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A class of G-semipreinvex functions, which are some generalizations of the semipreinvex func-
tions, and theG-convex functions, is introduced. Examples are given to show their relations among
G-semipreinvex functions, semipreinvex functions and G-convex functions. Some characteriza-
tions of G-semipreinvex functions are also obtained, and some optimality results are given for a
class of G-semipreinvex functions. Ours results improve and generalize some known results.

1. Introduction

Generalized convexity has been playing a central role in mathematical programming and
optimization theory. The research on characterizations of generalized convexity is one of most
important parts in mathematical programming and optimization theory. Many papers have
been published to study the problems of how to weaken the convex condition to guarantee
the optimality results. Schaible and Ziemba [1] introduced G-convex function which is a
generalization of convex function and studied some characterizations of G-convex functions.
Hanson [2] introduced invexity which is an extension of differentiable convex function. Ben-
Israel and Mond [3] considered the functions for which there exists η : Rn × Rn → Rn such
that, for any x, y ∈ Rn, λ ∈ [0, 1],

f
(
y + λη

(
x, y

)) ≤ λf(x) + (1 − λ)f
(
y
)
. (1.1)

Weir et al. [4, 5] named such kinds of functions which satisfied the condition (1.1) as preinvex
functions with respect to η. Further study on characterizations and generalizations of
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convexity and preinvexity, including their applications in mathematical programming, has
been done by many authors (see [6–18]). As a generalization of preinvexity, Yang and Chen
[15] introduced semipreinvex functions and discussed the applications in prevariational
inequality. Yang et al. [16] investigated some properties of semipreinvex functions. As a
generalization of G-convex functions and preinvex functions, Antczak [17] introduced G-
preinvex functions and obtained some optimality results for a class of constrained opti-
mization problems. As a generalization of B-vexity and semipreinvexity, Long and Peng
[18] introduced the concept of semi-B-preinvex functions. Zhao et al. [19] introduced r-
semipreinvex functions and established some optimality results for a class of nonlinear
programming problems.

Motivated by the results in [17–19], in this paper, we propose the concept of G-
semipreinvex functions and obtain some important characterizations of G-semipreinvexity.
At the same time, we study some optimality results under G-semipreinvexity. Our results
unify the concepts of G-convexity, preinvexity, G-preinvexity, semipreinvexity, and r-
semipreinvexity.

2. Preliminaries and Definitions

Definition 2.1 (see [1]). LetG be a continuous real-valued strictly monotonic function defined
on D ⊂ R. A real-valued function f defined on a convex set X ⊂ Rn is said to be G-convex if
for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λ

(
x − y

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

, (2.1)

where G−1 is the inverse of G, f(X) ⊂ D.

Remark 2.2. Every convex functions is G-convex, but the converse is not necessarily true.

Example 2.3. Let X = [−1, 1], f : X → R, If(X) be the range of real-valued function f , and let
G : If(X) → R be defined by

f(x) = arctan(|x| + 1), G(t) = tan(t). (2.2)

Then, we can verify that f is a G-convex function. But f is not a convex function because the
following inequality

f
(
y + λ

(
x − y

))
> λf(x) + (1 − λ)f

(
y
)

(2.3)

holds for x = 1/4, y = 3/4, and λ = 1/2.
Weir et al. [4, 5] presented the concepts of invex sets and preinvex functions as follows.

Definition 2.4 (see [4, 5]). A set X ⊆ Rn is said to be invex if there exists a vector-valued
function η : X ×X → Rn such that for any x, y ∈ X, λ ∈ [0, 1],

y + λη
(
x, y

) ∈ X. (2.4)
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Definition 2.5 (see [4, 5]). Let X ⊆ Rn be invex with respect to vector-valued function η : X ×
X → Rn. Function f(x) is said to be preinvex with respect to η if for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λη

(
x, y

)) ≤ λf(x) + (1 − λ)f
(
y
)
. (2.5)

Remark 2.6. Every convex function is a preinvex function with respect to η = x − y, but the
converse is not necessarily true.

Example 2.7. Let X = [−1, 1]. f : X → R be defined by

f(x) = arctan(|x| + 1). (2.6)

Then, we can verify that f is a preinvex function with respect to η, where

η
(
x, y

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−y − x2 + 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
−y − x, −1 ≤ x < 0, 0 ≤ y ≤ 1,
−y − x, 0 ≤ x ≤ 1, −1 ≤ y < 0,
−y + x, −1 ≤ x < 0, −1 ≤ y < 0.

(2.7)

But f is not convex a function in Example 2.3.
Antczak [17] introduced the concept of G-preinvex functions as follows.

Definition 2.8 (see [17]). Let X be a nonempty invex (with respect to η) subset of Rn. A
function f : X → R is said to be (strictly) G-preinvex at y with respect to η if there exists
a continuous real-valued increasing function G : If(X) → R such that for all x ∈ X (x /=y),
λ ∈ [0, 1],

f
(
y + λη

(
x, y

)) ≤ G−1(λ
(
G
(
f(x)

))
+ (1 − λ)G

(
f
(
y
)))

,

(
f
(
y + λη

(
x, y

))
< G−1(λ

(
G
(
f(x)

))
+ (1 − λ)G

(
f
(
y
))))

.
(2.8)

If (2.8) is satisfied for any y ∈ X, then f is said to be (strictly) a G-preinvex function on X
with respect to η.

Remark 2.9. Every preinvex function with respect to η is G-preinvex function with respect to
the same η, where G(x) = x. Every G-convex function is G-preinvex function with respect to
η(x, y, λ) = x − y. However, the converse is not necessarily true.

Example 2.10. Let X = [−1, 1]. f : X → R, G : If(X) → R be defined by

f(x) = arctan(2 − |x|), G(t) = tan t. (2.9)
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Then, we can verify that f is a G-preinvex function with respect to η, where

η
(
x, y

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−y − x2 + 2x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
−y − x2 − 2x, −1 ≤ x < 0, 0 ≤ y ≤ 1,
−y − x, 0 ≤ x ≤ 1, −1 ≤ y < 0,
−y + x, −1 ≤ x < 0, −1 ≤ y < 0.

(2.10)

But f is not a preinvex function because the following inequality

f
(
y + λη

(
x, y

))
> λf(x) + (1 − λ)f

(
y
)

(2.11)

holds for x = 0, y = 1, and λ = 1/2.
And f(x) is not a G-convex function because the following inequality

f
(
y + λ

(
x − y

))
> G−1(λG

(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

(2.12)

holds for x = 1, y = −1, and λ = 1/2.

Definition 2.11 (see [15]). A set X ⊆ Rn is said to be a semiconnected set if there exists a
vector-valued function η : X ×X × [0, 1] → Rn such that for any x, y ∈ X, λ ∈ [0, 1],

y + λη
(
x, y, λ

) ∈ X. (2.13)

Definition 2.12 (see [15]). Let X ⊆ Rn be a semiconnected set with respect to a vector-valued
function η : X ×X × [0, 1] → Rn. Function f is said to be semipreinvex with respect to η if for
any x, y ∈ X, λ ∈ [0, 1], limλ→ 0λη(x, y, λ) = 0,

f
(
y + λη

(
x, y, λ

)) ≤ λf(x) + (1 − λ)f
(
y
)
. (2.14)

Next we present the definition of G-semipreinvex functions as follows.

Definition 2.13. Let X ⊆ Rn be semiconnected set with respect to vector-valued function η :
X × X × [0, 1] → Rn. A function f : X → R is said to be (strictly) G-semipreinvex at y with
respect to η if there exists a continuous real-valued strictly increasing functionG : If(X) → R
such that for all x ∈ X (x /=y), λ ∈ [0, 1], limλ→ 0λη(x, y, λ) = 0,

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

,

(
f
(
y + λη

(
x, y, λ

))
< G−1(λG

(
f(x)

)
+ (1 − λ)G

(
f
(
y
))))

.
(2.15)

If (2.15) is satisfied for any y ∈ X, then f is said to be (strictly) G-semipreinvex on X with
respect to η.

Remark 2.14. Every semipreinvex functionwith respect to η is aG-semipreinvex functionwith
respect to the same η, where G(x) = x. However, the converse is not true.
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Example 2.15. Let X = [−6, 6]. Then X is a semiconnected set with respect to η(x, y, λ) and
limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − y
3
√
λ

, −6 ≤ x < 0, −6 ≤ y < 0, x > y, 0 < λ ≤ 1,

λ2
(
x − y

)
, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x ≥ y,

λ2
(
x − y

)
, −6 ≤ x < 0, −6 ≤ y < 0, x ≤ y,

x − y, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x < y,

x − y, 0 ≤ x ≤ 6, −6 ≤ y < 0, x < −y,
x − y, −6 ≤ x < 0, 0 ≤ y ≤ 6, x > −y,
0, 0 ≤ x ≤ 6, −6 ≤ y < 0, x ≥ −y,
0, −6 ≤ x < 0, 0 ≤ y ≤ 6, x ≤ −y.

(2.16)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan
(
x2 + 2

)
, G(t) = tan t. (2.17)

Then, we can verify that f is a G-semipreinvex function with respect to η. But f is not a
semipreinvex function with respect to η because the following inequality

f
(
y + λη

(
x, y, λ

))
> λf(x) + (1 − λ)f

(
y
)

(2.18)

holds for x = 2, and y = 4, λ = 1/2.

Example 2.16. Let X = [−6, 6]. Then X is a semiconnected set with respect to η(x, y, λ) and
limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − y

ϕ(λ)
, −6 ≤ x < 0, −6 ≤ y < 0, x > y, 0 < λ ≤ 1,

ϕ(λ)
(
x − y

)
, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x ≥ y,

ϕ(λ)
(
x − y

)
, −6 ≤ x < 0, −6 ≤ y < 0, x ≤ y,

x − y, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, x < y,

x − y, 0 ≤ x ≤ 6, −6 ≤ y < 0, x < −y, λ < ϕ(λ) < 1
x − y, −6 ≤ x < 0, 0 ≤ y ≤ 6, x > −y,
0, 0 ≤ x ≤ 6, −6 ≤ y < 0, x ≥ −y,
0, −6 ≤ x < 0, 0 ≤ y ≤ 6, x ≤ −y.

(2.19)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan
(
x2 + k

)
, G(t) = tan t, ∀k ∈ R. (2.20)
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Then, we can verify that f(x) is aG-semipreinvex function with respect to classes of functions
η. But f(x) is not semipreinvex function with respect to η because the following inequality

f
(
y + λη

(
x, y, λ

))
> λf(x) + (1 − λ)f

(
y
)

(2.21)

holds for x = 2, y = 4, and λ = 1/2.

Remark 2.17. Every a G-convex function is G-semipreinvex function with respect to
η(x, y, λ) = x − y. But the converse is not true.

Example 2.18. Let X = (−6, 6), it is easy to check that X is a semiconnected set with respect to
η(x, y, λ) and limλ→ 0λη(x, y, λ) = 0, where

η
(
x, y, λ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
(
x − y

)
, 0 ≤ x < 6, 0 ≤ y < 6, x < y,

λ
(
x − y

)
, −6 < x < 0, −6 < y < 0, x > y,

x − y√
λ

, 0 ≤ x < 6, 0 ≤ y < 6, x ≥ y, 0 < λ ≤ 1,

x − y√
λ

, −6 < x < 0, −6 < y < 0, x ≤ y, 0 < λ ≤ 1,

−x − y, 0 ≤ x < 6, −6 < y < 0, x ≥ −y,
−x − y, −6 < x < 0, 0 ≤ y < 6, x ≤ −y,
0, 0 ≤ x < 6, −6 < y < 0, x < −y,
0, −6 < x < 0, 0 ≤ y < 6, x > −y.

(2.22)

Let f : X → R, G : If(X) → R be defined by

f(x) = arctan(6 − |x|), G(t) = tan t. (2.23)

Then, we can verify that f is a G-semipreinvex function with respect to η. But f is not a
G-convex function, because the following inequality

f
(
y + λ

(
x − y

))
> G−1(λG

(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

(2.24)

holds for x = 1, y = −1, and λ = 1/2.

3. Some Properties of G-Semipreinvex Functions

In this section, we give some basic characterizations of G-semipreinvex functions.

Theorem 3.1. Let f be a G1-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η, and let G2 be a continuous strictly increasing function on If(X). If
the function g(t) = G2G

−1
1 (t) is convex on the image under G1 of the range of f , then f is also

G2-semipreinvex function on X with respect to the same function η.
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Proof. Let X be a nonempty semiconnected subset of Rn with respect to η, and we assume
that f is G1-semipreinvex with respect to η. Then, for any x, y ∈ X, λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1
1

(
λG1

(
f(x)

)
+ (1 − λ)G1

(
f
(
y
)))

. (3.1)

Let G2 be a continuous strictly increasing function on If(X). Then,

G2
(
f
(
y + λη

(
x, y, λ

))) ≤ G2G
−1(λG1

(
f(x)

)
+ (1 − λ)G1

(
f
(
y
)))

. (3.2)

By the convexity of g(t) = G2G
−1
1 , it follows the following inequality

G2G
−1(λG1

(
f(x)

)
+ (1 − λ)G1

(
f
(
y
))) ≤ λG2G

−1
1

(
G1

(
f(x)

)
+ (1 − λ)G2G

−1
1

(
G1f

(
y
)))

= λG2
(
f(x)

)
+ (1 − λ)G2

(
f
(
y
)) (3.3)

for all x, y ∈ X, λ ∈ [0, 1]. Therefore,

G−1
1

[
λ
(
G1

(
f(x)

))
+ (1 − λ)G1

(
f
(
y
))]

≤ G−1
2

[
λ
(
G2

(
f(x)

))
+ (1 − λ)G2

(
f
(
y
))]

.
(3.4)

Thus, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1
2

(
λG2

(
f(x)

)
+ (1 − λ)G2

(
f
(
y
)))

. (3.5)

Theorem 3.2. Let f be a G-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η. If the function G is concave on If(X), then f is semipreinvex function
with respect to the same function η.

Proof. Let y, z ∈ If(X), from the assumption G is concave on If(X), we have

G
(
z + λ

(
y − z

)) ≥ λG
(
y
)
+ (1 − λ)G(z), λ ∈ [0, 1]. (3.6)

Let

G
(
y
)
= x, G(z) = u, y = G−1(x), z = G−1(u), (3.7)

then

G
(
G−1(u) + λ

(
G−1(x) −G−1(u)

))
≥ λG

(
G−1(x)

)
+ (1 − λ)G

(
G−1(u)

)

= λx + (1 − λ)u.
(3.8)
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It follows that

G−1G
(
λG−1(x) + (1 − λ)G−1(u)

)
≥ G−1(λx + (1 − λ)u). (3.9)

Then,

λG−1(x) + (1 − λ)G−1(u) ≥ G−1(λx + (1 − λ)u). (3.10)

This means that G−1 is convex. Let G1 = G, G2 = t, then g(t) = G2G
−1
1 (t) is convex. Hence by

Theorem 3.1, f is G2-semipreinvex with respect to η. But G2 is the identity function; hence, f
is a semipreinvex function with respect to the same function η.

Theorem 3.3. Let X be a nonempty semiconnected set with respect to η subset of Rn and let fi :
X → R, i ∈ I, be finite collection of G-semipreinvex function with respect to the same η and G on X.
Define f(x) = sup(fi(x) : i ∈ I), for every x ∈ X. Further, assume that for every x ∈ X, there exists
i∗ = i(x) ∈ I, such that f(x) = fi∗(x). Then f is G-semipreinvex function with respect to the same
function η.

Proof. Suppose that the result is not true, that is, f is not G-semipreinvex function with
respect to η on X. Then, there exists x, y ∈ X, λ ∈ [0, 1] such that

f
(
y + λη

(
x, y, λ

))
> G−1(λG

(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

. (3.11)

We denote z = y + λη(x, y, λ) there exist i(z) := iz ∈ I, i(x) := ix ∈ I, and i(y) := iy ∈ I, satis-
fying

f(z) = fiz(z), f(x) = fix(x), f
(
y
)
= fiy

(
y
)
. (3.12)

Therefore, by (3.11),

fiz(z) > G−1
(
λG

(
fix(x)

)
+ (1 − λ)G

(
fiy

(
y
)))

. (3.13)

By the condition, we obtain

fiz(z) ≤ G−1(λG
(
fiz(x)

)
+ (1 − λ)G

(
fiz

(
y
)))

. (3.14)

From the definition of G-semipreinvexity, G is an increasing function on its domain. Then,
G−1 is increasing. Since fiz(x) ≤ fix(x), fiz(y) ≤ fiy(y), then (3.14) gives

fiz(z) ≤ G−1
(
λG

(
fix(x)

)
+ (1 − λ)G

(
fiy

(
y
)))

. (3.15)

The inequality (3.15) above contradicts (3.13).
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Theorem 3.4. Let f be a G-semipreinvex function with respect to η on a nonempty semiconnected
set X ⊂ Rn with respect to η. Then, the level set Sα = {x ∈ X : f(x) ≤ α} is a semiconnected set with
respect to η, for each α ∈ R.

Proof. Let x, y ∈ Sα, for any arbitrary real number α. Then, f(x) ≤ α, f(y) ≤ α. Hence, it
follows that

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
))) ≤ G−1(G(α)) = α. (3.16)

Then, by the definition of level set we conclude that y +λη(x, y, λ) ∈ Sα, for any λ ∈ [0, 1], we
conclude that Sα is a semiconnected set with respect to η.

Let f is a G-semipreinvex function with respect to η, its epigraph Ef = {(x, α) : x ∈
X, α ∈ R, f(x) ≤ α} is said to be G-semiconnected set with respect to η if for any (x, α) ∈
Ef , (y, β) ∈ Ef , λ ∈ [0, 1],

(
y + λη

(
x, y, λ

)
, G−1(λG(α) + (1 − λ)G

(
β
))) ∈ Ef . (3.17)

Theorem 3.5. Let X ⊂ Rn with respect to η be a nonempty semiconnected set, and let f be a real-
valued function defined on X. Then, f is a G-semipreinvex function with respect to η if and only if its
epigraph Ef = {(x, α) : x ∈ X, α ∈ R, f(x) ≤ α} is a G-semiconnected set with respect to η.

Proof. Let (x, α) ∈ Ef , (y, β) ∈ Ef , then f(x) ≤ α, f(y) ≤ β. Thus, for any λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

≤ G−1(λG(α) + (1 − λ)G
(
β
))
.

(3.18)

By the definition of an epigraph of f , this means that

(
y + λη

(
x, y, λ

)
, G−1(λG(α) + (1 − λ)G

(
β
))) ∈ Ef . (3.19)

Thus, we conclude that Ef is a G semiconnected set with respect to η.
Conversely, letEf be aG semiconnected set. Then, for any x, y ∈ X, we have (x, f(x)) ∈

Ef , (y, f(y)) ∈ Ef . By the definition of an epigraph of f , the following inequality

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

(3.20)

holds for any λ ∈ [0, 1]. This implies that f is a G-semipreinvex function on X with respect to
η.
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The following results characterize the class of G-semipreinvex functions.

Theorem 3.6. LetX ⊆ Rn be a semiconnected set with respect to η : X×X×[0, 1] → Rn; f : X → R
is a G-semipreinvex function with respect to the same η if and only if for all x, y ∈ X, λ ∈ [0, 1], and
u, v ∈ R,

f(x) ≤ u, f
(
y
) ≤ v =⇒ f

(
y + λη

(
x, y, λ

)) ≤ G−1(λG(u) + (1 − λ)G(v)). (3.21)

Proof. Let f be G-semipreinvex functions with respect to η, and let f(x) ≤ u, f(y) ≤ v, 0 <
λ < 1. From the definition of G-semipreinvexity, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

≤ G−1(λG(u) + (1 − λ)G(v)).
(3.22)

Conversely, let x, y ∈ X, λ ∈ [0, 1]. For any δ > 0,

f(x) < f(x) + δ,

f
(
y
)
< f

(
y
)
+ δ.

(3.23)

By the assumption of theorem, we can get that for 0 < λ < 1,

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

≤ G−1(λG
(
f(x) + δ

)
+ (1 − λ)G

(
f
(
y
)
+ δ

))
.

(3.24)

Since G is a continuous real-valued increasing function, and δ > 0 can be arbitrarily small, let
δ → 0, it follows that

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG(u) + (1 − λ)G(v)). (3.25)

4. G-Semipreinvexity and Optimality

In this section, we will give some optimality results for a class of G-semipreinvex functions.

Theorem 4.1. Let f : X → R be a G-semipreinvex function with respect to η, and we assume that
η satisfies the following condition: η(x, y, λ)/= 0, when x /=y. Then, each local minimum point of the
function f is its point of global minimum.

Proof. Assume that y ∈ X is a local minimum point of f which is not a global minimum
point. Hence, there exists a point x ∈ X such that f(x) < f(y). By the G-semipreinvexity of f
with respect to η, we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

, λ ∈ [0, 1]. (4.1)
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Then, for λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

))
< G−1(λG

(
f
(
y
))

+ (1 − λ)G
(
f
(
y
)))

= G−1(G
(
f
(
y
)))

= f
(
y
)
.

(4.2)

Thus, we have

f
(
y + λη

(
x, y, λ

))
< f

(
y
)
. (4.3)

This is a contradiction with the assumption.

Theorem 4.2. The set of points which are global minimum of f is a semiconnected set with respect to
η.

Proof. Denote by A the set of points of global minimum of f , and let x, y ∈ A. Since f is
G-semipreinvex with respect to η, then

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f(x)

)
+ (1 − λ)G

(
f
(
y
)))

, λ ∈ [0, 1] (4.4)

is satisfied. Since f(x) = f(y), we have

f
(
y + λη

(
x, y, λ

)) ≤ G−1(λG
(
f
(
y
))

+ (1 − λ)G
(
f
(
y
)))

. (4.5)

So, for any λ ∈ [0, 1],

f
(
y + λη

(
x, y, λ

)) ≤ G−1(G
(
f
(
y
)))

= f
(
y
)
= f(x). (4.6)

Since x, y ∈ A are points of a global minimum of f , it follows that, for any λ ∈ [0, 1], the
following relation:

y + λη
(
x, y, λ

) ∈ A (4.7)

is satisfied. Then, A is a semiconnected set with respect to η.
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