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This paper designs state estimators for uncertain linear systems with polytopic description,
different state disturbance, and measurement noise. Necessary and sufficient stability conditions
are derived followed with the upper bounding sequences on the estimation error. All the
conditions can be expressed in the form of linear matrix inequalities. A numerical example is given
to illustrate the effectiveness of the approach.

1. Introduction

In many control systems, the state variables are usually not accessible for direct connection.
In this case, it is necessary to design a state estimator, so that its output will generate an
estimate of those states. Generally speaking, there are two kinds of estimators for dynamic
systems: observers and filters. The former is under the supposition of the perfect knowledge
of system and measurement equations, and the latter can be applied to the system with
disturbance. Many literatures focus on the design of state estimators for linear system, for
example, a sliding mode and a disturbance detector for a discrete Kalman filter [1], the
quantized measurement method [2], the least squares estimation for linear singular systems
[3], stochastic disturbances and deterministic unknown inputs on linear time-invariant
systems [4], and the bounded disturbances on a dynamic system [5].

The concept of quadratic boundedness (QB) is first defined for an uncertain nonlinear
dynamical system [6], and then its necessary and sufficient conditions for a class of nominally
linear systems [7] and a class of linear systems which contain norm-bounded uncertainties
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[8] are obtained. For discrete system, QB is applied mainly two regions: the receding horizon
control (RHC) and the design of estimator. In RHC research, Ding utilizes QB to characterize
the stability properties of the controlled system [9–13]. Alessandri et al. find the upper
bounds on the norm of the estimation error by means of invariant sets, and these upper
bounds can be expressed in terms of linear matrix inequalities [14]. Paper in [5] designs
a filter by searching a suitable tradeoff between the transient and asymptotic behaviors of
the estimation error. The designed filter is for the linear discrete systems with the identical
state disturbance and measurement noise. For the discrete linear systems, the disturbance
and noise are different in general. Nevertheless, little work has been done on the design of
the state estimators for uncertain linear systems with different disturbance/noise. So how
to design state estimators for uncertain linear systems with different state disturbance and
measurement noise is important work.

The existing research work on state estimation usually constructs a filter for uncertain
systems with bounded disturbance/noise, with no consideration of input or state constraint.
Since the disturbance and noise are not assumed exactly identical, the stability station of the
estimator is different from that in the paper [5]. For the above reasons, the situation becomes
more complicated and the extension of the method is not straightforward.

This paper designs state estimators for uncertain linear systems with polytopic
description. The problem is constructed in the form of linear matrix inequalities (LMIs). The
organization of the paper is as follows. The earlier results are presented in the Section 2.
The new robust estimator for uncertain linear systems with different disturbance/noise is
designed in Section 3. A numerical simulation example is followed in Section 4. And some
conclusions are given in the end.

Notations. For any vector x and a positive-defined matrix Q,EQ is the ellipsoid which is
defined as {x | x′Qx ≤ 1};Q′ is the transpose of matrix Q. ||x|| is the Euclid norm of vector x.
The symbol ∗ induces a symmetric structure in LMIs.

2. Earlier Results

In this section, some results presented by Alessandri et al. [5, 14] are briefly introduced.
For a given discrete-time dynamic system,

xt+1 = Atxt +Gtwt, t = 0, 1, . . . , (2.1)

where xt ∈ Rn is the state vector and wt ∈ EQ ⊂ Rp is the noise vector. The definition of strictly
quadratically bounded with a common Lyapunov matrix of a system and positively invariant
set are defined by Alessandri et al. [5, 14], and the following theorem is proved.

Theorem 2.1 (see [14]). The following facts are equivalent:

(i) System (2.1) is strictly quadratically bounded with a common Lyapunov matrix P > 0 for
all allowable wt ∈ EQ and (At,Gt) ∈ ϕ, t = 0, 1, . . ., where ϕ is a known bounded set.

(ii) The ellipsoid EP is a positively invariant set for system (2.1) for all allowable wt ∈ EQ and
(At,Gt) ∈ ϕ, t = 0, 1, . . ..

(iii) There exists αt ∈ (0, 1) such that for any (At,Gt) ∈ ϕ,
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[
A′

tPAt − P + αtP A′
tPGt

∗ G′
tPGt − αtQ

]
≤ 0. (2.2)

For a discrete-time linear system with the same state disturbance and noise,

xt+1 = Atxt + Btwt,

yt = Ctxt +Dtwt,

zt = Ltxt,

(2.3)

for t = 0, 1, . . ., where xt ∈ Rn, yt ∈ Rm, zt ∈ Rr are the state vector, the measured output
and the signal will be estimated, respectively, and wt ∈ EQ ⊂ Rp is the disturbance/noise
vector. At, Bt, Ct,Dt, Lt are the system matrixes with the proper dimensions. We consider the
disturbance/noise to be unknown, and the system matrixes are supposed to be unknown and time
varying but belonging to a polytopic set P, that is, (At, Bt, Ct,Dt, Lt) ∈ P, t = 0, 1, . . ., where

P �
{
(A,B,C,D, L) =

N∑
i=1

λi
(
A(i), B(i), C(i), D(i), L(i)

)
;
N∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, . . .N

}
. (2.4)

Here (A(i), B(i), C(i), D(i), L(i)) i = 1, 2, . . .N are vertexes of the polytope P.

Definition 2.2 (see [5]). A sequence of vectors ξt is said to be exponentially bounded with
constants β ∈ (0, 1), k1 ≥ 0, and k2 > −k1 if

‖ξt‖ ≤ k1 + k2
(
1 − β

)t
, t = 0, 1, . . . . (2.5)

It is easy to see that β determines the convergence speed and k1/2
1 represents an upper

bound of the sequence ξt.

Theorem 2.3 (see [5]). Consider two scalars α ∈ (0, 1) and γ > 0. The following facts are equivalent.

(i) There exist Â, B̂, L̂, and P > 0 such that the following conditions are satisfied for any
(A,B,C,D, L) ∈ P:

C̃P−1C̃′ − γ2I < 0,[
A′PA − P + αP A′PG

∗ G′PG − αQ

]
< 0.

(2.6)
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(ii) There exist V,W,X > 0, Y > 0, and Z such that

⎡
⎣γ

2I L −W L
∗ X X
∗ ∗ Y

⎤
⎦ > 0,

⎡
⎢⎢⎢⎢⎢⎣

(1 − α)X (1 − α)X 0 A′X A′Y + C′Z′ + V ′

∗ (1 − α)Y 0 A′X A′Y + C′Z′

∗ ∗ αQ B′X D′Z + B′Y
∗ ∗ ∗ X X
∗ ∗ ∗ ∗ Y

⎤
⎥⎥⎥⎥⎥⎦

> 0,

(2.7)

for (A,B,C,D, L) = (A(i), B(i), C(i), D(i), L(i)), i = 1, 2, . . .N.
Then, the cost J(r, α) � μγ−(1−μ)α can be minimized over V,W,X > 0, Y > 0, Z, α ∈ (0, 1)

and γ > 0 under the constrains (2.7).

3. A Robust Estimator for Uncertain Linear Systems
with Different Noises

Let us consider the discrete-time linear system with different disturbance/noise:

xt+1 = Atxt + Btwt,

yt = Ctxt +Dtvt,

zt = Ltxt,

(3.1)

where the matrixes and vectors are the same as (2.3) except wt ∈ EQ1 , vt ∈ EQ2 , which are the
vectors of the state disturbance and measurement noise, respectively.

To estimate the signal zt, the linear filter is introduced which has the following form:

x̂t+1 = Âx̂t + B̂yt,

ẑt = L̂x̂t,
(3.2)

for t = 0, 1, . . ., where x̂t ∈ Rn is the filter state vector and ẑt ∈ Rr is the estimation of the signal
zt.

Define the estimation error et, the augmented state vector, and the augmented dis-
turbance/noise as

et � zt − ẑt, x̃t �
[
xt

x̂t

]
, w̃t =

[
wt

vt

]
(3.3)
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and the dynamic system associated with the estimation error

x̃t+1 =

[
A 0
B̂Ct Â

]

Ã

x̃t +

[
Bt 0
0 B̂Dt

]

B̃

w̃t, (3.4)

et =
[
Lt − L̂

]
C̃

x̃t, (3.5)

for t = 0, 1, . . ..
The objective is to find an estimate ẑt of the signal zt such that the estimation error et =

zt − ẑt is exponentially bounded for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 , and (At, Bt, Ct,Dt, Lt) ∈
P, t = 0, 1, . . .. Then the following problem has to be solved.

Problem 1. Find matrices Â, B̂, L̂ such that, for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 and
(At, Bt, Ct,Dt, Lt) ∈ P, t = 0, 1, . . .; the estimation error et is exponentially bounded with
constants β ∈ (0, 1), k1 ≥ 0, and k2 > −k1.

In order to solve Problem 1, we now exploit the results on quadratic boundedness.
More specifically, the following proposition holds.

Proposition 3.1. Suppose there exist matrices Â, B̂, L̂, a symmetric matrix P > 0, and two scalars
γ > 0 and α ∈ (0, 1) such that, for any (A,B,C,D, L) ∈ P,

C̃P−1C̃′ − γ2I < 0, (3.6)
[
Ã′PÃ − P + αP Ã′PB̃

∗ B̃′PB̃ − αR

]
< 0, (3.7)

where R = diag{Q1, Q2}. Then, for any x0 ∈ Rn, wt ∈ EQ1 , vt ∈ EQ2 , and (At, Bt, Ct,Dt, Lt) ∈
P, t = 0, 1, . . ., the estimation error is exponentially bounded with constants

β = α, k1 = γ2, k2 = γ2(x̃′
0Px̃0 − 1

)
. (3.8)

Hence the matrices Â, B̂, and L̂ are a solution of Problem 1.

Remark 3.2. We can see that condition (3.7) ensures system (3.1) is strictly bounded with a
common Lyapunov matrix P , and from Corollary 2 of paper [5], it is clearly, γ is a bound.
But its feasibility cannot be easily verified. The following theorem transposes them into the
equivalent LMI conditions.

Theorem 3.3. Consider two scalars α ∈ (0, 1) and γ > 0. The following facts are equivalent.

(i) There exist Â, B̂, L̂, and P > 0 such that conditions (3.6) and (3.7) are satisfied for any
(A,B,C,D, L) ∈ P.

(ii) There exist V,W,X > 0, Y > 0, and Z such that
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⎡
⎣γ

2I L −W L
∗ X X
∗ ∗ Y

⎤
⎦ > 0, (3.9)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 − α)X (1 − α)X 0 0 A′X A′Y + C′Z′ + V ′

∗ (1 − α)Y 0 0 A′X A′Y + C′Z′

∗ ∗ αQ1 0 B′X B′Y
∗ ∗ 0 αQ2 0 D′Z
∗ ∗ ∗ ∗ X X
∗ ∗ ∗ ∗ ∗ Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (3.10)

Proof. The proof of (3.6)⇔(3.9) is the same as Theorem 2 of reference [5]; here it is omitted
for brevity.

(3.7)⇒(3.10) suppose the condition (3.7) is satisfied. The matrix P and matrix P−1 are
partitioned as

P =
[
P11 P12

P21 P22

]
, P−1 =

[
S11 S
S21 S

]
, (3.11)

with P11 ∈ Rn×n and S11 ∈ Rn×n. Clearly PP−1 = P−1P = I, so we have

S12P
′
12 = I − S11P11, S11P12 + S12P22 = 0. (3.12)

Moreover, (3.7) is strict inequality, and we can assume, without loss of generality, that I −
S11P11 is invertible [15]. Hence S12 and P12 are invertible. Using the Schur complement, we
can rewrite (3.7) as

⎡
⎢⎣
(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦ > 0. (3.13)

Define

T �

⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦, (3.14)
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where H ′ =
[

I I
S′

12S
−1
11 0

]
, so

T ′

⎡
⎢⎣
(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦T =

⎡
⎣H 0 0

0 I 0
0 0 H

⎤
⎦
⎡
⎢⎣
(1 − α)P 0 Ã′P

0 αR B̃′P
∗ ∗ P

⎤
⎥⎦
⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦

=

⎡
⎢⎣
(1 − α)HP 0 HÃ′P

0 αR B̃′P
HPA HPB̃ HP

⎤
⎥⎦
⎡
⎣H

′ 0 0
0 I 0
0 0 H ′

⎤
⎦ =

⎡
⎢⎣
(1 − α)HPH ′ 0 HÃ′PH ′

0 αR B̃′PH ′

HPAH ′ HPB̃ HPH ′

⎤
⎥⎦,

HPH ′ =
[
I S−1

11S12

I 0

][
P11 P12

P21 P22

][
I I

S′
12S

−1
11 0

]

=
[
P11 + S−1

11S12P21 +
(
P12 + S−1

11S12P22
)
S′

12S
−1
11 P11 + S−1

11S12P21

P11 + P12S
′
12S

−1
11 P11

]
.

(3.15)

Using condition (3.12), we can get

HPH ′ =
[
S−1

11 S−1
11

S−1
11 P11

]
=
[
X X
X Y

]
, (3.16)

where X � S−1
11 , Y � P11:

HÃ′PH ′ =
[
I S−1

11S12

I 0

][
A′ C′B̂′

0 Â′

][
P11 P12

P21 P22

][
I I

S′
12S

−1
11 0

]

=

[
A′ C′B̂′ + S−1

11S12Â
′

A′ C′B̂′

][
P11 + P12S

′
12S

−1
11 P11

P21 + P22S
′
12S

−1
11 P21

]

=
[
A′X A′Y + C′Z′ + V ′

A′X A′Y + C′Z′

]
.

(3.17)

Here we define V � P12ÂS′
12S

−1
11 , Z � P12B̂:

B̃′PH ′ =

[
B′ 0
0 D′B̂′

][
P11 P12

P21 P22

][
I I

S′
12S

−
11 0

]

=

[
B′P11 B′P12

D′B̂′P21 D′B̂′P22

][
I I

S′
12S

−
11 0

]
=

[
B′P11 + B′P12S

′
12S

−1
11 B′P11

D′B̂′P21 +D′B̂′P22S
′
12S

−1
11 D′B̂′P21

]

=
[
B′X B′Y

0 D′Z′

]
.

(3.18)

So we can get condition (3.10).
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Figure 1: The state and estimator trajectories.

(3.10)⇒(3.7) suppose there exist V,X > 0, Y > 0 and Z satisfied condition (3.4), as
condition (3.4) holds at every vertex (A(i), B(i), C(i), D(i), L(i)) of the polytope P, and it also
holds for every system matrice (A,B,C,D, L) ∈ P.

We can obtain
[
X X
X Y

]
> 0 from condition (3.10), and based on the Schur complement,

the result of I − X−1Y < 0 can be deduced. Then there exist two square invertible matrixes
M and N such that M′N ′ = I − X−1Y . Choosing P11 = Y, S11 = X−1, S′

12 = M and P12 = N,
condition (3.7) can be obtained by premultiplying and postmultiplying condition (3.10) by
(T ′)−1and T−1. If we apply the change of variable

Â = N−1VX−1M−1, B̂ = N−1Z,

L̂ = WX−1M−1, P =
[
Y N
N ′ −N ′X−1M−1

]
.

(3.19)

so, we can get the linear filter (3.2).

Remark 3.4. In paper [5], the estimators for uncertain systems propose that the state
disturbance and measurement noise are identical with the time. Ordinarily, they are different
in practice, so the result in our paper is the general case.

4. A Numerical Example

Let us consider the system [12] in the form of (3.1) with

At =
[

0.385 0.33
0.21 + at 0.59

]
, Bt =

[
0.3
0.3

]
,

Ct =
[
0.2 0.2 + at

]
, Dt = 0.3, Lt = [10],

(4.1)
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Figure 2: Plots of the RSME for the considered filters.

where at is an uncertain parameter satisfying |at| ≤ 0.11. Suppose the state disturbance
satisfies the condition |wt| ≤ 0.25 and the measurement noise satisfies |vt| ≤ 0.1 (i.e.,
Q1 = 16, Q2 = 100).

As this kind of uncertainty is of the polytopic type described in Section 3, the proposed
method is used to obtain a linear filter. In the context, we will refer to this filter as the
“filter with different disturbance/noise” (FDDN). Choose two sets of initial states: x̂0 =
{[8 6]T , [−11 7]T}, x0 = {[10 7]T , [−9 − 6]T}. The resulting state trajectories are shown
in Figure 1 by the marked solid line, followed with the estimator state trajectories shown by
the marked dotted line. Figure 1 indicates that the designed estimator can track the systems’
states effectively.

The performance of the filter can be further studied by using an average measure of
the estimation error, such as the expected quadratic estimation error. Comparison was then
made between the FDDN and the “filter with identity disturbance/noise” (FIDN), to evaluate
the performance achieved when the different disturbance/noise is taken into account in the
synthesis of the filter. At each time instant, the uncertain parameters were chosen to be
within, with equal probability, one of their limit values. We assumed x0, wt and vt, t = 0, 1, . . .,
to be independent random vectors, and the initial states are in the ball of radius 10 (i.e.,
||x0|| ≤ 10). Figure 2 shows the plots of the “root mean square error” (RMSE), computed over
103 randomly chosen simulations, for the considered filters. The performance of the FDDN
turns out to be better from the point of view of the asymptotic behavior when there is large
difference between the disturbance and noise.

5. Conclusions

The main contribution of this work is the method of constructing an estimator for the un-
certain system with the different state disturbance and measurement noise. The stability of
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the estimator is analyzed using quadratic boundness. Moreover, the estimator can be got by
LMI procedures.
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