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Cohen-Grossberg neural networks with discontinuous activation functions is considered. Using
the property of M-matrix and a generalized Lyapunov-like approach, the uniqueness is proved
for state solutions and corresponding output solutions, and equilibrium point and corresponding
output equilibrium point of considered neural networks. Meanwhile, global exponential stability
of equilibrium point is obtained. Furthermore, by contraction mapping principle, the uniqueness
and globally exponential stability of limit cycle are given. Finally, an example is given to illustrate
the effectiveness of the obtained results.

1. Introduction

Recently, different types of neural networks with or without time delays have been widely
investigated due to their wide applicability [1–32]. Obviously, considerable research interests
are focused on the studies of Cohen-Grossberg neural networks (CGNNs)with their various
generalizations due to their potential applications in classification, associative memory, and
parallel computation and their ability to solve optimization problems. This class of neural
networks is proposed by Cohen and Grossberg [1] in 1983, and can be modeled as

dui(t)
dt

= −ai(ui(t))

⎡
⎣bi(ui(t)) −

n∑
j=1

wijfj
(
uj(t)

) − Ii

⎤
⎦, i = 1, 2, . . . , n, (1.1)

where n ≥ 2 is the number of neurons in the network, ui denotes the state variable associated
with the ith neuron, ai represents an amplification function, and bi is an appropriately
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behaved function.wij represents the connection strengths between neurons, and if the output
from neuron j excites (resp., inhibits) neuron i, then wij ≥ 0 (resp., wij ≤ 0). The activation
function fj shows how neurons respond to each other. CGNNs include a lot of famous
ecological systems and neural networks as special cases such as the Lotka-Volterra system,
the Gilpia-Analg competition system, the Eingen-Schuster system, and the Hopfield neural
networks [1–3], where the Hopfield neural networks can be described as follows:

dui(t)
dt

= −bi(ui(t)) +
n∑
j=1

wijfj
(
uj(t)

)
+ Ii, i = 1, 2, . . . , n. (1.2)

For CGNNs, dynamics behavior have been studied in literature; we refer to [4–10, 27–
29] and the references cited therein. In [4], by using the concept of Lyapunov diagonally
stable (LDS) and linear matrix inequality approach, some criteria were given to ensure
global stability and global exponential stability. Yuan and Cao in [5] considered global
asymptotic stability of delayed Cohen-Grossberg neural networks via nonsmooth analysis.
Robust exponentially stability of delayed Cohen-Grossberg neural networks is discussed in
[10]. In [27], the authors studied the stochastic stability of a class of Cohen-Grossberg neural
networks, in which the interconnections and delays are time varying.

In the above papers, a common feature is that the activation functions are assumed to
be continuous and even Lipschitz continuous. However, in [11], Forti and Nistri pointed out
that neural networks modeled by differential equations with discontinuous right-hand side
are important and do frequently arise in practice. In order to model discrete-time cellular
neural networks, a conceptually analogous model based on hard comparators was used
[12]. The class of neural networks introduced in [13] to deal with linear and nonlinear
programming problems can be considered as another important example. Those networks
make use of constraint neurons with a diode-like input-output activations. Once again,
in order to ensure satisfaction of the constraints, the diodes are required to have a very
high slope in the conducting region; that is, they should approximate the discontinuous
characteristic of an ideal diode [14]. When treating with dynamical systems with high-slope
nonlinear elements, a system of differential equations with discontinuous right-hand side is
often used, rather than the model with high but finite slope [15]. The reason of analyzing the
ideal discontinuous case is that such analysis is able to reveal crucial features of the dynamics,
such as the possibility that trajectories be confined for some time intervals on discontinuity
surfaces. Another interesting phenomenon which is peculiar to discontinuous systems is the
possibility that trajectories converge toward an equilibrium point in finite time [16, 17], which
is of special interest for designing real-time neural optimization solvers.

In [11], Forti and Nistri discussed the global convergence of neural networks with
discontinuous neuron activations by means of the concepts and results of differential
equations with discontinuous right-hand side introduced by Filippov [21]. In [18], they
extended the results in [11] under the assumption that the interconnection matrix is an
M-matrix or H-matrix. In [19], without assuming the boundedness and the continuity of
the neuron activations, the authors presented sufficient conditions for the global stability of
neural networks with time delay based on linear matrix inequality. Also, in [20], they present
some sufficient conditions for the global stability and exponential stability of a class of the
CGNNs by using the LDS, and provided an estimate of the convergence rate. In [24–26], the
authors discussed the stability or multistability of the neural networks with discontinuous
activation functions. However, [11, 24–26] have shown that convergence of the state does
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not imply convergence of the outputs. In addition, in the practical applications, the result of
the neural computation is usually the steady-state neuron output, rather than the asymptotic
value of the state. Hence, in this paper, we will study global convergence of CGNNs with
discontinuous activation functions, where the interconnection matrix is assumed to be anM-
matrix orH-matrix. Firstly, using the property ofM-matrix and a generalized Lyapunov-like
approach, we prove the uniqueness of state solutions and corresponding output solutions,
and equilibrium point and corresponding output equilibrium point for the considered neural
networks. Then, global exponential stability of unique equilibrium point is discussed and
exponential convergence rate is estimated. Also, by contraction mapping principle, the
globally exponential stability of limit cycle is given. Finally, we use a numerical example
to illustrate the effectiveness of the theoretical results. The rest of the paper is organized as
follows. In Section 2, model description and preliminaries are presented. The main results
are stated in Section 3. In Section 4, an example is given to show the validity of the obtained
results. Finally, in Section 5, the conclusions are drawn.

Notations. Throughout the paper, the transpose of and inverse of any square matrix A are
expressed as AT and A−1, respectively. For α = (α1, . . . , αn)

T ∈ R
n, α > 0 denotes αi > 0 for

i = 1, 2, . . . , n. For x, y ∈ R
n, 〈x, y〉 =

∑n
i=1 xiyi denotes the scalar product of x, y.

2. Model Description and Preliminaries

In this paper, we consider the CGNNs (1.1)with discontinuous right-hand side. The compact
form of model (1.1) is expressed as follows:

du(t)
dt

= −A(u(t))
[
Bu(t) −Wf(u(t)) − I

]
, (2.1)

where u(t) = (u1(t), u2(t), . . . , un(t))
T ∈ R

n,A(u(t)) = diag (a1(u1(t)), a2(u2(t)), . . . ,
an(un(t))), B = diag (b1, b2, . . . , bn),W = (wij)n×n, I = (I1, I2, . . . , In)

T ∈ R
n, and f(u(t)) =

(f1(u1(t)), . . . , fn(un(t)))
T .

Throughout this paper, we make the following assumptions.

(A1) The function ai(r) is continuous, 0 < ǎi ≤ ai(r) ≤ âi for all r ∈ R, where ǎi and âi

are positive constants, i = 1, 2, . . . , n.

(A2) The matrix W = (wij)n×n is nonsingular, that is, detW /= 0.

Moreover, f = (f1, . . . , fn) is supposed to belong to the following class of discontinu-
ous functions.

Definition 2.1 (see [18] (Function Class FD)). f(x) ∈ FD if and only if for i = 1, 2, . . . , n, the
following conditions hold:

(i) fi is bounded on R;

(ii) fi is piecewise continuous on R; namely, fi is continuous on R except a countable set
of points of discontinuity pki, where there exist finite right and left limits fi(p+ki) and
fi(p−ki), respectively; moreover, fi has finite discontinuous points in any compact
interval of R;

(iii) fi is nondecreasing on R.
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Denote the set of discontinuous points of fi, i = 1, 2, . . . , n, by

Si =
{
pki ∈ R : fi

(
p+ki

)
> fi

(
p−ki

)}
. (2.2)

Sometimes, f = (f1, . . . , fn) is supposed to belong to the next class of discontinuous
functions, which is included in FD.

Definition 2.2 (see [18] (Function Class FDL)). f(x) ∈ FDL if and only if f(x) ∈ FD and for
i = 1, 2, . . . , n, fi is locally Lipschitz with Lipschitz constant li(xi) ≥ 0 for all xi ∈ R \ Si.
Furthermore, we have li(xi) ≥ Li < +∞ for all xi ∈ R \ Si.

For model (1.1) or model (2.1) with discontinuous right-hand side, a solution of
Cauchy problem need to be explained. In this paper, solutions in the sense of Filippov [21]
are considered whose definition will be given next.

Let K[f(u)] = (K[f1(u1), K[f2(u2)], . . . , K[fn(un)])
T , where K[fi(ui)] = [fi(u−

i ),
fi(u+

i )].

Definition 2.3. A function u(t), t ∈ [t1, t2], where t1 < t2 ≤ +∞ is a solution (in the sense
of Filippov) of (2.1) in the interval [t1, t2], with initial condition u(t1) = u0 ∈ R

n, if u(t) is
absolutely continuous on [t1, t2] and u(t1) = u0, and for almost all (a.a.) t ∈ [t1, t2] we have

du(t)
dt

∈ −A(u(t))
[
Bu(t) −WK

[
f(u(t))

] − I
]
. (2.3)

Let u(t), t ∈ [t1, t2], be a solution of model (2.1). For a.a. t ∈ [t1, t2], one can obtain

du(t)
dt

= −A(u(t))
[
Bu(t) −Wγ(t) − I

]
, (2.4)

where

γ(t) = W−1
(
A−1(u)u̇(t) + Bu(t) − I

)
∈ K

[
f(u(t))

]
(2.5)

is the output solution of model (2.1) corresponding to u(t). And γ(t) is a boundedmeasurable
function [11], which is uniquely defined by the state solution u(t) for a.a. t ∈ [t1, t2].

Definition 2.4 (equilibrium point). u∗ ∈ R
n is an equilibrium point of model (2.1) if and only

if the following algebraic inclusion is satisfied:

0 ∈ A(u∗)
(−Bu∗ +WK

[
f(u∗)

]
+ I

)
. (2.6)

Definition 2.5 (output equilibrium point). Let u∗ be an equilibrium point of model (1.1);

γ∗ = W−1(Bu∗ − I) ∈ K
[
f(u∗)

]
(2.7)

is the output equilibrium point of model (2.1) corresponding to u∗.

In this paper, we also need the following definitions and lemma.
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Definition 2.6 (see [18]). Let Q ∈ R
n×n be a square matrix. Matrix Q is said to be anM-matrix

if and only if Qij ≤ 0 for each i /= j, and all successive principal minors of Q are positive.

Definition 2.7 (see [18]). Let Q ∈ R
n×n be a square matrix. Matrix Q is said to be an H-matrix

if and only if the comparison matrix of Q, which is defined by

[M(Q)]ij =

{
|Qii|, i = j,

−∣∣Qij

∣∣, i /= j,
(2.8)

is an M-matrix.

Lemma 2.8 (see [18]). Suppose that Q is an M-matrix. Then, there exists a vector ξ > 0 such that
QTξ > 0.

All results of this paper are under one of the following assumptions:

(a) −W is an M-matrix;

(b) −W is an H-matrix such that Wii < 0.

(a) and (b) can be applied to cooperative neural networks [22] and cooperative-
competitive neural networks, respectively.

From [23], the result that −W is LDS under (a) or (b) can be obtained; hence, all results
in [20] hold. So, for any u0 ∈ R

n, model (2.1) has a bounded absolutely continuous solution
u(t) for t ≥ 0 which satisfies u(0) = u0. Meanwhile, there exists an equilibrium point u∗ ∈ R

n

of model (2.1).
If −W is an M-matrix, then, there exists ξ = (ξ1, . . . , ξn)

T > 0 such that

(−W)T ξ = β > 0. (2.9)

If −W is an H-matrix, then, there exists ξ = (ξ1, . . . , ξn)
T > 0 such that

[M(−W)]T ξ = β > 0. (2.10)

Using the positive vector ξ, we define the distance in R
n as follows: for any x, y ∈ R

n, define

∥∥x − y
∥∥
ξ =

n∑
i=1

ξi
∣∣xi − yi

∣∣. (2.11)

Definition 2.9. The equilibrium point u∗ of (2.1) is said to be globally exponentially stable, if
there exist constants α > 0 and M > 0 such that for any solution u(t) of model (2.1), we have

‖u(t) − u∗‖ξ ≤ M‖u0 − u∗‖ξ exp{−αt}. (2.12)

Also, we can consider the CGNNs with periodic input:

du(t)
dt

= −A(u(t))
[
Bu(t) −Wf(u(t)) − I(t)

]
, (2.13)

where I(t) = (I1(t), I2(t), . . . , In(t))
T is periodic input vectors with period ω.
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Definition 2.10. A periodic orbit u∗(t) of Cohen-Grossberg networks is said to be globally
exponentially stable, if there exist constants α > 0 and M > 0 such that such that for any
solution u(t) of model (2.13), we have

‖u(t) − u∗(t)‖ ≤ M
∥∥u0 − u∗

0

∥∥
ξ exp{−αt}. (2.14)

3. Main Results

In this section, we shall establish some sufficient conditions to ensure the uniqueness of
solutions, equilibrium point, output equilibrium point, and limit cycle as well as the global
exponential stability of the state solutions.

Because Filippov solution includes set-valued function, in the general case, for a given
initial condition, a discontinuous differential equation has multiple solutions starting at it
[16]. Next, it will be shown that the uniqueness of solutions of model (2.1) can be obtained
under the assumptions (A1) and (A2).

Theorem 3.1. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W is
an H-matrix such that Wii < 0, then, for any u0 there is a unique solution u(t) of model (2.1) with
initial condition u(0) = u0, which is defined and bounded for all t ≥ 0. Meanwhile, the corresponding
output solution γ(t) of model (2.1) is uniquely defined and bounded for a.a. t ≥ 0.

Proof. We only need to prove the uniqueness. Let u(t) and ũ(t), t ≥ 0 are two solutions of
model (2.1)with the initial condition u(0) = ũ(0) = u0.

Define

V (u − ũ) =
n∑
i=1

ξi

∣∣∣∣∣
∫ui

ũi

ds

ai(s)

∣∣∣∣∣. (3.1)

Computing the time derivative of V along the solutions of (2.1) gives

dV (u − ũ)
dt

=
n∑
i=1

ξi sgn(ui(t) − ũi(t))

⎛
⎝−bi(ui(t) − ũi(t)) +

n∑
j=1

wij

(
γj(t) − γ̃j(t)

)
⎞
⎠, (3.2)

where

sgn(s) =

⎧⎪⎪⎨
⎪⎪⎩

1, s > 0,
0, s = 0,
−1, s < 0.

(3.3)

From f ∈ FD and γj(t) ∈ K[fj(uj(t))], γ̃j(t) ∈ K[fj(ũj(t))], one can have

sgn
(
uj(t) − ũj(t)

)(
γj(t) − γ̃j(t)

)
=
∣∣γj(t) − γ̃j(t)

∣∣. (3.4)
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Hence

dV (u − ũ)
dt

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| +
n∑
i=1

ξiwii

∣∣γi(t) − γ̃i(t)
∣∣

+
n∑
i=1

ξi sgn(ui(t) − ũi(t))
n∑

j=1,j /= i

wij

(
γj(t) − γ̃j(t)

)

≤ −
n∑
i=1

ξibi|ui(t) − ũi(t)| −
n∑
i=1

ξi|wii|
∣∣γi(t) − γ̃i(t)

∣∣

+
n∑
i=1

ξi
n∑

j=1,j /= i

∣∣wij

∣∣∣∣γj(t) − γ̃j(t)
∣∣

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| −
n∑
i=1

ξi
[|wii|

∣∣γi(t) − γ̃i(t)
∣∣

+
n∑

j=1,j /= i

(−∣∣wij

∣∣)∣∣γj(t) − γ̃j(t)
∣∣]

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| −
n∑
i=1

ξi
n∑
j=1

[M(−W)]ij
∣∣γj(t) − γ̃j(t)

∣∣

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| − 〈ξ,M(−W)v(t)〉

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| −
〈
[M(−W)]T ξ, v(t)

〉

= −
n∑
i=1

ξibi|ui(t) − ũi(t)| −
〈
β, v(t)

〉 ≤ 0,

(3.5)

where v(t) = (|γ1(t) − γ̃1(t)|, . . . , |γn(t) − γ̃n(t)|)T . Integrating (3.1) between 0 and t0 > 0, we
have

V (u(t0) − ũ(t0)) ≤ V (u(0) − ũ(0)) = V (u0 − u0) = 0, (3.6)

and hence, u(t0) = ũ(t0) for any t0 > 0; that is, the solution of model (2.1)with initial condition
u(0) = u0 is unique.

From (2.5), the output solution γ(t) corresponding to u(t) is uniquely defined and
bounded for a.a. t ≥ 0. The proof of Theorem 3.1 is completed.
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Remark 3.2. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W
is an H-matrix such that Wii < 0, then, for any I ∈ R

n, model (2.1) has a unique equilibrium
point and a unique corresponding output equilibrium point. Because from the assumptions,
we have −W is LDS, hence, from Theorem 6 in [20], model (2.1) has a unique equilibrium
point. By Definition 2.5, it is easily obtained that corresponding output equilibrium point is
unique.

Next, global exponential stability of the equilibrium point of model (2.1) and the
uniqueness and global exponential stability of limit cycle of model (2.13) are addressed. The
results are given in following theorems.

Theorem 3.3. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W
is an H-matrix such that Wii < 0, then, for any I ∈ R

n, model (2.1) has a unique equilibrium point
which is globally exponentially stable.

Proof. Let u(t), t ≥ 0, be the solution of model (2.1) such that u(0) = u0, and for a.a. t ≥ 0,
let γ(t) be the corresponding output solution. For equilibrium point u∗, γ∗ is corresponding
output equilibrium point.

Since bi > 0, we can choose a small ε > 0 such that

bi − ε

ǎi
> 0. (3.7)

Define

Ṽ (u(t) − u∗) = eεt
n∑
i=1

ξi

∣∣∣∣∣
∫ui(t)

u∗
i

ds

ai(s)

∣∣∣∣∣. (3.8)

Computing the time derivative of Ṽ along the solutions of (2.1), it follows that

dṼ (u(t) − u∗)
dt

≤ eεt
[
−

n∑
i=1

ξi

(
bi − ε

ǎi

)∣∣ui(t) − u∗
i

∣∣ − 〈
β, ṽ(t)

〉] ≤ 0, (3.9)

where ṽ(t) = (|γ1(t) − γ∗1 |, . . . , |γn(t) − γ∗n|)T .
Hence,

Ṽ (u(t) − u∗) ≤ Ṽ (u0 − u∗) ≤ 1
ǎ
‖u0 − u∗‖ξ, (3.10)

where ă = min{ǎ1, ǎ2, . . . , ǎn}.
On the other hand,

Ṽ (u(t) − u∗) ≥ eεt
1
â
‖u(t) − u∗‖ξ, (3.11)

where â = max{â1, â2, . . . , ân}.
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So, the following inequality holds:

‖u(t) − u∗‖ξ ≤
â

ǎ
‖u0 − u∗‖ξe−εt, (3.12)

that is, u∗ is globally exponentially stable.

Remark 3.4. Since bi − ε/ǎi > 0, the exponential convergence rate ε can be estimated by means
of the maximal allowable value by virtue of inequality ε < ǎibi, i = 1, 2, . . . , n. From this, one
can see that amplification functions have key effect on the convergence rate of the stability
for the considered model.

Next, the uniqueness and the exponentially stability of limit cycle for model (2.13) is
given.

Theorem 3.5. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W is
an H-matrix such that Wii < 0, then model (2.13) has a unique globally exponentially stable limit
cycle.

Proof. Let u(t), ũ(t) are two solutions of model (2.13), such that u(0) = u0, ũ(0) = ũ0 respecti-
vely.

Define

V (u(t) − ũ(t)) = eεt
n∑
i=1

ξi

∣∣∣∣∣
∫ui(t)

ũi(t)

ds

ai(s)

∣∣∣∣∣. (3.13)

Similar to the proof of Theorem 3.3, the following inequality holds:

‖u(t) − ũ(t)‖ξ ≤
â

ǎ
‖u0 − ũ0‖ξe−εt, (3.14)

Define u(t)(θ) = u(t + θ). Define a mapping L : Rn → Rn by L(u0) = u
(ω)
0 , then Lk(u0) = u

(kω)
0 .

We can choose a positive integer k, such that for a positive constant ρ < 1,

â

ǎ
exp{−εkω} ≤ ρ < 1. (3.15)

And, from (3.14), we have

∥∥∥Lk(u0) − Lk(ũ0)
∥∥∥
ξ
≤ â

ǎ
‖u0 − ũ0‖ξ exp{−ε(kω)} ≤ ρ‖u0 − ũ0‖ξ. (3.16)

By contraction mapping principle, there exists a unique fixed point u∗
0 such that Lk(u∗

0) = u∗
0.

In addition, Lk(L(u∗
0)) = L(Lk(u∗

0)) = L(u∗
0); that is, L(u

∗
0) is also a fixed point of Lk. By the
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uniqueness of the fixed point of the mapping Lk, L(u∗
0) = u∗

0; that is, u
∗(ω)
0 = u∗

0. Let u
∗(t) be a

state of model (1.1)with initial condition u∗
0; we obtain for all i ∈ {1, 2, . . . , n},

du∗
i (t)
dt

= −ai

(
u∗
i (t)

)
⎡
⎣u∗

i (t) −
n∑
j=1

wijfj
(
u∗
j (t)

)
− Ii(t)

⎤
⎦. (3.17)

Then, for all i ∈ {1, 2, . . . , n},

du∗
i (t +ω)
dt

= − ai

(
u∗
i (t +ω)

)
⎡
⎣u∗

i (t +ω) −
n∑
j=1

wijfj
(
u∗
j (t +ω)

)
− Ii(t +ω)

⎤
⎦

= − ai

(
u∗
i (t +ω)

)
⎡
⎣u∗

i (t +ω) −
n∑
j=1

wijfj
(
u∗
j (t +ω)

)
− Ii(t)

⎤
⎦,

(3.18)

That is, u∗(t+ω)T is also a state of themodel (2.13)with initial condition u
∗(ω)
0 ; here, u∗(ω)

0 = u∗
0;

hence, for all t ≥ 0, from Theorem 3.1,

u∗(t +ω) = u∗(t). (3.19)

Hence, u∗(t) is an isolated periodic orbit of model (2.13) with period ω, that is, a limit cycle
of model (2.13). From (3.14), we can obtain that it is globally exponentially stable. The proof
of Theorem 3.5 is completed.

Remark 3.6. Similar to those that are given in [18], global convergence of the output solutions
in finite time also can be discussed, which can be embodied in the following example, and
the detailed results are omitted.

4. Illustrative Example

In this section, we shall give an example to illustrate the effectiveness of our results.

Example 4.1. Consider the following CGNNmodel:

du1(t)
dt

= (2 + 0.4 cos(u1(t)))
[−u1(t) − 4 sgn(u1(t)) − 2 sgn(u2(t)) + I1(t)

]
,

du2(t)
dt

= (2 + 0.4 cos(u2(t)))
[−u2(t) + 3 sgn(u1(t)) − 2 sgn(u2(t)) + I2(t)

]
,

(4.1)

where

sgn(s) =

⎧⎪⎪⎨
⎪⎪⎩

1, s > 0,
undefined, s = 0,
−1, s < 0.

(4.2)
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Figure 1: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .

Obviously, −W is an H-matrix with wii < 0 and

ξ =

⎛
⎜⎜⎝

1

5
4

⎞
⎟⎟⎠, β =

⎛
⎜⎜⎝

1
4
1
4

⎞
⎟⎟⎠. (4.3)

Also, the subsetsΠC,ΠD, andΠCD in this example are the same as those in example 1 in [18]
which are depicted in detail in Figure 3 in [18].

Firstly, we choose I = (0, 0)T ∈ ΠD, u0 = (6,−6)T . The equilibrium point u∗ of
model (4.1) is (0, 0)T , and the corresponding output equilibrium point γ∗ = (0, 0)T . Global
convergence of u(t) and γ(t) in finite time can be obtained. Figure 1 depicts the behavior of
state solution u(t) and output solution γ(t) with I = (0, 0)T , u0 = (6,−6)T .

Secondly, we choose I = (4,−6)T ∈ ΠC, u0 = (−6, 6)T . Model (4.1) has a unique
equilibrium point u∗ = (2,−1)T and a unique output equilibrium point γ∗ = (1,−1)T . Behavior
of state solution and output solution is depicted in Figure 2.
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Figure 2: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .

Then, we choose I = (0, 5)T ∈ ΠCD, u0 = (4,−2)T . u∗ = (0, 1.5)T and γ∗ = (−0.5, 1)T
are equilibrium point and output equilibrium point of model (4.1), respectively. Simulation
results with I = (0, 5)T , u0 = (4,−2)T about global convergence in finite time of the state
solution u(t) and corresponding output solution γ(t) are depicted in Figure 3.

5. Conclusions

In this paper, by using the property ofM-matrix and a generalized Lyapunov-like approach,
global convergence of CGNNs possessing discontinuous activation functions is investigated
under the condition that neuron interconnection matrix belongs to the class of M-matrices
or H-matrices. The uniqueness is proved for equilibrium point and corresponding output
equilibrium point of considered neural networks. It is also proved that for considered model,
the solution starting at a given initial condition is unique. Meanwhile, global exponential
stability of equilibrium point is obtained for any input. Furthermore, by contraction
mapping principle, the uniqueness and the globally exponential stability of limit cycle are
given.
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Figure 3: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .
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