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This paper studies the adaptive fault estimation problems for stochastic Markovian jump systems
(MJSs) with time delays. With the aid of the selected Lyapunov-Krasovskii functional, the adaptive
fault estimation algorithm based on adaptive observer is proposed to enhance the rapidity and
accuracy performance of fault estimation. A sufficient condition on the existence of adaptive
observer is presented and proved by means of linear matrix inequalities techniques. The presented
results are extended to multiple time-delayed MJSs. Simulation results illustrate that the validity
of the proposed adaptive faults estimation algorithms.

1. Introduction

Fault detection and isolation (FDI) [1, 2] has been the subject of extensive research since the
1970s and becomes one of the hotspots in control theory presently. With the rising demands
of product quality, effectiveness, and safety in modern industries, people expect that they
can get the failure information before the fault damages the system. Many techniques have
been proposed especially for sensor and actuator failures with application to a wide range
of engineering fields. Among these, the most commonly used schemes for fault detection
relate to observer-based approaches [2-5]. It should be pointed out that the observer-based
approach, which uses a parametric design technique to perform both detection and diagnosis,
only works for a small number of sensor faults. In some cases, fault estimation strategies [6—
8] are needed to carry on controlling the faulty system. Compared with FDI, fault estimation
is a more challenging task because it requires an estimation of the location after the alarm
has been set, and the size of the fault should be made. Recently, some results based on
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adaptive or robust observers [2-8] for fault estimation have been obtained. However, very
few results in the literature consider the fault detection and estimation problem for stochastic
systems.

In fact, as a special class of stochastic systems [9, 10] that involves both time-evolving
and event-driven mechanisms, Markovian jump systems (M]JSs) [11] have received consid-
erable attention. This class of systems includes two components which are the mode and
the state and the dynamics of jumping modes and continuous states, which are, respectively,
modeled by finite-state Markov chains and differential equations. It can be used to model a
variety of physical systems, which may experience abrupt changes in structures and parame-
ters due to, for example, sudden environment changes, subsystem switching, system noises,
and failures occurred in components or interconnections and executor faults. Some illustra-
tive applications of MJSs can be found for examples in [3, 4, 6, 12-18] and the references
therein. In recent years, the FDI problems for MJSs have regained increasing interest, and
some results are also available [3, 4, 16-18]. However, very little is known on the problem of
fault estimation for time-delay nonlinear MJSs. This problem forms the main purpose of this
paper, where an adaptive technique [1, 19-21] is proposed and modified for the estimation
of actuator faults.

In this paper, we studied the problem of fault estimation for a class of time-delay M]Ss.
By comparing with the presented results of time-delay and linear dynamic systems, it can
be shown that a derivative term is added on the basis of fault estimation equation in our
design, which renders that the conventional adaptive fault estimation algorithm [21] can be
treated as a special case of the fast adaptive fault estimation algorithm. The introduction of
the derivative term plays a major role in improving the rapidity of fault estimation. The aug-
mented dynamic system is firstly constructed based on the adaptive fault estimation observer,
and the observer parameters are designed on the system modes. Sufficient conditions are
subsequently established on the existence of the mode-dependent adaptive fault estimation
observer. The design criterions are presented in the form of linear matrix inequalities (LMIs)
[22], which can be easily checked. The presented results are then extended to multiple time-
delayed M]JSs case. Finally, a numerical example is included to illustrate the effectiveness of
the developed techniques.

Let us introduce some notations. The symbols R" and R™*™ stand for an n-dimensional
Euclidean space and the set of all n x m real matrices, respectively, AT and A™! denote the
matrix transpose and matrix inverse, diag{ A B} represents the block-diagonal matrix of A
and B, omax (C) denote the maximal eigenvalue of a positive-define matrix C, Zfﬁ i denotes, for
example, for N =3, ZII-Z]- aij & app+ayz+ags, ||*|| denotes the Euclidean norm of vectors, E{x}
denotes the mathematics statistical expectation of the stochastic process or vector, L7 (0 o)
is the space of n dimensional square integrable function vector over (0 o), P > 0 (or P > 0)
stands for a positive-definite (or nonnegative-definite) matrix, I is the unit matrix with
appropriate dimensions, 0 is the zero matrix with appropriate dimensions, * means that the
symmetric terms in a symmetric matrix.

2. Problem Formulation

Given a probability space (€, F, p), where Q is the sample space, F is the algebra of events,
and p is the probability measure defined on F. Let the random form process {r;, ¢t > 0} be
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the continuous-time discrete-state Markov stochastic process taking values in a finite set A =
{1,2,..., N} with transition probabilities given by

JZ'i]'At+O(At), 175],

T (2.1)
1+ At +0(At), i=j,

Pr{Tt+At =j | 7 = i} = {

where At > 0 and limago0(At)/At — 0. or;; > 0 are the transition probability rates from
mode i at time ¢ to mode j(i # j) at time f + At, and Zjliu#j Tij = —TTjj.
Consider the following linear MJSs over the probability space (Q, F, p):

x(t) = A(r)x(t) + Ag(ry)x(t = d) + B(ry)u(t) + Br(r1) f (),
y(t) = C(r)x(t), (2.2)
x(t)y=nt), r(t)y=r, te[-d0],i=12,...,8S,

where x(t) € R" is the state, y(t) € R™ is the measured output, u(t) € R is the controlled
input, f(t) € R? is the unknown actuator fault, and we assume that its derivative is the norm
bounded with [|f(t)|| < f, wherein 0 < f < oo. d > 0 is the time delay constant, 7(t) € R"
is a continuous vector-valued initial function assumed to be continuously differentiable
on [-d 0], and ry is the initial mode. A(r;), Aa(r:), B(ri), Bf(ri), and C(r;) are known
mode-dependent matrices with appropriate dimensions, Bf(r;) is of full column rank with
rank[By(r:)] = p, and r; represents a continuous-time discrete state Markov stochastic process
with values in the finite set A.

For presentation convenience, we denote x(t-d), A(r:), Aa(r;), B(rt), Bf (1), and C(r)
as x4, Ai, Aai, Bi, Byi, Ci and, respectively.

Definition 2.1 (see Mao [23]). Let V(x(t),r;,t > 0) = V(x(t),i) be the positive stochastic
functional and define its weak infinitesimal operator as

SV(x(t),i) = Altir_r}oé[li{V(x(t + At), reear, t + At) | x(t), e =i} = V(x(t),1i,1)]. (2.3)

Refer to observer design [2—4, 7] and consider the following systems:

X(t) = AiX(t) + Agi%a + Brif (t) + Bau(t) + Li[y(t) - (V)] + Lai [va - 94,
y(t) = Cix(t),

(2.4)

where X(t) € R" is the observer state vector, 7/(f) € R™ is the observer output vector, and
f(t) € RP is an estimate of actuator fault of f(t). Denote

e(t) = x(t) - X(t),
z(t) =yt) - y(1), (2.5)
er(t) = f(t) - f ().
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Then, we can present the error dynamics (2.4) as

é(t) = Ae(t) + Agieq + Bries(t),
(2.6)
z(t) = Cie(t),

where Zi = Ai - LiCi, Zdi = Adi - LdiCi.

In this paper, by comparison with the conventional adaptive fault estimation
algorithm [21], we consider the following fast adaptive fault estimation algorithm. In this
algorithm, we add a derivative term z(t) in estimation equation, that is,

f() =THi[2(t) + z(D)], (2.7)

which can realize lim; _, ,z(f) = 0, where H; is a given mode-dependent matrix and I' = I''>0
is a prespecified matrix which defines the learning rate for (2.6).

Remark 2.2. In the conventional adaptive fault estimation algorithm f (t) =TH f:f z(t)dr, it

is only an integral term in essence. It fails to deal with time-varying faults, that is, f(t) #0
though it assumes that the constant fault (f(t) = 0) estimation is unbiased. In this paper, we
add a derivative term Z(f) in estimation equation and improve the conventional adaptive
fault estimation algorithm such that the time-varying faults can be considered. For the
stochastic modes jumping case, we select the given matrix H; as a mode-dependent one.

3. Adaptive Fault Estimation Observer Design
Theorem 3.1. If there exist a set of positive definite symmetric matrices P;, Q, U and mode-dependent

matrices H;, X;, and Xg;, such that the following matrix equations hold for all i € A:

HC; = B}ipi, (3.1)

Ei PiAdi - Xd,-Ci —A;FP,Bfl + C;FXITBf,

mo|* " ALRBu+CIXiBu| o (3.2)
* * —ZB}I.P,-Bfi+U

where Z; = AlP; + PA; - X;C; - C/ X + Q + >N ;. P;. Then the fast adaptive fault estimation
algorithm of (2.7) can be realized. And in the estimated time-interval, it can estimate errors with the
uniformly boundedness of the states and faults. Moreover, the observer gains are respectively as

L; = P''X;, Lai = P7' Xai. (3.3)
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Proof. Let the mode at time ¢ be i, that is, r; = i € A. Take the stochastic Lyapunov-Krasovskii
function V(e(t),ef(t),r,t > 0) : R" xR" x Ax R, — R, as

V(e(t),ef(t),i) = Vi(e(t),ef(t),i) + Va(e(t), ef(t), i) + Va(e(t), ef(t), i), (3.4)

where Vi(e(t), ef(),i) = e"(O)Pe(t), Vale(t), er(),i) = [ e"(HQe(t)dr, Va(e(t), es(t),i) =
e}(t)l"‘1 ef(t), in which P; € R™", Q € R™" are the given mode-dependent symmetric
positive-definite matrix for each modes i € A.

According to Definition 2.1 and along the trajectories of the error dynamics MJSs (2.6),
we can derive the following:

N
SVi(e(t), ef(t),i) = 2¢" () Pe(t) + e (t) D i Pe(t)
i=1

N
= 2T (H)P; [Z,-e(t) + Agi(r)eq + Bf,-ef(t)] +el () S Pie(t)
i=1

N
e (t) [Afp,. +PA; + ijpj] e(t) + 2eT () PAgieq + 2" () PiBgies (1),
i=1

N t
SVa(e(t), ef(t),i) = €' (t)Qe(t) — ejQeq + D L ) el (H)Qe(t)dr
i=1 -

N
= e’ ()Qe(t) - eEQed + <Z-71'ij> <Jt ) eT(t)Qe(t)dT>
i=1

f—

= e"(HQe(t) - e} Qeq,
SVs(e(t), e (1) i) = 2e[(OT e (1) = 2T (OT [f (1) - f(1)]

—2ef () Hi[2(t) + 2()] +2ep(HT f(#)

- 2e}(t)B}iPie(t) - ze}“(t)BTiPie(t) + 2e}(t)r-1 fb

—2e[(t)B,P;Aie(t) - 2¢} () B}, PiAgiea — 2¢ (1) B}, PiBgiey (t)

- 2e}(t)B}iPie(t) + 2e}“(t)r-1 f(b).
(3.5)

Given a symmetric positive definite matrix U, we can use the following relation:

Ze}(t)l“’l f(t) < e}(t)Uef(t) + AT U (1) )
< e}(t)Uef(t) + 2 Omax (F’lLI’lF’l). '



6 Abstract and Applied Analysis

Then, we can get

SV(e(t), ef(t),i) = SVi(e(t), es(t),i) + SVa(e(t), ef(t),i) + SVz(e(t), ef(t), i)

N
=e'(t) [AiTP,- + DA+ Y Py + Q] e(t) +2e’ () PiAgieq — eQes
i=1 (3.7)

- 2e}(t)B}iPiZie(t) - Ze}(t)B}iPiZdied - 2e}(t)B}iPiBﬁe (1)

+ el (HUes(t) + f2Omax (r-lu-lr-l).

By letting X; = P,L; and Xg; = P;Lg;, the derivative of SV (e(t), ef(t), i) with respect to
time follows that

SV (e(t), ef(t),i) < g (OTTLL(E) +1, (3.8)

e(t)

where ¢(1) = | % |, 1= Promn (11U,
ef

Thus, it concludes that SV (e(t), ef(t), i) < —Al|(¢) ||2 +17, wherein A = min,esOmin (—I1;).
Obviously, we can get SV (e(t), ef(t),i) < 0if 7 < A[|G(¢) 1% According to stochastic Lyapunov-
Krasovskii stability theory, the trajectory of {(t) will converge to the small set @ = {{(¢) |
le®I? < 1/}, though it is outside set S. Therefore, {(t) is ultimately bounded. This
completes the proof. O

Remark 3.2. Itis necessary to point out that if the presented faults are constant, thatis, f () =0,
then the designed adaptive algorithm can achieve asymptotical convergence from (3.8). Then
we can get that SV (e(t),ef(t),1) < Mg < 0, which proves the stability of the origin
e(t) = 0, ef(t) = 0 and the uniformly boundedness of e(t) and ef(t) with e(t) € L3 (0 o).
Then, lim;_, ,e(t) — 0 holds by Barbalat’s Lemma.

4. Extension to Multiple Time-Delayed MJSs

Consider the following multiple time-delayed MJSs over the probability space (L, F, p):

x(t) = AiX(t) + iAdmix(t - dm) + Biu(t) + Bfif(t)/

m=1

y(t) = Cix(t),
x(t) =n(t), rt)=ry, te[-max(dn) 0],

(4.1)

where d,,, m =1,2,..., M are multiple time delays with 0 < d,, < oo, and other notations are
the same as in Section 2.
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Similar to Section 3, the following observer can be constructed:

%) = Ak (t) + f}Admif(t —dy) + Bsif (1) + Biu(t)

m=1

M 4.2
CL® - 9O] + S Lam [yt - du) ~ 5t~ )], “.2)

m=1

y(t) = Gix(t)

where X(t) € R" is the observer state vector, 7/(f) € R™ is the observer output vector, and
f (t) € RP is an estimate of actuator fault of f(t).

Then, we can obtain the error dynamics by using the same notations of e(t), es(t), and
z(t) as follows:

M
e(t) = Aje(t) + mZ:ldeied(t —dpu) + Bgies(t), )

z(t) = Ce(t)

where A; = A; - LiCi, Agmi = Admi = LamiCi.
Prior to the design of an adaptive diagnostic law, we can get the following results for
multiple time-delayed MJSs (4.1).

Theorem 4.1. If there exist a set of positive definite symmetric matrices P;, Q, U and mode-dependent
matrices H;, X, and Xgmi, m = 1,2,..., M, such that the following matrix equations hold for all
i€

H;C; = BL.P, (4.4)

fi

M
Zi PAai— X XamiCi  —A[PByi + C/ X]By;

m=1

Y, = M 0. 4.5
cle e ARBe I X8| S )
* * —ZB}iHB i+ U

Then, the fast adaptive fault estimation algorithm of (2.7) can be realized. And in the estimated time
interval, it can estimate errors with the uniformly boundedness of the states and faults. Moreover, the
observer gains are respectively as follows:

Li=P'X;, Lami = P Xami, m=1,2,..., M. (4.6)
When there are difficulties in solving (3.1) or (4.4), we can transform them into the
following SDP problems via disciplined convex programming [24]:
min 6

fild

. 81 B P, - H,C; 0 (4.7)
> |PBu-C'HT =~ &I '
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In order to make B}iPi approximate to H;C; with a satisfactory precision, we can firstly select
a sufficiently small scalar 6 > 0 to meet (4.7).

Remark 4.2. The solutions of Theorems 3.1 and 4.1 can be obtained by solving an optimization
problem with (4.7). By using the Matlab LMI Toolbox, it is straightforward to check the
feasibility of LMIs. In order to illustrate the effectiveness of the developed techniques, we
will give several numerical examples about fuzzy jump system with time delays in Section 5.

5. Numeral Example

We consider the following time-delayed stochastic MJSs with parameters given by

-0.5 -0.3 05 -04 0.05 -0.1 0.07 -0.1
A1=[ ], A2=[ ], Ad1=[ ], Ad2=[ ],

-0.1 -1.0 -0.1 -1.06 0 0.05 0 -0.05
1.0 0
By =B, = [0 5], Bf1 = Bjs = [0 1], Ci=[02 -01], C,=[-02 04].

(5.1)

The transition rate matrix that relates the two operation modes is given as IT = [ )Y %% ]. By
solving the LMIs in (3.1), (3.2), and (4.7) with 6 = 8.9252 x 107*, we can get the following
solutions:

L= [4.5853], L= [—8.3797]’

2.2033 1.6944
L _ [o1110 Lo 02448 (5.2)
4= 10.0691| 42 = _0.1343|”

H; =-0.0061,  H, =0.0019.

To show the effectiveness of the designed methods, the time-delay d is assumed to be
0.2s, and we consider two kinds of actuator faults fi(t) and f>(t) in the simulation over the
finite-time interval f € [0 10]:

0, 0<t<4,
fi(t) = :
0.5sin(5t), 4 <t<10,
(5.3)
05, 2k-1<t<2k,ke{N*1<k<5},
fa(t) =
0, others.

Let rp = 2 and I' = 10, the jumping modes are shown in Figure 1. The estimated faults
and estimation errors of f1(t) and f>(¢) are shown in Figures 2 and 3, respectively. From the
simulation results and design algorithm, it can be concluded that the adaptive fault diagnosis
observer can enhance the performance of fault estimation for slow and fast time-varying
faults.
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151 1

Jumping modes

05 e
0

t(s)

Figure 1: The estimation of changing between modes during the simulation with initial mode 2.

Real and estimated fault of f; (t)

""" Real fault of fi(t)
— Estimated fault of f;(t)

Figure 2: Fault f;(t) and the estimated fl ).

Real and estimated fault of f5(t)

t(s)

""" Real fault of f5(t)
—— Estimated fault of f>(t)

Figure 3: Fault f,(t) and the estimated fz(t).
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6. Conclusions

In this paper, we have studied the design of adaptive fault estimation observer for time-
delayed MJSs. It ensures the rapidity and accuracy performance of fault estimation of the
designed observer. By selecting the appropriate Lyapunov-Krasovskii function and applying
matrix transformation and variable substitution, the main results are provided in terms
of LMIs form and then extended to multiple time-delayed MJSs case. Simulation example
demonstrates the effectiveness of the developed techniques.
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