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By means of the fixed-point theorem in the cone of strict-set-contraction operators, we consider
the existence of a nonlinear multi-point boundary value problem of fractional integro-differential
equation in a Banach space. In addition, an example to illustrate the main results is given.

1. Introduction

The purpose of this paper is to establish the existence results of positive solution to nonlinear
fractional boundary value problem

D
q

0+u(t) + f
(
t, u, u′, . . . , u(n−2), Tu, Su

)
= θ, 0 < t < 1, n − 1 < q ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = θ, u(n−2)(1) =
m−2∑
i=1

aiu
(n−2)(ηi

) (1.1)

in a Banach space E, where θ is the zero element of E, and n ≥ 2, 0 < η1 < · · · < ηm−2 < 1, ai >
0 (i = 1, 2, . . . , m − 2), Dα

0+ is Riemann-Liouville fractional derivative, and

Tu(t) =
∫ t
0
K(t, s)u(s)ds, Su(t) =

∫1
0
H(t, s)u(s)ds, (1.2)
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where K ∈ C[B,R+], B = {(t, s) ∈ I × I : t ≥ s}, H ∈ C[I × I, R+], I = [0, 1], and R+ denotes
the set of all nonnegative numbers.

Fractional differential equations have gained importance due to their numerous
applications in many fields of science and engineering including fluid flow, rheology,
diffusive transport akin to diffusion, electrical networks, and probability. For details see [1–3]
and the references therein. In recent years, there are some papers dealing with the existence
of the solutions of initial value problems or linear boundary value problems for fractional
differential equations by means of techniques of nonlinear analysis (fixed-point theorems,
Leray-Schauder theory, lower and upper solutions method, and so forth), see for example,
[4–23].

In [8], by means of the fixed-point theorem for the mixed monotone operator, the
authors considers unique existence of positive to singular boundary value problems for
fractional differential equation

D
q

0+u(t) + a(t)f
(
t, u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.3)

where Dq

0+ is Riemann-Liouville fractional derivative of order n − 1 < q ≤ n, n ≥ 2.
In [11], El-Shahed and Nieto study the existence of nontrivial solutions for a multi-

point boundary value problem for fractional differential equations

D
q

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n − 1 < q ≤ n, n ∈ N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

aiu
(
ηi
)
,

(1.4)

where n ≥ 2, ηi ∈ (0, 1), ai > 0 (i = 1, 2, . . . , m − 2), and D
q

0+ is Riemann-Liouville fractional
derivative. Under certain growth conditions on the nonlinearity, several sufficient conditions
for the existence of nontrivial solution are obtained by using Leray-Schauder nonlinear
alternative. And then, Goodrich [24] was concerned with a partial extension of the problem
(1.3)

D
q

0+u(t) = f(t, u(t)), 0 < t < 1, n − n < q ≤ n − 2,

u(i)(0) = 0, 0 ≤ i ≤ n − 2, D
p

0+u(1) = 0, 1 ≤ p ≤ n − 2,
(1.5)

and the authors derived the Green function for the problem (1.5) and showed that it satisfies
certain properties.

By the contraction mapping principle and the Krasnoselskii’s fixed-point theorem,
Zhou andChu [13] discussed the existence and uniqueness results for the following fractional
differential equation with multi-point boundary conditions:

CD
q

0+u(t) + f(t, u,Ku, Su) = 0, 0 < t < 1, 1 < q < 2,

a1u(0) − b1u
′(0) = d1u

(
η1
)
, a2u(1) − b2u

′(1) = d2u
(
η2
)
,

(1.6)
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where CD
q

0+ is the Caputo’s fractional derivative, a1, a2, b1, b2, d1, and d2 are real numbers,
0 < η1, and η2 < 1.

In [20], Stanĕk has discussed the existence of positive solutions for the singular frac-
tional boundary value problem

Dqu(t) + f
(
t, u, u′, Dpu

)
= 0, 2 < q < 3, 0 < p < 1,

u(0) = 0, u′(0) = u′(1) = 0.
(1.7)

However, to the best of the author’s knowledge, a few papers can be found in the
literature dealing with the existence of solutions to boundary value problems of fractional
differential equations in Banach spaces. In [25], Salem investigated the existence of Pseudo
solutions for the following nonlinear m-point boundary value problem of fractional type

D
q

0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

ζiu
(
ηi
) (1.8)

in a reflexive Banach space E, whereDq

0+ is the Pseudo fractional differential operator of order
n − 1 < q ≤ n, n ≥ 2.

In [26], by the monotone iterative technique and mönch fixed-point theorem, Lv
et al. investigated the existence of solution to the following Cauchy problems for differential
equation with fractional order in a real Banach space E

CDqu(t) = f(t, u(t)), u(0) = u0, (1.9)

where CD
q
u(t) is the Caputo’s derivative order, 0 < q < 1.

By means of Darbo’s fixed-point theorem, Su [27] has established the existence result
of solutions to the following boundary value problem of fractional differential equation on
unbounded domain [0,+∞)

D
q

0+u(t) = f(t, u(t)), t ∈ [0,+∞), 1 < q ≤ 2,

u(0) = θ, D
q−1
0+ u(∞) = u∞

(1.10)

in a Banach space E. Dq

0+ is the Riemann-Liouville fractional derivative.
Motivated by the above mentioned papers [8, 13, 24, 25, 27, 28] but taking a quite

different method from that in [26–29]. By using fixed-point theorem for strict-set-contraction
operators and introducing a new cone Ω, we obtain the existence of at least two positive
solutions for the BVP (1.1) under certain conditions on the nonlinear term in Banach spaces.
Our results are different from those of [8, 13, 24, 25, 28, 30]. Note that the nonlinear term f
depends on u and its derivatives u′, u′′, . . . , u(n−2).
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2. Preliminaries and Lemmas

Let the real Banach space Ewith norm ‖ · ‖ be partially ordered by a cone P of E; that is, u ≤ v
if and only if v − u ∈ P ; and P is said to be normal if there exists a positive constant N such
that θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖, where the smallest N is called the normal constant of P .
For details on cone theory, see [31].

The basic space used in this paper is C[I, E]. For any u ∈ C[I, E], evidently, (C[I, E], ‖ ·
‖C) is a Banach space with norm ‖u‖C = supt∈I |u(t)|, and P = {u ∈ C[I, E] : u(t) ≥ θ for t ∈ I}
is a cone of the Banach space C[I, E].

Definition 2.1 (see [31]). Let V be a bounded set in a real Banach space E, and α(V ) = inf{δ >
0 : V = ∪m

i=1Vi, all the diameters of Vi ≤ δ}. Clearly, 0 ≤ α(V ) < ∞. α(V ) is called the
Kuratovski measure of noncompactness.

We use α, αC to denote the Kuratowski noncompactness measure of bounded sets in
the spaces E, C(I, E), respectively.

Definition 2.2 (see [31]). Let E1, E2 be real Banach spaces, S ⊂ E1. T : S → E2 is a continuous
and bounded operator. If there exists a constant k, such that α(T(S)) ≤ kα(S), then T is called
a k-set contraction operator. When k < 1, T is called a strict-set-contraction operator.

Lemma 2.3 (see [31]). If D ⊂ C[I, E] is bounded and equicontinuous, then α(D(t)) is continuous
on I and

αC(D) = max
t∈I

α(D(t)), α

({∫

I

u(t)dt : u ∈ D

})
≤
∫

I

α(D(t))dt, (2.1)

where D(t) = {u(t) : u ∈ D, t ∈ I}.

Definition 2.4 (see [2, 3]). The left-sided Riemann-Liouville fractional integral of order q > 0
of a function y : R0

+ → R is given by

I
q

0+y(t) =
1

Γ
(
q
)
∫ t
0
(t − s)q−1y(s)ds. (2.2)

Definition 2.5 (see [2, 3]). The fractional derivative of order q > 0 of a function y : R0
+ → R is

given by

D
q

0+y(t) =
1

Γ
(
n − q

)
(

d

dt

)n ∫ t
0
(t − s)n−q−1y(s)ds, (2.3)

where n = [q] + 1, [q] denotes the integer part of number q, provided that the right side is
pointwise defined on R0

+.

Lemma 2.6 (see [2, 3]). Let q > 0. Then the fractional differential equation

D
q

0+y(t) = 0 (2.4)

has a unique solution y(t) = c1t
q−1 + c2t

q−2 + · · · + cnt
q−n, ci ∈ R, i = 1, 2, . . . , n; here n − 1 < q ≤ n.
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Lemma 2.7 (see [2, 3]). Let q > 0. Then the following equality holds for y ∈ L(0, 1), D
q

0+y ∈
L(0, 1),

I
q

0+D
q

0+y(t) = y(t) + c1t
q−1 + c2t

q−2 + · · · + cNtq−N (2.5)

for some ci ∈ R, i = 1, 2, . . . ,N; here N is the smallest integer greater than or equal to q.

Lemma 2.8 (see [31]). Let K be a cone in a Banach space E. Assume that Ω1,Ω2 are open subsets
of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. If T : K ∩ (Ω2 \Ω1) → K is a strict-set-contraction operator such that
either:

(i) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω2,

then T has a fixed point in K ∩ (Ω2 \Ω1).

3. Main Results

For convenience, we list some following assumptions.

(H1) There exist a ∈ C[I, R+] and h ∈ C[Rn+1
+ , R+] such that

∥∥f(t, u1, . . . , un+1)
∥∥ ≤ a(t)h(‖u1‖, . . . , ‖un+1‖), ∀t ∈ I, uk ∈ P, k = 1, . . . , n + 1. (3.1)

(H2) f : I × Pn+1
r → P , for any r > 0, f is uniformly continuous on I × Pn+1

r and there
exist nonnegative constants Lk, k = 1, . . . , n + 1, with

2
Γ
(
q − n + 2

)
η∗

(
n−2∑
k=1

Lk

(n − 2 − k)!
+ Ln−1 +

a∗

(n − 3)!
Ln +

b∗

(n − 3)!
Ln+1

)
< 1 (3.2)

such that

α
(
f(t,D1, D2, . . . , Dn+1)

) ≤
n+1∑
k=1

Lkα(Dk), ∀t ∈ I, bounded sets Dk ∈ Pr, (3.3)

where a∗ = max{K(t, s) : (t, s) ∈ B}, b∗ = max{H(t, s) : (t, s) ∈ I × I}, Pr = {u ∈ P : ‖u‖ ≤
r}, η∗ = 1 −∑m−2

i=1 aiη
q−n+1
i .

Lemma 3.1. Given y ∈ C[I, E] and 1 −∑m−2
i=1 aiη

q−n+1
i /= 0 hold. Then the unique solution of

D
q−n+2
0+ x(t) + y(t) = 0, 0 < t < 1, n − 1 < q ≤ n, n ≥ 2,

x(0) = 0, x(1) =
m−2∑
i=1

aix
(
ηi
)
,

(3.4)
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is

x(t) =
∫1
0
G(t, s)y(s)ds, (3.5)

where

G(t, s) = g(t, s) +
∑m−2

i=1 aig
(
ηi, s
)

η∗ tq−n+1, (3.6)

g(t, s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(t(1 − s))q−n+1 − (t − s)q−n+1

Γ
(
q − n + 2

) , s ≤ t,

(t(1 − s))q−n+1

Γ
(
q − n + 2

) , t ≤ s.

(3.7)

Proof. Deduced from Lemma 2.7, we have

x(t) = −Iq−n+20+ y(t) + c1t
q−n+1 + c2t

q−n (3.8)

for some c1, c2 ∈ R. Consequently, the general solution of (3.4) is

x(t) = −
∫ t
0

(t − s)q−n+1

Γ
(
q − n + 2

)y(s)ds + c1t
q−n+1 + c2t

q−n. (3.9)

By boundary value conditions x(0) = 0, x(1) =
∑m−2

i=1 aix(ηi), there is c2 = 0, and

c1 =
1

1 −∑m−2
i=1 aiη

q−n+1
i

∫1
0

(1 − s)q−n+1

Γ
(
q − n + 2

)y(s)ds −
∑m−2

i=1 ai

1 −∑m−2
i=1 aiη

q−n+1
i

∫ηi
0

(
ηi − s

)q−n+1
Γ
(
q − n + 2

)y(s)ds.

(3.10)

Therefore, the solution of problem (3.4) is

x(t) = −
∫ t
0

(t − s)q−n+1

Γ
(
q − n + 2

)y(s)ds + tq−n+1

1 −∑m−2
i=1 aiηiq−n+1

∫1
0

(1 − s)q−n+1

Γ
(
q − n + 2

)y(s)ds

−
∑m−2

i=1 ait
q−n+1

1 −∑m−2
i=1 aiη

q−n+1
i

∫ηi
0

(
ηi − s

)q−n+1
Γ
(
q − n + 2

)y(s)ds

=
∫1
0
G(t, s)y(s)ds.

(3.11)

The proof is complete.

Moreover, there is one paper [8] in which the following statement has been shown.
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Lemma 3.2. The function g(t, s) defined in (3.7) satisfying the following properties:

(1) g(t, s) ≥ 0 is continuous on [0, 1] × [0, 1], and g(t, s) ≤ tq−n+1/Γ(q − n + 2), g(t, s) ≤
g(s, s) for all 0 ≤ t, s ≤ 1;

(2) there exists a positive function ρ0 ∈ C(0, 1) such that minγ≤t≤δ g(t, s) ≥ ρ0(s)g(t, s), s ∈
(0, 1), where 0 < γ < δ < 1 and

ρ0(s) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(1 − s))q−n+1 − (δ − s)q−n+1

(s(1 − s))q−n+1
, s ∈ (0, ξ],

(
γ

s

)q−n+1
, s ∈ [ξ, 1),

(3.12)

where γ < ξ < δ is the solution of

(δ(1 − ξ))q−n+1 − (δ − ξ)q−n+1 =
(
γ(1 − ξ)

)q−n+1
. (3.13)

For our purpose, one assumes that

(H3) η∗ = 1 −∑m−2
i=1 aiη

q−n+1
i > 0 and 0 < γ ≤ min{2δ − 1, δ/2}, 2/3 ≤ δ < 1, where γ , δ are

the constants in (2) of Lemma 3.2.

Remark 3.3. We note that if (H3) holds, then the function G(t, s) defined in (3.4) is satisfying
the following properties:

(i) G(t, s) ≥ 0 is continuous on [0, 1] × [0, 1], and G(t, s) ≤ Δtq−n+1, for all 0 ≤ t, s ≤ 1,
where Δ−1 = η∗Γ(q − n + 2);

(ii) G(t, s) ≤ G(s) for all 0 ≤ t, s ≤ 1, where

G(s) = g(s, s) +
∑m−2

i=1 aig
(
ηi, s
)

η∗ . (3.14)

Indeed, it is obvious from (1) of Lemma 3.2 and (3.6) that

G(t, s) ≤ g(s, s) +
1
η∗

m−2∑
i=1

aig
(
ηi, s
)
= G(s)

≤ tq−n+1

Γ
(
q − n + 2

) +
∑m−2

i=1 aiη
q−n+1
i

η∗Γ
(
q − n + 2

) tq−n+1 ≤ Δtq−n+1.

(3.15)

Lemma 3.4. Let u(t) = In−20+ x(t), x ∈ C[I, E]. Then the problem (1.1) can be transformed into the
following modified problem:

D
q−n+2
0+ x(t) + f

(
s, In−20+ x(s), . . . , I10+x(s), x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))
= θ,

x(0) = θ, x(1) =
m−2∑
i=1

aix
(
ηi
)
,

(3.16)
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where 0 < t < 1, n − 1 < q ≤ n, n ≥ 2. Moreover, if x ∈ C[I, E] is a solutions of problem (3.16), then
the function u(t) = In−20+ x(t) is a solution of (1.1).

The proof follows by routine calculations.
To obtain a positive solution, we construct a cone Ω by

Ω =
{
x(t) ∈ P : x(t) ≥ λ

3
x(s), t ∈ I∗, s ∈ I

}
, (3.17)

where P = {x ∈ C[I, E], x(t) ≥ θ, t ∈ I}, λ = min{minγ≤t≤δρ(t), γq−n+1}, I∗ = [γ, δ].
Let

(Ax)(t) =
∫1
0
G(t, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))
ds, 0 ≤ t ≤ 1. (3.18)

Lemma 3.5. Assume that (H1)–(H3) hold. Then A : Ω → Ω is a strict-set-contraction operator.

Proof. Let x ∈ Ω. Then, it follows from Remark 3.3. that

(Ax)(t) ≤
∫1
0
G(s)f

(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

=

(∫ γ
0
+
∫δ
γ

+
∫1
δ

)
G(s)f

(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≤ 3
∫δ
γ

G(s)f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds,

(3.19)

here, by (H3), we know that γ < δ − γ and δ − γ > 1 − δ.
From (3.6) and (3.18), we obtain

min
t∈[γ, δ]

(Ax)(t) = min
t∈[γ, δ]

∫1
0
G(t, s)f

(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥
∫δ
γ

(
g(t, s) +

tq−n+1

η∗

m−2∑
i=1

aig
(
ηi, s
))

× f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds
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≥
∫δ
γ

(
ρ0(s)g(s, s) +

γq−n+1

η∗

m−2∑
i=1

aig
(
ηi, s
))

× f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥ λ

∫δ
γ

G(s)f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥ λ

3
(Ax)

(
t′
)
, t′ ∈ I,

(3.20)

which implies that (Ax)(t) ∈ Ω; that is, A(Ω) ⊂ Ω.
Next, we prove that A is continuous on Ω. Let {xj}, {x} ⊂ Ω, and ‖xj − x‖Ω → 0 (j →

∞). Hence {xj} is a bounded subset ofΩ. Thus, there exists r > 0 such that r = supj‖xj‖Ω < ∞
and ‖x‖Ω ≤ r. It is clear that

∥∥(Axj

)
(t) − (Ax)(t)

∥∥ =
∫1
0
G(t, s)

∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ds

≤ Δtq−n+1
∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ds.
(3.21)

According to the properties of f , for all ε > 0, there exists J > 0 such that

∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ < ε

Δ
,

(3.22)

for j ≥ J , for all t ∈ I.
Therefore, for all ε > 0, for any t ∈ I and j ≥ J , we get

∥∥(Axj

)
(t) − (Ax)(t)

∥∥ < tq−n+1ε ≤ ε. (3.23)

This implies that A is continuous on Ω.
By the properties of continuous of G(t, s), it is easy to see that A is equicontinuous

on I.
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Finally, we are going to show that A is a strict-set-contraction operator. Let D ⊂ Ω be
bounded. Then by condition (H1), Lemma 3.1 implies that αC(AD) = maxt∈I α((AD)(t)). It
follows from (3.18) that

α((AD)(t)) ≤ α
(
co
{
G(t, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))

: s ∈ [0, t], t ∈ I, x ∈ D
})

≤ Δ · α
({

f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))

: s ∈ [0, t], t ∈ I, x ∈ D
})

≤ Δ · α
(
f
(
I ×
(
In−20+ D

)
(I) × · · · ×D(I) × T

(
In−20+ D

)
(I) × S

(
In−20+ D

)
(I)
))

≤ Δ ·
{

n−2∑
k=1

Lkα
((

In−1−k0+ D
)
(I)
)
+ Ln−1α(D(I)) + a∗Lnα

(
T
(
In−20+ D

)
(I)
)

+b∗Ln+1α
(
S
(
In−20+ D

)
(I)
)}

,

(3.24)

which implies

αC(AD) ≤ Δ ·
{

n−2∑
k=1

Lkα
((

In−1−k0+ D
)
(I)
)
+ Ln−1α(D(I))

+a∗Lnα
(
T
(
In−20+ D

)
(I)
)
+ b∗Ln+1α

(
S
(
In−20+ D

)
(I)
)}

.

(3.25)

Obviously,

α
(
In−1−k0+ D

)
(I) = α

({∫ s
0

(s − τ)n−2−k

(n − 2 − k)!
x(τ)dτ : τ ∈ [0, s], s ∈ I, k = 1, . . . , n − 2

})

≤ 1
(n − 2 − k)!

α(D(I)),

(3.26)

α
(
T
(
In−20+ D

))
(I) = α

({∫ t
0
K(t, s)

(∫s
0

(s − τ)n−2

(n − 3)!
u(τ)dτ

)
ds : u ∈ D, t ∈ I

})

≤ a∗

(n − 3)!
α({u(t) : t ∈ I, u ∈ D}) ≤ a∗

(n − 3)!
α(D(I)),

(3.27)

α
(
S
(
In−20+ D

))
(I) = α

({∫1
0
H(t, s)

(∫ s
0

(s − τ)n−2

(n − 3)!
u(τ)dτ

)
ds : u ∈ D, t ∈ I

})

≤ b∗

(n − 3)!
α({u(t) : t ∈ I, u ∈ D}) ≤ b∗

(n − 3)!
α(D(I)).

(3.28)
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Using a similar method as in the proof of Theorem 2.1.1 in [31], we have

α(D(I)) ≤ 2αC(D). (3.29)

Therefore, it follows from (3.26)–(3.29) that

αC(AD) ≤ 2Δ ·
(

n−2∑
k=1

Lk

(n − 2 − k)!
+ Ln−1 +

a∗Ln

(n − 3)!
+

b∗Ln+1

(n − 3)!

)
αC(D). (3.30)

Noticing that (3.3), we obtain that T is a strict-set-contraction operator. The proof is complete.

Theorem 3.6. Let cone P be normal and conditions (H1)∼(H3) hold. In addition, assume that the
following conditions are satisfied.

(H4) There exist u∗ ∈ P \ {θ}, c1 ∈ C[I∗, R+] and h1 ∈ C[Pn+1, R+] such that

f(t, u1, . . . , un+1) ≥ c1(t)h1(u1, . . . , un−1)u∗, ∀t ∈ I∗, uk ∈ P,

h1(u1, . . . , un−1)∑n−1
k=1‖uk‖

−→ ∞, as
n−1∑
k=1

‖uk‖ −→ ∞, uk ∈ P.
(3.31)

(H5) There exist u∗ ∈ P \ {θ}, c2 ∈ C[I∗, R+], and h2 ∈ C[Pn−1, R+] such that

f(t, u1, . . . , un+1) ≥ c2(t)h2(u1, . . . , un−1)u∗, ∀t ∈ I∗, uk ∈ P,

h2(u1, . . . , un−1)∑n−1
k=1‖ui‖

−→ ∞, as
n−1∑
k=1

‖uk‖ −→ 0, uk ∈ P.
(3.32)

(H6) There exists a β > 0 such that

NMβ

∫1
0
G(s)a(s)ds < β, (3.33)

whereMβ = maxuk∈Pβ{h(‖u1‖, . . . , ‖un+1‖)}. Then problem (1.1) has at least two positive solutions.

Proof. Consider condition (H4), there exists an r1 > 0, such that

h1(u1, . . . , un−1) ≥
3N2∑n−1

k=1‖uk‖
λ2
∫δ
γ G(s)c1(s)ds · ‖u∗‖

, ∀uk ∈ P,
n−1∑
k=1

‖uk‖ ≥ r1. (3.34)
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Therefore,

f(t, u1, ·, un+1) ≥
3N2∑n−1

k=1‖uk‖
λ2
∫δ
γ G(s)c1(s)ds · ‖u∗‖

· c1(t)u∗, ∀uk ∈ P,
n−1∑
k=1

‖uk‖ ≥ r1. (3.35)

Take

r0 > max
{
3Nλ−1r1, β

}
. (3.36)

Then for t ∈ [γ, δ], ‖x‖Ω = r0, we have, by (3.18),

‖x(t)‖ ≥ λ

3N
‖x‖Ω ≥ λ

3N
r0 > r1. (3.37)

Hence,

(Ax)(t) ≥
∫δ
γ

G(t, s)f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥ 3N2

λ
∫δ
γ G(s)c1(s)ds · ‖u∗‖

∫δ
γ

G(s)

(
n−2∑
k=1

∥∥∥In−1−k0+ x(s)
∥∥∥ + ‖x(s)‖

)
c1(s)ds · u∗

≥ 3N2

λ
∫δ
γ G(s)c1(s)ds · ‖u∗‖

∫δ
γ

G(s)c1(s)‖x(s)‖ds · u∗

≥ N
∫δ
γ G(s)c1(s)ds · ‖u∗‖

‖x‖Ω
(∫δ

γ

G(s)c1(s)ds

)
· u∗

=
1

∫δ
γ G(s)c1(s)ds · ‖u∗‖

(∫δ
γ

G(s)c1(s)ds‖u∗‖
)

· N‖x‖Ω
‖u∗‖ u∗

≥ N‖x‖Ω
‖u∗‖ · u∗,

(3.38)

and consequently,

‖Ax‖Ω ≥ ‖x‖Ω, ∀x ∈ Ω, ‖x‖Ω = r0. (3.39)

Similarly, by condition (H5), there exists r2 > 0, such that

h2(u1, . . . , un−1) ≥
3N2∑n−1

k=1‖uk‖
λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

, ∀uk ∈ P, 0 <
n−1∑
k=1

‖uk‖ ≤ r2, (3.40)
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where ξ is given in (2) of Lemma 3.2. Therefore,

f(t, u1, . . . , un+1) ≥
3N2∑n−1

k=1‖uk‖
λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

· c2(t)u∗, ∀uk ∈ P, 0 <
n−1∑
k=1

‖uk‖ ≤ r2. (3.41)

Choose

0 < r < min

⎧
⎨
⎩

(
n−2∑
k=0

1
k!

)−1
r2, β

⎫
⎬
⎭. (3.42)

Then for t ∈ [γ, δ], x ∈ Ω, ‖x‖Ω = r, we have

(Ax)(ξ) =
∫1
0
G(ξ, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥
∫δ
γ

G(ξ, s)f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥ 3N2

λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

∫δ
γ

G(ξ, s)

(
n−2∑
k=1

∥∥∥In−1−k0+ x(s)
∥∥∥ + ‖x(s)‖

)
c2(s)ds · u∗

≥ 3N2

λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

∫δ
γ

G(ξ, s)‖x(s)‖c2(s)ds · u∗

≥ N
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

‖x(s)‖Ω
∫δ
γ

G(ξ, s)c2(s)ds · u∗

=
1

∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

‖x(s)‖Ω
(∫δ

γ

G(ξ, s)c2(s)ds‖u∗‖
)

· N‖x(s)‖Ω
‖u∗‖ u∗

≥ N‖x(s)‖Ω
‖u∗‖ · u∗,

(3.43)

which implies

‖(Ax)(ξ)‖Ω ≥ ‖x(s)‖Ω, ∀x ∈ Ω, ‖x‖Ω = r, (3.44)

that is,

‖Ax‖Ω ≥ ‖x(s)‖Ω, ∀x ∈ Ω, ‖x‖Ω = r. (3.45)
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On the other hand, according to (ii) of Remark 3.3 and (3.18), we get

(Ax)(t) ≤
∫1
0
G(s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds. (3.46)

By condition (H1), for t ∈ I, x ∈ Ω, ‖x‖Ω = β, we have

∥∥f(t, u1, . . . , un+1)
∥∥ ≤ a(t)h(‖u1‖, . . . , ‖un+1‖) ≤ Mβa(t). (3.47)

Therefore,

‖(Ax)(t)‖Ω ≤ NMβ ·
∫1
0
G(s)a(s)ds < β = ‖x‖Ω. (3.48)

Applying Lemma 2.7 to (3.39), (3.45), and (3.48) yields that T has a fixed-point x∗ ∈
Ωr,β, r ≤ ‖x∗‖ ≤ β, and a fixed-point x∗∗ ∈ Ωβ,r0 , β ≤ ‖x∗∗‖ ≤ r0. Noticing (3.48), we get
‖x∗‖/= β and ‖x∗∗‖/= β. This and Lemma 3.4 complete the proof.

Theorem 3.7. Let cone P be normal and conditions (H1)∼(H4) hold. In addition, assume that the
following condition is satisfied:

(H7)

h(‖u1‖, . . . , ‖un+1‖)∑n+1
k=1‖uk‖

−→ 0, as uk ∈ P,
n+1∑
k=1

‖uk‖ −→ 0+. (3.49)

Then problem (1.1) has at least one positive solution.

Proof. By (H4), we can choose r0 > 3Nλ−1r1. As in the proof of Theorem 3.6, it is easy to see
that (3.39) holds. On the other hand, considering (3.49), there exists r3 > 0 such that

h(‖u1‖, . . . , ‖un+1‖) ≤ ε0
n+1∑
k=1

‖uk‖, for t ∈ I, uk ∈ P, 0 <
n+1∑
k=1

‖uk‖ ≤ r3, (3.50)

where ε0 > 0 satisfies

ε0 =

(
N

{
n−1∑
k=1

1
k!

+
a∗ + b∗

(n − 3)!

}∫1
0
G(s)a(s)ds

)−1
. (3.51)
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Choose 0 < r∗ < min{(∑n−1
k=1(1/k!)+(a

∗+b∗)/(n−3)!)−1r3, r0}. Then for t ∈ I, x ∈ Ω, ‖x‖Ω = r∗,
it follows from (3.46) that

‖(Ax)(t)‖ ≤ N

∫1
0
G(s)
∥∥∥f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)∥∥∥ds

≤ N

∫1
0
G(s)a(s)h

(∥∥∥In−20+ x(s)
∥∥∥, . . . , ‖x(s)‖,

∥∥∥T
(
In−20+ x

)
(s)
∥∥∥,
∥∥∥S
(
In−20+ x

)
(s)
∥∥∥
)
ds

≤ Nε0

∫1
0
G(s)a(s)

(
n−1∑
k=1

∥∥∥In−1−k0+ x(s)
∥∥∥ +
∥∥∥T
(
In−20+ x

)
(s)
∥∥∥ +
∥∥∥S
(
In−20+ x

)
(s)
∥∥∥
)
ds

≤ Nε0

(
n−1∑
k=1

1
k!

+
a∗ + b∗

(n − 3)!

)
r∗
∫1
0
G(s)a(s)ds = r∗

(3.52)

and consequently,

‖(Ax)(t)‖Ω ≤ ‖x‖Ω, ∀x ∈ Ω, ‖x‖Ω ≤ r∗. (3.53)

Since 0 < r∗ < r0, applying Lemma 2.7 to (3.39) and (3.53) yield that T has a fixed-point
x∗ ∈ Ωr∗,r0 , r

∗ ≤ ‖x∗‖ ≤ r0. This and Lemma 3.4 complete the proof.

4. An Example

Consider the following system of scalar differential equations of fractional order

−D5/2uk(t) =
(1 + t)3

960k3

⎧
⎪⎨
⎪⎩

⎡
⎣u2k(t) + u′

3k(t) +
∞∑
j=1

u2j(t) +
∞∑
j=1

u′
j(t)

⎤
⎦

3

+

⎛
⎝3uk(t) + 3u′

k+1(t) +
∞∑
j=1

uj(t) +
∞∑
j=1

u′
2j(t)

⎞
⎠

1/2
⎫
⎪⎬
⎪⎭

+
1 + t3

36k5

(∫ t
0
e−(1+t)suk(s)ds

)2/3

+
1 + t2

24k4

(∫1
0
e−ssin2(t − s)πu2k(s)ds

)
, t ∈ I,

uk(0) = u′
k(0) = 0, u′

k(1) =
1
8
u′
k

(
1
4

)
+
1
2
u′
k

(
4
9

)
, k = 1, 2, 3, . . . .

(4.1)

Conclusion. The problem (4.1) has at least two positive solutions.
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Proof. Let E = l1 = {u = (u1, u2, . . . , uk, . . .) :
∑∞

k=1 |uk| < ∞} with the norm ‖u‖ =
∑∞

k=1 |uk|,
and P = {(u1, . . . , uk, . . .) : uk ≥ 0, k = 1, 2, 3, . . .}. Then P is a normal cone in E with normal
constant N = 1, and system (4.1) can be regarded as a boundary value problem of the form
(1.1). In this situation, q = 5/2, n = 3, a1 = 1/8, a2 = 1/2, η1 = 1/4, η2 = 4/9, η∗ =
29/48, K(t, s) = e−(1+t)s, H(t, s) = e−ssin2(t− s)π, u = (u1, . . . , uk, . . .), f = (f1, f2, . . . , fk, . . .),
in which

fk
(
t, u, v, x, y

)
=

(1 + t)3

960k3

⎧
⎪⎨
⎪⎩

⎛
⎝u2k + v3k +

∞∑
j=1

u2j +
∞∑
j=1

vj

⎞
⎠

3

+

⎛
⎝3uk + 3vk+1 +

∞∑
j=1

uj +
∞∑
j=1

v2j

⎞
⎠

1/2
⎫
⎪⎬
⎪⎭

+
1 + t3

36k5
x1/5
k

+
1 + t2

24k4
y2k.

(4.2)

Observing the inequality
∑∞

k=1(1/k
3) < 3/2, we get, by (4.2),

∥∥f(t, u, v, x, y)∥∥ =
∞∑
k=1

∣∣fk
(
t, u, v, x, y

)∣∣

≤ (1 + t)3

2

(
1
40

(‖u‖ + ‖v‖)3 + 1
160

(‖u‖ + ‖v‖)1/2 + 1
12

‖x‖1/5 + 1
8
∥∥y∥∥
)
.

(4.3)

Hence (H1) is satisfied for a(t) = (1 + t)3/2 and

h
(
u, v, x, y

)
=

1
40

(u + v)3 +
1
160

(u + v)1/2 +
1
12

x1/5 +
1
8
y. (4.4)

Now, we check condition (H2). Obviously, f : I × P 4
r → P , for any r > 0, and f is

uniformly continuous on I × P 4
r . Let f = f (1) + f (2), where f (1) = (f (1)

1 , . . . , f
(1)
k , . . .) and f (2) =

(f (2)
1 , . . . , f

(2)
k , . . .), in which

f
(1)
k

(
t, u, v, x, y

)
=

(1 + t)3

960k3

⎧
⎪⎨
⎪⎩

⎛
⎝u2k + v3k +

∞∑
j=1

u2j +
∞∑
j=1

vj

⎞
⎠

3

+

⎛
⎝3uk + 3vk+1 +

∞∑
j=1

uj +
∞∑
j=1

v2j

⎞
⎠

1/2
⎫
⎪⎬
⎪⎭

+
1 + t3

36k5
x1/5
k

, (k = 1, 2, 3, . . .),

f
(2)
k

(
t, u, v, x, y

)
=

1 + t2

24k4
y2k, (k = 1, 2, 3, . . .).

(4.5)
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For any t ∈ I and bounded subsets Di ⊂ E, i = 1, 2, 3, 4, from (4.5) and by the diagonal
method, we have

α
(
f (1)(t,D1, D2, D3, D4)

)
= 0, ∀t ∈ I, bounded sets Di ⊂ E, i = 1, 2, 3, 4,

α
(
f (2)(I,D1, D2, D3, D4)

)
≤ 1

12
α(D4), ∀t ∈ I,Di ⊂ E, i = 1, 2, 3, 4.

(4.6)

It follows from (4.6) that

α
(
f(I,D1, D2, D3, D4)

) ≤ 1
12

α(D4), ∀t ∈ I,Di ⊂ E, i = 1, 2, 3, 4,

2
Γ
(
q − n + 2

)
η∗

(
n−2∑
k=1

Lk

(n − 2 − k)!
+ Ln−1 +

a∗

(n − 3)!
Ln +

b∗

(n − 3)!
Ln+1

)
≈ 0.1565 < 1.

(4.7)

that is, condition (H2) holds for L1 = L2 = L3 = 0, L4 = 1/12.
On the other hand, take γ = 1/4, δ = 3/4. Then 1/4 = γ ≤ min{δ/2, 2δ − 1} =

3/8, 2/3 < δ, which implies that condition (H3) holds. By (4.2), we have

fk
(
t, u, v, x, y

) ≥ (1 + t)3

960k3 (‖u‖ + ‖v‖)3, ∀t ∈ I∗, u, v, x, y ∈ P, (k = 1, 2, 3, . . .),

fk
(
t, u, v, x, y

) ≥ (1 + t)3

960k3

√
‖u‖ + ‖v‖, ∀t ∈ I∗, u, v, x, y ∈ P, (k = 1, 2, 3, . . .).

(4.8)

Hence condition (H4) is satisfied for

c1(t) =
(1 + t)3

960
, h1, k(u, v) = (‖u‖ + ‖v‖)3, u∗ =

(
1, . . . ,

1
k3

, . . .

)
, (4.9)

in this situation,

h1, k = lim
‖u‖+‖v‖→∞

(‖u‖ + ‖v‖)3
‖u‖ + ‖v‖ = ∞. (4.10)

And condition (H5) is also satisfied for

c2(t) =
(1 + t)3

960
, h2, k(u, v) =

√
‖u‖ + ‖v‖, u∗ =

(
1, . . . ,

1
k3

, . . .

)
, (4.11)

in this situation,

h2,k = lim
‖u‖+‖v‖→ 0

√
‖u‖ + ‖v‖
‖u‖ + ‖v‖ = ∞. (4.12)
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Finally, choose β = 1, it is easy to check that condition (H6) is satisfied. In this case, Mβ ≈
0.4162, and so

NMβ

∫1
0
G(s)a(s)ds ≈ 0.7287 < β = 1. (4.13)

Hence, our conclusion follows from Theorem 3.6.
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[7] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential
equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.

[8] S. Zhang, “Positive solutions to singular boundary value problem for nonlinear fractional differential
equation,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1300–1309, 2010.

[9] Z. Bai, “On positive solutions of a nonlocal fractional boundary value problem,” Nonlinear Analysis,
vol. 72, no. 2, pp. 916–924, 2010.

[10] C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions of the boundary value problem for
nonlinear fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3,
pp. 1363–1375, 2010.

[11] M. El-Shahed and J. J. Nieto, “Nontrivial solutions for a nonlinear multi-point boundary value
problem of fractional order,” Computers &Mathematics with Applications, vol. 59, no. 11, pp. 3438–3443,
2010.

[12] Y. Zhao, H. Chen, and L. Huang, “Existence of positive solutions for nonlinear fractional functional
differential equation,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3456–3467, 2012.

[13] W.-X. Zhou and Y.-D. Chu, “Existence of solutions for fractional differential equations with multi-
point boundary conditions,” Communications in Nonlinear Science and Numerical Simulation, vol. 17,
no. 3, pp. 1142–1148, 2012.

[14] G. Wang, B. Ahmad, and L. Zhang, “Some existence results for impulsive nonlinear fractional
differential equations with mixed boundary conditions,” Computers & Mathematics with Applications,
vol. 62, no. 3, pp. 1389–1397, 2011.

[15] C. Yuan, “Two positive solutions for (n−1, 1)-type semipositone integral boundary value problems for
coupled systems of nonlinear fractional differential equations,” Communications in Nonlinear Science
and Numerical Simulation, vol. 17, no. 2, pp. 930–942, 2012.



Abstract and Applied Analysis 19

[16] B. Ahmad and S. Sivasundaram, “Existence of solutions for impulsive integral boundary value
problems of fractional order,” Nonlinear Analysis, vol. 4, no. 1, pp. 134–141, 2010.

[17] B. Ahmad and S. Sivasundaram, “On four-point nonlocal boundary value problems of nonlinear
integro-differential equations of fractional order,” Applied Mathematics and Computation, vol. 217, no.
2, pp. 480–487, 2010.

[18] S. Hamani, M. Benchohra, and J. R. Graef, “Existence results for boundary-value problems with
nonlinear fractional differential inclusions and integral conditions,” Electronic Journal of Differential
Equations, vol. 2010, pp. 1–16, 2010.

[19] A. Arikoglu and I. Ozkol, “Solution of fractional integro-differential equations by using fractional
differential transform method,” Chaos, Solitons and Fractals, vol. 40, no. 2, pp. 521–529, 2009.
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