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Noether symmetries provide conservation laws that are admitted by Lagrangians representing
physical systems. For partial differential equation possessing Lagrangians these symmetries are
obtained by the invariance of the corresponding action integral. In this paper we provide a
systematic procedure for determiningNoether symmetries and conserved vectors for a Lagrangian
constructed from a Lorentzian metric of interest in mathematical physics. For completeness,
we give Lie point symmetries and conservation laws admitted by the wave equation on this
Lorentzian metric.

1. Introduction

A vast amount of work is available on analyzing differential equations (DEs) through their
Lie point symmetries. These symmetries are important in that they play pivotal role in solving
nonlinear differential equations. Apart from Lie point symmetries, there are other interesting
symmetries that are associated with differential equations which possess Lagrangians. These
symmetries are called Noether symmetries and describe physical features of DEs in terms of
conservation laws they admit. The connection between symmetry and conservation laws has
been inherent in mathematical physics since Emmy Noether published her classical work
linking the two [1]. Noether proved that for every infinitesimal transformation admitted
by the action integral of a Lagrangian system, there exists a conservation law [1]. The
relationship between symmetries and conservation laws in the absence of a Lagrangian is
detailed in [2, 3] and references therein. Extending some of the earlier work, Bokhari et al.
[4, 5] investigated Noether symmetries for the actions of certain line elements associated
with the Lagrangian of some Lorentzian metrics of signature 2. More recently, extending
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the work in [4, 5], new results are obtained for existence of conserved quantities for spaces
of different curvatures [6]. In the present study, we revisit the work in [6] and investigate
Noether symmetries of the Euler Lagrange equations of a Lorentzian metric, known as the
Milne Model [7]whose metric is given by

ds2 = −dt2 + t2
(
dx2 + e2x

(
dy2 + dz2

))
. (1.1)

The Milne metric represents an empty universe and is of interest in special relativity. Our
reason to choose this metric for the present study is that whereas it is zero curvature, it
illustrates some features that have been associated with the expanding universe implicit in
special relativity. The plan of the paper is as follows.

In the next section we find Noether symmetries of the Lagrangian constructed from
(1.1). In Section 2, we construct the wave equation for the Milne metric (1.1) and then find its
Noether symmetries. In the third section, the Lie symmetries of the wave on Milne metric are
compared with those of the Noether symmetries obtained from its lagrangian. For details of
Noether and Lie symmetries, we refer the reader to, inter alia, [8–11].

2. Invariance of the Geodesic Equations and Noether Symmetries

Geodesic equations are the Euler Lagrange equations determined from invariance of an action
integral [4]. In order to find Noether symmetries admitted by the geodesic equations for the
Milne metric, we write a Lagrangian, L = L(s, t, x, y, z, ṫ, ẋ, ẏ, ż), that can be constructed by
the Milne metric and given by the expression

L = −ṫ2 + t2
(
ẋ2 + e2x

(
ẏ2 + ż2

))
. (2.1)

The general Noether symmetry generators corresponding to this Lagrangian are [1]

X = ξ
∂

∂s
+ η1 ∂

∂t
+ η2 ∂

∂x
+ η3 ∂

∂y
+ η4 ∂

∂z
+ η̇1 ∂

∂ṫ
+ η̇2 ∂

∂ẋ
+ η̇3 ∂

∂ẏ
+ η̇4 ∂

∂ż
, (2.2)

where ξ, η1, η2, η3, η4 are functions of s, t, x, y, z, and are given by

XL + LDsξ = Dsf, (2.3)
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where f(x, y, z, t) is a gauge function. The resultant over determined system of partial
differential equations, after separation by monomials, is

ξt = 0, ξx = 0, ξy = 0,

ξz = 0, 2η1
t − ξs = 0, 2η1 + 2tη2

x − tξs = 0,

2η1 + 2tη2 + 2tη3
y − tξs = 0, 2η1 + 2tη2 + 2tη4

z − tξs = 0,

η1
x − t2η2

t = 0, η1
y − t2e2xη3

t = 0, η1
z − t2e2xη4

t = 0,

η2
y + e2xη3

x = 0, η2
z + e2xη4

x = 0, η3
z + η4

y = 0,

2η1
s + ft = 0, 2t2η2

s − fx = 0, 2t2e2xη3
s − fy = 0,

2t2e2xη4
s − fz = 0, fs = 0.

(2.4)

Solving above system of equations iteratively, we obtain

ξ =
1
2
C1s

2 + C2s + C3,

η1 =
1
2
tsC1 +

1
2
tC2 − 1

2
s
(
ex
(
y2 + z2

)
+ e−x

)
C5 − 1

2
szexC6

− 1
2
sexC7 − 1

2
syexC8 +

(
e−x +

(
y2 + z2

)
ex
)
C9 + zexC10

+ exC11 + yexC12,

η2 =
1
2t

((
y2 + z2

)
sex − se−x

)
C5 +

1
2t
szexC6 +

1
2t
sexC7 +

1
2t
syexC8

+
1
t

(
e−x −

(
y2 + z2

)
ex
)
C9 − 1

t
zexC10 − 1

t
exC11 − 1

t
yexC12

+ 2yC13 − zC14 − C15,

η3 =
1
t
sye−xC5 +

1
2t
se−xC8 − 2

t
ye−xC9 − 1

t
e−xC12 +

(
e−2x − y2 + z2

)
C13

+ yzC14 + yC15 + zC16 + C17,

η4 =
1
t
sze−xC5 +

1
2
1
t
se−xC6 − 2

t
ze−xC9 − 1

t
e−xC10 − 2yzC13

− 1
2

(
e−2x + y2 − z2

)
C14 + zC15 − yC16 + C18,

(2.5)

where Ci are arbitrary constants. The corresponding gauge term is given by

f = −1
2
t2C1 + C4 + t

(
e−x +

(
y2 + z2

)
ex
)
C5 + tzexC6 + texC7 + tyexC8. (2.6)
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Thus, a basis for the Lie algebra of Noether point symmetry generators is (only the associated
nonzero gauge terms, f , are given)

X1 =
1
2
s2

∂

∂s
+
1
2
st

∂

∂t
, f = −1

2
t2,

X2 = s
∂

∂s
+
1
2
t
∂

∂t
, X3 =

∂

∂s
,

X4 = −1
2
s
(
ex
(
y2 + z2

)
+ e−x

) ∂

∂t
+

1
2t

((
y2 + z2

)
sex − se−x

) ∂

∂x

+
1
t
sye−x

∂

∂y
+
1
t
sze−x

∂

∂z
, f = t

(
e−x +

(
y2 + z2

)
ex
)
,

X5 = −1
2
szex

∂

∂t
+

1
2t
szex

∂

∂x
+

1
2t
se−x

∂

∂z
, f = tzex,

X6 = −1
2
sex

∂

∂t
+

1
2t
sex

∂

∂x
, f = tex,

X7 = −1
2
syex

∂

∂t
+

1
2t
syex

∂

∂x
+

1
2t
se−x

∂

∂y
, f = tyex,

X8 =
(
e−x +

(
y2 + z2

)
ex
) ∂

∂t
+
1
t

(
e−x −

(
y2 + z2

)
ex
) ∂

∂x
− 2

t
ye−x

∂

∂y
− 2

t
ze−x

∂

∂z
,

X9 = zex
∂

∂t
− 1

t
zex

∂

∂x
− 1

t
e−x

∂

∂z
, X10 = ex

∂

∂t
− 1

t
ex

∂

∂x
,

X11 = yex
∂

∂t
− 1

t
yex

∂

∂x
− 1

t
e−x

∂

∂y
,

X12 = 2y
∂

∂x
+
(
e−2x − y2 + z2

) ∂

∂y
− 2yz

∂

∂z
,

X13 = −z ∂

∂x
+ yz

∂

∂y
− 1
2

(
e−2x + y2 − z2

) ∂

∂z
,

X14 = − ∂

∂x
+ y

∂

∂y
+ z

∂

∂z
, X15 = z

∂

∂y
− y

∂

∂z
,

X16 =
∂

∂y
, X17 =

∂

∂z
.

(2.7)

The above symmetry generators form a closed Lie algebra of the symmetry group G17.
Further, each of these generators gives rise to a conservation law (first integral) of the
geodesic equations via Noether’s theorem. For example, the symmetry generators X3, X16,
X17 correspond to linear momentum conservation along s, y, and z directions, respectively,
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while X15 represents a hyperbolic rotation. Moreover, the conserved vector associated with
X3 [12] is

T =
(
ξṫ − η1

)∂L
∂ṫ

+
(
ξẋ − η2

)∂L
∂ẋ

+
(
ξẏ − η3

)∂L
∂ẏ

+
(
ξż − η4

)∂L
∂ż

− ξL + f
(
s, t, x, y, z

)

= sL + tṫ.

(2.8)

Note that the conservation laws obtained above are 7 more than those given by the Killing
vectors [13] of the Milne metric (the additional seven generators are X1 to X7).

3. Wave Equation

In this context it may be interesting to study the symmetries/conservation laws of the wave
equation on the Milne metric. The wave equation on this metric can be given by using the
box operator [13]:

�u =
1√∣∣−g∣∣

∂

∂xi

(√∣∣−g∣∣gij ∂

∂xi
u

)
= 0. (3.1)

Simplifying the above expression, wave equation takes the form

utt − 1
t2
uxx − 1

t2e2x
uyy − 1

t2e2x
uzz = −3

t
ut +

2
t2
ux. (3.2)

The Lie point symmetries of the wave equation (3.2) are given by the formula [9]

X
(
Equation (3.2)|Equation (3.2)

)
= 0, (3.3)

where X is the prolonged symmetry generator given by

X = η∂u + ξ4∂t + ξ1∂x + ξ2∂y + ξ3∂z. (3.4)
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Following the method adopted in Section 2, (3.4) gives an overdetermined system of
determining equations in four unknowns. This system yields a 16-dimensional Lie symmetry
group G16 whose basis is given by

X1 = t∂t,

X2 = −2tuex∂u +
(
1 + t2

)
ex∂t +

1
t

(
−1 + t2

)
ex∂x,

X3 = −2tuex∂u +
(
−1 + t2

)
ex∂t +

1
t

(
1 + t2

)
ex∂x, X4 = ∂y,

X5 =
1
t
e−x∂y − yex∂t +

1
t
yex∂x,

X6 = −2tyuex∂u + t2yex∂t + te−x∂y + tyex∂x,

X7 = ∂z, X8 =
1
t
e−x∂z − zex∂t +

1
t
zex∂x,

X9 = −2tzuex∂u + t2zex∂t + te−x∂z + tzex∂x, X10 = y∂z − z∂y,

X11 = −∂x + y∂y + z∂z, X12 = −2∂x + 2y∂y + 2z∂z + u∂u,

X13 =
2
t
ye−x∂y +

2
t
ze−x∂z +

(
−1 − e2x

(
y2 + z2

))
e−x∂t +

1
t

(
−1 + e2x

(
y2 + z2

))
e−x∂x,

X14 = −2tu
(
1 + e2x

(
y2 + z2

))
e−x∂u + 2tye−x∂y + 2tze−x∂z + t

(
−1 + e2x

(
y2 + z2

))
e−x∂x

+ t2
(
1 + e2x

(
y2 + z2

))
e−x∂t,

X15 = 2y∂x − 2yz∂z +
(
e−2x − y2 + z2

)
∂y, X16 = −2yz∂y + 2z∂x +

(
e−2x + y2 − z2

)
∂z.

(3.5)

It may be worth mentioning thatX1 gives a scaling conservation law along t direction,X4, X7

linear momentum conservations in y and z directions, respectively, while X10 represents
rotation in yz plane.

4. Discussion and Conclusions

From our investigation we find that the Noether symmetries of the Lagrangian form a
maximal set of 17 conservation laws. SinceMilnemetric represents a flat cosmological model,
it admits maximal isometries. It is shown that the Noether symmetries for the Milne model
give 7 additional conservation laws which are not given by the symmetries of the spacetime
metric [13]. In exactly similar fashion, we find that the wave equation on the Milne metric
also admits maximal group of isometries. It suggests that if the Lorentzian metric is flat, both
Noether and Lie point symmetry groups will be maximal. It may be worth mentioning that
the number of Noether symmetries in this study differs with the one given in [12]. It will be
interesting to extend such investigations to more general Lorentzian metrics. It is hoped that
such investigations will add to our understanding of Lie and Noether point symmetries for
such metrics [13].
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