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Pipes for deep-water applications possess a diameter-to-thickness ratio in a region where failure
is dominated by both instability and plastic collapse. This implies that prior to failure the
compressive yield strength of the material must be exceeded, followed by ovalisation and further
local yielding. This paper presents an investigation into the mechanics of this specific problem and
develops an analytical approach that accounts for the effects of geometrical and material data on
the collapse pressure of inhomogeneous rings under external hydrostatic pressure. The analytical
expressions have been correlated to numerical and experimental test data, proving their accuracy.

1. Introduction

In deep and ultradeep waters the diameter of trunk lines coupled with the hydrostatic
pressure tends to lead to failure of the pipeline by external collapse. This failure mode is an
instability phenomenon that is governed by the geometry of the pipeline and its material
properties. Failure of a pipeline section takes place according to a subtle combination of
its properties and to various factors [1–3] and as such the exact limiting collapse pressure
can be very difficult to determine. Moreover, on account of fabrication procedures, material
properties may vary significantly around the circumference of the pipe.

In the present paper an analytical treatment is developed that can provide adequate
prediction of collapse pressure of a pipe section with varying material properties. The
proposed approach has its route in the fundamental mechanics of the problem and is capable
of blending transitions between elastic collapse for thin-walled structures and plastic collapse
for thicker sections.
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Through this understanding of the actual mechanisms involved in the buckling of
the pipe it is hoped that further improvements in performance could be gained through
optimisation of the pipe manufacturing process, the pipe form, or its mechanical properties.

2. UOE Forming and Varying Material Properties

The majority of the pipes used in offshore applications are commonly manufactured by cold-
forming plates through the UOE process. This means that a steel plate is folded along its
edges, formed into a U-shape and then pressed into an O-shape between two semicircular
casts. The pipe is successively welded closed and circumferentially expanded to obtain a
highly circular shape, see Figure 1.

A large number of experiments have demonstrated that these steps, especially the final
expansion, tend to degrade the mechanical properties of the pipe and may occasionally result
in a significant variation of the material strength along the circumference of the cross-section.
To further enlighten this point, a number of accurate tests on UOE pipes have been recently
performed by Tata Steel in accordance with ASTM E9-89a [4]. Samples were taken from the
cross-section of a 18′′ × 27mm X65 pipe, and compression tests were carried out at each of the
0◦, 90◦, 180◦, and 270◦ positions. Generally, the 180◦ position was reported to give the lowest
result, as shown in Figure 2.

From the graph, in a few cases the difference in compressive strength between the 0◦

and 180◦ positions was found to be up to 36% and the difference between 180◦ and 90◦/270◦

positions was found to be up to 14%.
Such variability in material properties may significantly affect the carrying capacity of

the pipe and, to the best of authors’ knowledge, differently from variations in thickness [5],
has never been incorporated in a straight mathematical treatment of the problem, as it will be
done in the next section.

3. An Analytical Approach to Account for the Effects of
Material Inhomogeneity

In order to account for the variability of the material properties around the ring circum-
ference, an analytical treatment that extends the applicability of an already proposed and
assessed formulation for uniform rings [6–8] has been developed.

It is worth pointing out that the development focuses on the carrying capacity of a
pipe section and that the extension to the case of a long cylindrical shell can be obtained in
the Timoshenko fashion [9] by substituting the flexural stiffness of the ring wall, Et3/12, with
that pertaining to a shell, that is, Et3/12(1 − ν2), E being Young’s modulus of the material,
ν its Poisson’s ratio, and t the wall thickness. Of course, this way of extending the results
concerning a cross-section may appear simplistic and to some extent questionable and in
fact in the past the problem has received further attention both in the elastic [10] and in
the elastic-plastic range [11]. However, given that the Timoshenko solution is firm at the
base of most design codes and that the mechanics of the ring buckling is fundamental for
a thorough understanding of the phenomenon, focusing on the assessment of the capacity
load of rings under external pressure can be considered legitimate, as long as the problem
is properly formulated [12]. The present study is in fact conducted along with the point of
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Figure 1: Schematic UOE forming steps.
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Figure 2: Average strength variation with pipe angular position (Tata Steel, 2010).

view of Charles Massonnet that “in engineering the ability to select the few parameters which
really govern the phenomenon is probably the most important quality of the researcher.”

With reference to Figure 3 and to a system of polar coordinates,

x = R sin θ, y = R cos θ, (3.1)

where R is the mean radius of the ring, the displacement field is expressed in terms of the
radial component, w = w(θ), p being the uniform external pressure.
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Figure 3: A ring under external pressure.

For the sake of simplicity but without loss of generality, four different material regions,
symmetric with respect to the x axis, are defined around the ring circumference, as shown in
Figure 4(a). The amplitudes of these regions for θ ∈ [0, π], see Figure 4(b), are, respectively,

�1 θ ∈ [0, θc],

�2 θ ∈ [θc, π − θc],

�3 θ ∈ [π − θc, π].

(3.2)

Three non-homogeneous second-order linear differential equations, based on the
Euler-Bernoulli theory of the elastica, can bewritten for each of the three sectors with different
material properties in which half of the circumference results in being partitioned,

w(i)′′(θ) +
(
1 + ϕ(i)

)
w(i)(θ) = −ϕ(i) ωR cosnθ, ω = w0R

−1, n ∈N, (3.3)

with

ϕ(i) = 3p(i)−1
el

p =
12

E
(i)
t τ

3
p, τ = tR−1. (3.4)

The superscript (i) indicates the ith material region,w0 stands for the amplitude of the initial
imperfection, n is the number of waves characterising the out of roundness, p(i)

el
represents

the Timoshenko critical pressure in the elastic range, and E(i)
t is the material Tangent modulus

[13].
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Figure 4: Nonhomogeneous material regions.

On the basis of experimental evidence it is commonly accepted that the most suitable
representation of the stress-strain curves for carbon steels is represented by the Ramberg-
Osgood (RO) power law [14],

ε(i) =
σ(i)

E
+

⎛
⎝ε

(i)
y − σ

(i)
y

E

⎞
⎠
⎛
⎝σ(i)

σ
(i)
y

⎞
⎠

β

, (3.5)

where β is a dimensionless coefficient, which for most engineering cases can be assumed ≥5,
σ
(i)
y is the ith material region yield stress, and ε(i)y is the corresponding strain. In the following,

without loss of generality, Young’s modulus, E, is assumed to be the same for each material
region.

Thus, in such a case the Tangent modulus, E(i)
t , can be written as

E
(i)
t ≡

(
∂ε(i)

∂σ(i)

)−1
= E

⎛
⎜⎝

σ
(i)β
y

σ
(i)β
y + β

(
Eε

(i)
y − σ(i)

y

)
σβ−1

⎞
⎟⎠. (3.6)

By supposing that on average in the ring wall the following relationship holds true

σ = pt−1R = pτ−1. (3.7)

(3.6) takes the form

E
(i)
t = E

⎛
⎜⎝

σ
(i)β
y

σ
(i)β
y + β

(
Eε

(i)
y − σ(i)

y

)(
pτ−1

)β−1

⎞
⎟⎠. (3.8)

According to the results from material testing on UOE pipes discussed in the previous
section, with respect to the reference material of region �2 for which it is σ

(2)
y = σy,
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region �1 is considered to be characterised by an increased material strength and region �3 is
considered to be characterised by a decreased material strength, that is,

σ
(1)
y = (1 + α)σy, σ

(3)
y = (1 − α)σy, α ∈ (0, 1) ⊂ R. (3.9)

The stress-strain curves for regions �1 , �2 , and �3 are shown in Figure 5.
The general solution for each of the differential Equations (3.3) can be taken in the

form

w(i)(θ) = A(i) sin k(i)θ + B(i) cos k(i)θ + C(i) cosnθ, i ≡ {1, 2, 3}, (3.10)

with

k(i) =
√(

1 + ϕ(i)
)
, (3.11)

C(i) =
ϕ(i)ωR

n2 − 1 − ϕ(i)
. (3.12)

By virtue of (3.7), the axial force per unit length,N, in the ring wall is given by

N(i) ≡N = σt = pR, ∀i ∈ {1, 2, 3}, (3.13)

while the bending moment,M(i), at a generic section of the ring is given by

M(i) = pRδ(i) = pR
[
w(i)(θ) +ωR cosnθ

]
, (3.14)

where δ(i) = w(i)(θ) + ωR cosnθ represents the eccentricity of the axial force in the displaced
configuration from the funicular curve of the external pressure.

The values of the unknown constants A(i) and B(i) in (3.10) can be determined by
imposing the compatibility of slopes and displacements along the ring circumference. In fact,
by virtue of the assumed symmetry about the x-axis, this is attained through the following
set of boundary conditions:

(
w(1) −w(2)

)∣∣∣
θ=θc

= 0,
(
w′(1) −w′(2)

)∣∣∣
θ=θc

= 0,

(
w(2) −w(3)

)∣∣∣
θ=π−θc

= 0,
(
w

′(2) −w′(3)
)∣∣∣

θ=π−θc
= 0,

w
′(1)
∣∣∣
θ=0

= 0, w
′(3)
∣∣∣
θ=π

= 0.

(3.15)

Equations (3.15) represent a (6 × 6) algebraic system of linear equations that can be
conveniently arranged in matrix form

PU = V, (3.16)
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Figure 5: Stress-strain curves for the material regions (1) through (3).

where the vector U collects the six unknown coefficients A(i) and B(i) to be determined, that
is,

UT = {U1, U2, U3, U4, U5, U6} ≡
{
A(2), B(2), A(1), B(1), A(3), B(3)

}
, (3.17)

and the entries of the vector VT = {V1, V2, V3, V4, V5, V6} are given by

V1 =
(
C(1) − C(2)

)
cosnθc, V2 =

(
C(2) − C(1)

)
n sinnθc,

V3 =
(
C(3) − C(2)

)
cosn(π − θc), V4 =

(
C(2) − C(3)

)
n sinn(π − θc),

V5 = 0, V6 = −C(3) n sinnπ.

(3.18)

The nonzero entries Pij of the (6 × 6) matrix P in (3.16) can be explicitly written as
follows:

P11 = − sin k(2)θc, P12 = − cos k(2)θc, P13 = sin k(1)θc, P14 = cos k(1)θc,

P21 = − k(2) cos k(2)θc, P22 = k(2) sin k(2)θc, P23 = k(1) cos k(1)θc,

P24 = − k(1) sin k(1)θc, P31 = − sin k(2)(π − θc), P32 = − cos k(2)(π − θc),
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P35 = sin k(3)(π − θc), P36 = cos k(3)(π − θc),

P41 = − k(2) cos k(2)(π − θc), P42 = k(2) sin k(2)(π − θc),

P45 = k(3) cos k(3)(π − θc), P46 = −k(3) sin k(3)(π − θc), P53 = k(1),

P65 = k(3) cos k(3)π, P66 = −k(3) sin k(3)π,
(3.19)

where the coefficients k(i) are given by (3.11).
Provided that det P/= 0, by means of Cramer’s rule, the solution of (3.16) can be

formally written as [15]

U = P−1 V = (detP)−1 P̃V, Ui = (detP)−1
6∑
j=1

P̃jiVj , (3.20)

where {P̃ = adj P, [P̃]ij ≡ P̃ij} represents the adjugate of the matrix P. Substitution of (3.20)
in (3.10) provides the displacement w(i)(θ) for each ring sector as a function of the ring
geometrical ratio, τ = tR−1, of the dimensionless amplitude of the imperfection, ω = w0R

−1,
of the number of waves characterizing the initial imperfection shape of the ring, n, of the
material Tangentmodulus, E(i)

t , of the amplitude of the region, θc, and of the applied pressure,
p.

Once the expression of the radial displacement, w(i)(θ), is obtained, the expression of
the bending momentM(i)(θ) along the circumference can be evaluated from (3.14).

With reference to the sections of the ring wall where the maximum bending moment,
M

(i)
max, is achieved for each of the different material regions, the attainment of the ultimate

carrying capacity at a certain section of the ring wall can be assumed to be ruled by the
following well-known nonlinear yield equation [16]:

Mmax

Mp
+

(
N

Np

)2

− 1 = 0, (3.21)

where

Np = σyt, Mp =
1
4
σyt

2. (3.22)

However, when instability and plasticity phenomena coexist, the response of a cross-section
of the ring is more realistically governed by an elastic-plastic behaviour. For this reason,
reference is made to the following axial force-bending moment relationship:

Mmax

Mp
+ ψ

(
N

Np
− 1

)
= 0, ψ =

1
3
(2 + λ), (3.23)
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which covers a range of possible elastic-plastic axial force-bending moment interactions in
the ring wall by means of a scalar parameter λ ∈ [0, 1], see Figure 6.

In fact, in the case λ = 0 a condition of first local yielding is obtained, while λ = 1
represents an intermediate elastic-plastic condition, characterized by the fact that in such a
case the area of the admissible domain in the plane np −mp, withM/MP ≡ mp andN/NP ≡
np, constitutes the mean value of the areas of the admissible domains in the elastic (λ = 0)
and fully plastic (3.21) limit conditions (see Figure 6), respectively. Without loss of generality,
in the following (3.23)will be employed with λ = 1, as widely accepted for a large number of
problems involving carbon steel members [15].

Therefore, with reference to the sections of the ring wall where the maximum bending
moment, M(i)

max, is achieved for each of the different material regions, the attainment of the
ultimate carrying capacity at a certain section of the ring wall can be assumed to be ruled by
the following axial force-bending moment relationship

f (i) = m(i)
p + n(i)p − 1 =

∣∣∣M(i)
max

∣∣∣
M

(i)
p

+
N

N
(i)
p

− 1 = 0, (3.24)

whereN is given by (3.13) and

N
(i)
p = σ(i)

y t, M
(i)
p =

1
4
σ
(i)
y t2. (3.25)

It is worth noticing that, even if the analytical solutions for the displacements w(i) and the
bending momentsM(i) can be formally obtained by the solution of the problem, the location
of the points at which the maximum bending moments are attained cannot be known a priori.

In fact, since the regions into which the circumference is divided are characterised by
different material properties, it is

M
(1)
max ≡ max

0≤θ≤θc

{
M(1)(θ)

}
, M

(2)
max ≡ max

θc≤θ≤π−θc

{
M(2)(θ)

}
, M

(3)
max ≡ max

π−θc≤θ≤π

{
M(3)(θ)

}
.

(3.26)

Additionally, while in a homogeneous ring a number of fully yielded wall sections sufficient
to activate a collapse mechanism always are concurrently born, regardless of the integer
number of waves characterising the initial imperfection, n, for an inhomogeneous ring this
is not generally the case. This means that, in principle, the occurrence of such fully yielded
sections should be analysed for each region along the loading path. Clearly, such a procedure
would render the proposed approach so lengthy to make it unpractical and to suggest,
instead, always a recourse to numerical methods.



10 Journal of Applied Mathematics

Elastic domain

Plastic curve

Elastic-plastic
interaction curve

np = N/Np

mp = M/Mp

mp = 1 − np
mp = 1 − n2

p

mp = 2(1 − np)/3

mp = (2 + λ)(1 − np)/3

1

1

A

2/3

B

o

Figure 6: Elastic, elastic-plastic, and plastic loci in the np −mp plane.

However, the value of the external pressure corresponding to the first occurrence of at
least one plastic hinge in the inhomogeneous ring can be directly obtained from (3.24) as the
smallest of the roots of the following equations:

f (i) ≡ M
(i)
max

M
(i)
p

+
N

N
(i)
p

− 1 = f (i)
(
τ,ω, n, E, β, σ

(j)
y , ε

(j)
y , p

)
= 0,

=⇒ pIcr ≡ min
{
min
ri∈N

[
2p(i)ri | f (i) = 0

]}
,

(3.27)

where ri ∈N represents the number of roots of the equation f (i) = 0.
In the next Section it will be shown that this approach can provide a very accurate

bound to the collapsing pressure of inhomogeneous rings.
Needless to say, in case all the regions share the same material properties, the

presented development straightforwardly reduces to the result pertaining to a homogeneous
ring, see [6].

4. Case Studies and Assessment of Results

The proposed analytical treatment has been assessed against a few case studies.
For all the examples the Ramberg Osgood material data for the region �2 (which

corresponds to the 90◦–270◦ positions), that is, the elasticity modulus, E, the yield strength,
σ� , and the corresponding elongation, ε� , have been averaged by a number of experimental
data sets provided by Tata Steel, with an example shown in Figure 7. The exponent n, as
usual, was obtained as a result of a standard error minimization procedure.

The yield strengths for the regions �1 and �3 (which, in turn, correspond to the 0◦ and
180◦ positions) were obtained by amplifying the yield strength of region �2 by a factor 1.1
and by reducing it by a factor 0.9, respectively, according to (3.9). In this manner an increase
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Figure 7: Some experimental stress-strain curves from samples taken along the pipe section (Tata, 2010).

in resistance was attributed to the weld region �1 at 0◦ and a corresponding decrease in
resistance was attributed to the region �3 at 180◦.

The amplitude of the initial imperfection, ω, was set equal to 0.001 (ω = 1/1000) and
the number of waves characterising the out of roundness, n, was set to 3, which is the value
experimentally assessed in [7] for the tested UOE formed pipes.

The case studies made reference to a ring characterised by a diameter of 457.2mm and
three different wall thicknesses, t = 32mm, t = 26mm, and t = 20mm, in order to deal with
a range of D/tspanning from moderately thick to relatively thin tubes. The amplitude of the
four different material sectors, in absence of any precise measurement, was chosen with the
purpose of magnifying the phenomenon, setting θc = π/4.

Figure 8 shows the contour plot of the yield function values, f , for a homogeneous
(i.e., a ring uniformly characterised by the material properties of region �2 ) and an
inhomogeneous ring at the first attainment of complete yielding of a section along the
circumference (t = 26mm).

It is evident that in the case of the homogeneous ring a fully plastic status is achieved
at the same time at four sections, located at θ = 0◦, θ = 45◦,θ = 135◦, and θ = 180◦, thus
giving origin, on account of the symmetry about the x-axis, to a collapse mechanism. On
the contrary, in the corresponding inhomogeneous ring, characterised by an increase of the
material resistance in the region �1 (θ ∈ [0, θc]) and by a corresponding decrease in the
region �3 (θ ∈ [π − θc, π]), a fully plastic status takes place at θ = 180◦ with all the remaining
sections in the condition {(θ, p) | f < 0} and no collapse taking place yet.

In order to validate the results, the case studies taken into consideration have been
analysed by means of the commercial finite element (FE) package ANSYS [17].
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Figure 8: Contour plot of the yield function values, f , for the homogeneous and the inhomogeneous cases
at the complete yielding of the first section along the circumference (t = 26 mm,D = 457.2mm,ω = 1/1000,
n = 3, and θc = π/4).
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Figure 9: FE modelling of a inhomogeneous ring.

The model was carefully calibrated against carefully conducted experimental results
[7] and every ring was modelled by means of 2880 PLANE182-2D 4 Nodes elements in plane
stress, as shown in Figure 9.

Table 1 collects the results from the analytical and FE analyses.
It is immediate to notice that the analytical and the FE results agree very well

for all the case studies. Moreover, it can be pointed out that the lower bounds from the
proposed treatment essentially coincide with the collapse pressures from the FE analyses.
In fact, with reference to Figure 10, which shows the maps of the evolving hoop strains
at impending collapse for a progressive shortening of the horizontal diameter of about
1% (t = 26mm), it appears evident that the plastic strains very swiftly evolve from the
condition on the left, which basically corresponds to the complete yielding of the first section
along the circumference shown in Figure 8, to the collapsing mechanism on the right. Thus,
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Table 1: Collapse pressures [MPa] for homogeneous rings (H) and lower bound pressures [MPa] for
inhomogeneous rings (I) (D = 457.2mm, ω = 1/1000, n = 3, and θc = π/4).

t = 20mm t = 26mm t = 32mm

H I H I H I

Theory FEM Theory FEM Theory FEM Theory FEM Theory FEM Theory FEM

35.27 34.59 27.88 28.07 51.20 50.83 42.83 42.34 68.44 68.43 58.56 57.60

0.
5E

−0
6

0.
33

4E
−0

3

0.
66

7E
−0

3

0.
00

1

0.
00

13
34

0.
00

16
67

0.
00

2

0.
00

23
33

0.
00

26
67

0.
00

3

Figure 10: Evolution of the hoop strains at impending collapse (pcr = 42.34MPa) from the FE analysis of a
inhomogeneous ring (t = 26mm, D = 457.2mm, ω = 1/1000, n = 3, and θc = π/4).

the attainment of the complete yielding of the first section along the circumference practically
marks the carrying capacity of the ring.

Overall, it can be stated that the attainment of a fully plastic state takes place in the
inhomogeneous ring at a value of the external pressure which ranges from about 81 to 85%
of the value of the critical pressure for the homogeneous case. Therefore, the reduction in
the lower bound to the collapsing pressure results in being higher in percentage than the
variation in the material properties. Also, the decrease in the carrying capacity with respect
to the homogeneous case results in being directly proportional to the D/t ratio, as it can be
seen from Table 1.

A preliminary confirmation of the results for the case t = 32mm has also been obtained
experimentally, with a value for the critical pressure of about 55.40MPa.

5. Conclusions

In the present work an analytical approach that can provide an adequate prediction of the
collapse pressure of a pipe section in the case of UOE formed deep-water pipelines and
that accounts for the effects of geometrical data and varying material properties has been
presented and discussed. The proposed approach has its route in the fundamental mechanics
of the problem and is capable of blending transitions between elastic collapse and plastic
collapse.

With respect to the recourse to numerical methods, such as finite element analyses,
it is felt that the proposed approach can provide a thorough understanding of the actual
mechanisms involved in the buckling of the pipe and, by focusing on the few parameters
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which govern the phenomenon, may open the way to improvements in performance through
optimisation of the pipe manufacturing process.
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