(ξ, s, x, y)) ≥ 0 for all y ∈ K(η). Thus, x ∈ Sξ,η(g).
Therefore, x ∈ ∪g∈C	\{0}Sξ,η(g), and hence

Γ
(
ξ, η

) ⊆
⋃

g∈C	\{0}
Sξ,η(g

)
. (3.19)

Combining this with (3.12), we have

Γ
(
ξ, η

)
=

⋃

g∈C	\{0}
Sξ,η(g

)
. (3.20)

Now, we go back to prove Theorem 3.1(c).

Proof of Theorem 3.1(c). From Lemmas 3.2 and 3.3, the mapping Sξ,η : C	\{0} → 2K(η) is upper
semicontinuous with nonempty compact values. From Lemma 3.4 and Theorem 3.1 [29], we
know that for each (ξ, η) ∈ Δ1 ×Δ2, the set Γ(ξ, η) is connected.

Modifying the Example 3.1 [8], we give the following examples to illustrate Theorems
2.1 and 3.1 as follows.
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Example 3.5. Let Δ1 = Δ2 = X = Y = Z = R, K(η) = [0, 1] for all η ∈ Δ2, K = ∪η∈Δ2K(η) =
[0, 1], C(x) = [0,∞) for all x ∈ K. Choose T : K → 2Z by T(x) = {x, x/2} for all x ∈ K.
Define f(ξ, s, x, y) = s − y + ξ2 for all (ξ, x, y) ∈ Δ1 × X × Y . Then, all the conditions of
Theorem 2.1 hold, and Γw(ξ, η) = [1 − ξ2, 1] ∩ [0, 1] for all (ξ, η) ∈ Δ1 ×Δ2. Indeed, since there
are two choices for s, one is x, and the other is x/2. If the nonnegative number ξ2 is less than
1, for any y in [0, 1], and we always choose s = x/2, then for this case, the set Γw(ξ, η) will
contain all elements of the set [2(1 − ξ2), 1]. Furthermore, if we always choose s = x, then
the set Γw(ξ, η) will contain all elements of the set [(1 − ξ2), 1]. If the nonnegative number ξ2

is greater than or equal to 1, then the set Γw(ξ, η) will contain all elements of the set [0, 1].
Hence,

Γw
(
ξ, η

)
=
([

2
(
1 − ξ2

)
, 1
]
∩ [0, 1]

)⋃([(
1 − ξ2

)
, 1
]
∩ [0, 1]

)⋃
[0, 1]

=
[(

1 − ξ2
)
, 1
]
∩ [0, 1].

(3.21)

Here, we note that we cannot apply Theorem 3.1 since T(x) is not convex.

Example 3.6. Following Example 3.5, let T(x) = [x/2, x] for all x ∈ K = [0, 1]. By
Theorem 2.1, the set Γw(ξ, η)/= ∅. We choose any x ∈ Γw(ξ, η), and we can see the mapping
s → −f(ξ, s, x, y) is properly quasi C(x)-convex on T(x) for any (ξ, y) ∈ Δ1 × K(η).
Since MaxC(x)∪s∈[x/2,x]MinC(x)

w ∪y∈[0,1]{s − y + ξ2} = {x − 1 + ξ2} ⊂ {s − 1 + ξ2} + [0,∞) =
MinC(x)

w ∪y∈[0,1]{s − y + ξ2} + C(x) for all s ∈ [x/2, x] = T(x). So, condition (i) of Theorem 3.1
holds. Obviously, the condition (ii) also holds, since no such δ exists in this example. Now,
we can see condition (iii) holds. Indeed, from the facts

MinC(x)
w

⋃

y∈[0,1]

{
s − y + ξ2

}
=
{
s − 1 + ξ2

}
,

MaxC(x)
⋃

s∈T(x)
MinC(x)

w

⋃

y∈[0,1]

{
s − y + ξ2

}
=
{
x − 1 + ξ2

}
,

(3.22)

we know that if x − 1+ ξ2 ≥ 0, then we can choose s = x ∈ T(x) such that s− 1+ ξ2 ≥ 0. Hence,
we can apply Theorem 3.1, and we know that Γ(ξ, η) is nonempty compact and connected.
Let us compute the set Γ(ξ, η) for any (ξ, η) ∈ Δ1 × Δ2. If we choose any s = tx for some
t ∈ [1/2, 1], we can see that all the points in the set [(1 − ξ2)/t, 1] are efficient solutions for
(PGVEP). Hence,

Γ
(
ξ, η

)
=

⋃

t∈[1/2,1]

[(
1 − ξ2

)
/t, 1

]
∩ [0, 1]

=
[(

1 − ξ2
)
, 1
]
∩ [0, 1],

(3.23)

for any (ξ, η) ∈ Δ1 ×Δ2.
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Example 3.7 (see [32]). The perturbed nonlinear program
(
Pμ

)
described successfully that the

optimal solutions set Γ(μ) of
(
Pμ

)
will approach the optimal solutions set Γ of linear program

(P), where (P) and
(
Pμ

)
are as follows

Minimise cTx,

subject to Ax = 0,

eTx = 1,

x ≥ 0,

(P)

minimise cTx + μ
n∑

j=1

xj logxj ,

subject to Ax = 0,

eTx = 1,

x ≥ 0,

(
Pμ

)

where μ > 0.
We further note that, such convergent behavior will be described by upper

semicontinuity by Theorems 2.1 and 3.1. That is,

Γ
(
μ
) u.s.c.−−−−→ Γ as μ → 0+. (3.24)

Furthermore, the correspondent solution sets will preserve some kinds of topological
properties, such as compactness and connectedness, under the convergent process.

We would like to point out an open question that naturally raises from Theorems 2.1
and 3.1. Under what conditions the mappings Γw and Γwill be lower semicontinuous?
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