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We derive necessary and sufficient conditions for (some or all) positive solutions of the half-
linear q-difference equation Dq(Φ(Dqy(t))) + p(t)Φ(y(qt)) = 0, t ∈ {qk : k ∈ N0} with q > 1,
Φ(u) = |u|α−1 sgnu with α > 1, to behave like q-regularly varying or q-rapidly varying or
q-regularly bounded functions (that is, the functions y, for which a special limit behavior of
y(qt)/y(t) as t → ∞ is prescribed). A thorough discussion on such an asymptotic behavior of
solutions is provided. Related Kneser type criteria are presented.

1. Introduction

In this paper we recall and survey the theory of q-Karamata functions, that is, of the functions
y : qN0 → (0,∞), where qN0 := {qk : k ∈ N0} with q > 1, and for which some special
limit behavior of y(qt)/y(t) as t → ∞ is prescribed, see [1–3]. This theory corresponds with
the classical “continuous” theory of regular variation, see, for example, [4], but shows some
special features (see Section 2), not known in the continuous case, which are due to the special
structure of qN0 . The theory of q-Karamata functions provides a powerful tool, which we use
in this paper to establish sufficient and necessary conditions for some or all positive solutions
of the half-linear q-difference equation

Dq

(
Φ
(
Dqy(t)

))
+ p(t)Φ

(
y
(
qt
))

= 0, (1.1)

where Φ(u) = |u|α−1 sgnu with α > 1, to behave like q-regularly varying or q-rapidly varying
or q-regularly bounded functions. We stress that there is no sign condition on p. We also
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present Kneser type (non)oscillation criteria for (1.1), existing as well as new ones, which are
somehow related to our asymptotic results.

The main results of this paper can be understood as a q-version of the continuous
results for

(
Φ
(
y′(t)

))′ + p(t)Φ
(
y(t)

)
= 0 (1.2)

from [5] (with noting that some substantial differences between the parallel results are
revealed), or as a half-linear extension of the results for D2

qy(t) + p(t)y(qt) = 0 from [1].
In addition, we provide a thorough description of asymptotic behavior of solutions to (1.1)
with respect to the limit behavior of tαp(t) in the framework of q-Karamata theory. For an
explanation why the q-Karamata theory and its applications are not included in a general
theory of regular variation on measure chains see [6]. For more information on (1.2) see, for
example, [7]. Many applications of the theory of regular variation in differential equations
can be found, for example, in [8]. Linear q-difference equations were studied, for example, in
[1, 9–11]; for related topics see, for example, [12, 13]. Finally note that the theory of q-calculus
is very extensive with many aspects; some people speak bout different tongues of q-calculus.
In our paper we follow essentially its “time-scale dialect”.

2. Preliminaries

We start with recalling some basic facts about q-calculus. For material on this topic see
[9, 12, 13]. See also [14] for the calculus on time-scales which somehow contains q-calculus.
First note that some of the below concepts may appear to be described in a “nonclassical
q-way”, see, for example, our definition of q-integral versus original Jackson’s definition
[9, 12, 13], or the q-exponential function. But, working on the lattice qN0 (which is a time-
scale), we can introduce these concepts in an alternative and “easier” way (and, basically,
we avoid some classical q-symbols). Our definitions, of course, naturally correspond with
the original definitions. The q-derivative of a function f : qN0 → R is defined by
Dqf(t) = [f(qt) − f(t)]/[(q − 1)t]. The q-integral

∫b
a f(t)dqt, a, b ∈ qN0 , of a function

f : qN0 → R is defined by
∫b
a f(t)dqt = (q − 1)

∑
t∈[a,b)∩qN0 tf(t) if a < b;

∫b
a f(t)dqt = 0 if

a = b;
∫b
a f(t)dqt = (1 − q)

∑
t∈[b,a)∩qN0 tf(t) if a > b. The improper q-integral is defined by

∫∞
a f(t)dqt = limb→∞

∫b
a f(t)dqt. We use the notation [a]q = (qa−1)/(q−1) for a ∈ R. Note that

limq→ 1+[a]q = a. It holds that Dqt
ϑ = [ϑ]qt

ϑ−1. In view of the definition of [a]q, it is natural
to introduce the notation [∞]q = ∞, [−∞]q = 1/(1 − q). For p ∈ R (i.e., for p : qN0 → R

satisfying 1 + (q − 1)tp(t)/= 0 for all t ∈ qN0) we denote ep(t, s) =
∏

u∈[s,t)∩qN0 [(q − 1)up(u) + 1]
for s < t, ep(t, s) = 1/ep(s, t) for s > t, and ep(t, t) = 1, where s, t ∈ qN0 . For p ∈ R, e(·, a)
is a solution of the IVP Dqy = p(t)y, y(a) = 1, t ∈ qN0 . If s ∈ qN0 and p ∈ R+, where
R+ = {p ∈ R : 1+ (q− 1)tp(t) > 0 for all t ∈ qN0}. then ep(t, s) > 0 for all t ∈ qN0 . If p, r ∈ R, then
ep(t, s)ep(s, u) = ep(t, u) and ep(t, s)er(t, s) = ep+r+t(q−1)pr(t, s). Intervals having the subscript q
denote the intervals in qN0 , for example, [a,∞)q = {a, aq, aq2, . . .}with a ∈ qN0 .
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Next we present auxiliary statements which play important roles in proving the main
results. Define F : (0,∞) → R by F(x) = Φ(x/q−1/q)−Φ(1−1/x) and h : (Φ([−∞]q),∞) →
R by

h(x) =
x

1 − q1−α

[
1 −

(
1 +

(
q − 1

)
Φ−1(x)

)1−α
]
. (2.1)

For y : qN0 → R \ {0} define the operator L by

L
[
y
]
(t) = Φ

(
y
(
q2t

)

qy
(
qt
) − 1

q

)

−Φ

(

1 −
y(t)
y
(
qt
)

)

. (2.2)

We denote ωq = ([(α − 1)/α]q)
α. Let βmean the conjugate number of α, that is, 1/α+ 1/β = 1.

The following lemma lists some important properties of F, h, L and relations among
them.

Lemma 2.1. (i) The function F has the global minimum on (0,∞) at q(α−1)/α with

F
(
q(α−1)/α

)
= −

ωq

(
q − 1

)α

qα−1
(2.3)

and F(1) = 0 = F(q). Further, F is strictly decreasing on (0, q(α−1)/α) and strictly increasing on
(q(α−1)/α,∞) with limx→ 0+F(x) = ∞, limt→∞F(x) = ∞.

(ii) The graph of x �→ h(x) is a parabola-like curve with the minimum at the origin. The graph
of x �→ h(x) + γα touches the line x �→ x at x = λ0 := ([(α − 1)/α]q)

α−1. The equation h(λ) + γ = λ
has

(a) no real roots if γ > ωq/[α − 1]q,

(b) the only root λ0 if γ = ωq/[α − 1]q,

(c) two real roots λ1, λ2 with 0 < λ1 < λ0 < λ2 < 1 if γ ∈ (0, ωq/[α − 1]q),

(d) two real roots 0 and 1 if γ = 0,

(e) two real roots λ1, λ2 with λ1 < 0 < 1 < λ2 if γ < 0.

(iii) It holds that F(qϑ1) = F(qϑ2), where ϑi = logq[(q−1)Φ−1(λi)+1], i = 1, 2, with λ1 < λ2
being the real roots of the equation λ = h(λ) +A with A ∈ (−∞, ωq/[α − 1]q).

(iv) If q → 1+, then h(x) → |x|β.
(v) For ϑ ∈ R it hold that Φ([ϑ]q)[1 − ϑ]qα−1 = Φ([ϑ]q) − h(Φ([ϑ]q)).
(vi) For ϑ ∈ R it hold that F(qϑ) = (q − 1)α[1 − α]qΦ([ϑ]q)[1 − ϑ]qα−1 .
(vii) For y /= 0, (1.1) can be written as L[y](t) = −(q − 1)αtαp(t).
(viii) If the limt→∞y(qt)/y(t) exists as a positive real number, then limt→∞L[y](t) =

limt→∞F(y(qt)/y(t)).

Proof. We prove only (iii). The proofs of other statements are either easy or can be found in
[3].
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(iii) Let λ1, λ2 be the real roots of λ = h(λ) + A. We have λi = Φ([ϑi]q), i = 1, 2, and so,
by virtue of identities (v) and (vi), we get F(qϑ1) = (q − 1)α[1 − α]q(λ1 − h(λ1)) =
(q − 1)α[1 − α]qA = (q − 1)α[1 − α]q(λ2 − h(λ2)) = F(qϑ2).

Next we define the basic concepts of q-Karamata theory. Note that the original
definitions (see [1–3]) was more complicated; they were motivated by the classical
continuous and the discrete (on the uniform lattices) theories. But soon it has turned out that
simpler (and equivalent)definitions can be established. Also, there is no need to introduce
the concept of normality, since every q-regularly varying or q-rapidly varying or q-regularly
bounded function is automatically normalized. Such (and some other) simplifications are not
possible in the original continuous theory or in the classical discrete theory; in q-calculus, they
are practicable thanks to the special structure of qN0 , which is somehow natural for examining
regularly varying behavior.

For f : qN0 → (0,∞) denote

K∗ = lim inf
t→∞

f
(
qt
)

f(t)
, K∗ = lim sup

t→∞

f
(
qt
)

f(t)
, K = lim

t→∞

f
(
qt
)

f(t)
. (2.4)

Definition 2.2. A function f : qN0 → (0,∞) is said to be

(i) q-regularly varying of index ϑ, ϑ ∈ R, if K = qϑ; we write f ∈ RVq(ϑ),

(ii) q-slowly varying if K = 1; we write f ∈ SVq,

(iii) q-rapidly varying of index ∞ if K = ∞; we write f ∈ RPVq(∞),

(iv) q-rapidly varying of index −∞ if K = 0; we write f ∈ RPVq(−∞),

(v) q-regularly bounded if 0 < K∗ ≤ K∗ <∞; we write f ∈ RBq.

Clearly, SVq = RVq(0). We have defined q-regular variation, q-rapid variation, and q-
regular boundedness at infinity. If we consider a function f : qZ → (0,∞), qZ := {qk : k ∈ Z},
then f(t) is said to be q-regularly varying/q-rapidly varying/q-regularly bounded at zero
if f(1/t) is q-regularly varying/q-rapidly varying/q-regularly bounded at infinity. But it is
apparent that it is sufficient to examine just the behavior at∞.

Next we list some selected important properties of the above-defined functions. We
define τ : [1,∞) → qN0 as τ(x) = max{s ∈ qN0 : s ≤ x}.

Proposition 2.3. (i)f ∈ RVq(ϑ) ⇔ limt→∞tDqf(t)/f(t) = [ϑ]q.
(ii)f ∈ RVq(ϑ) ⇔ f(t) = ϕ(t)eψ(t, 1), where a positive ϕ satisfies limt→∞ϕ(t) = C ∈

(0,∞), limt→∞tψ(t) = [ϑ]q, ψ ∈ R+ (w.l.o.g., ϕ can be replaced by C).
(iii)f ∈ RVq(ϑ) ⇔ f(t) = tϑL(t), where L ∈ SVq.
(iv)f ∈ RVq(ϑ) ⇔ f(t)/tγ is eventually increasing for each γ < ϑ and f(t)/tη is eventually

decreasing for each η > ϑ.
(v)f ∈ RVq(ϑ) ⇔ limt→∞f(τ(λt))/f(t) = (τ(λ))ϑ for every λ ≥ 1.
(vi)f ∈ RVq(ϑ) ⇔ R : [1,∞) → (0,∞) defined by R(x) = f(τ(x))(x/τ(x))ϑ for x ∈

[1,∞) is regularly varying of index ϑ.
(vii)f ∈ RVq(ϑ) ⇒ limt→∞ log f(t)/ log t = ϑ.

Proof. See [2].
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Proposition 2.4. (i) f ∈ RPVq(±∞) ⇔ limt→∞tDqf(t)/f(t) = [±∞]q.
(ii) f ∈ RPVq(±∞) ⇔ f(t) = ϕ(t)eψ(t, 1), where a positive ϕ satisfies

lim inft→∞ϕ(qt)/ϕ(t) > 0 for index ∞, lim supt→∞ϕ(qt)/ϕ(t) < ∞ for index −∞, and
limt→∞tψ(t) = [±∞]q, ψ ∈ R+ (w.l.o.g., ϕ can be replaced by C ∈ (0,∞)).

(iii) f ∈ RPVq(±∞) ⇔ for each ϑ ∈ [0,∞), f(t)/tϑ is eventually increasing (towards ∞)
for index ∞ and f(t)tϑ is eventually decreasing (towards 0) for index −∞.

(iv) f ∈ RPVq(±∞) ⇔ for every λ ∈ [q,∞) it holds, limt→∞f(τ(λt))/f(t) = ∞ for index
∞ and limt→∞f(τ(λt))/f(t) = 0 for index −∞.

(v) Let R : [1,∞) → (0,∞) be defined by R(x) = f(τ(x)) for x ∈ [1,∞). If R
is rapidly varying of index ±∞, then f ∈ RPVq(±∞). Conversely, if f ∈ RPVq(±∞), then
limx→∞R(λx)/R(x) = ∞, resp., limx→∞R(λx)/R(x) = 0 for λ ∈ [q,∞).

(vi) f ∈ RPVq(±∞) ⇒ limt→∞ log f(t)/ log t = ±∞.

Proof. We prove only the “if” part of (iii). The proofs of (iv), (v), and (vi) can be found in [1].
The proofs of other statements can be found in [3].

Assume that f(t)/tϑ is eventually increasing (towards∞) for each ϑ ∈ [0,∞). Because
of monotonicity, we have f(t)/tϑ ≤ f(qt)/(qϑtϑ), and so f(qt)/f(t) ≥ qϑ for large t. Since ϑ is
arbitrary, we have f(qt)/f(t) → ∞ as t → ∞, thus f ∈ RPVq(∞). The case of the index −∞
can be treated in a similar way.

Proposition 2.5. (i) f ∈ RBq ⇔ [−∞]q < lim inft→∞tDqf(t)/f(t) ≤ lim supt→∞tDqf(t)/
f(t) < [∞]q.

(ii) f ∈ RBq ⇔ f(t) = tϑϕ(t)eψ(t, 1), where 0 < C1 ≤ ϕ(t) ≤ C2 < ∞, [−∞]q < D1 ≤
tψ(t) ≤ D2 < [∞]q (w.l.o.g., ϕ can be replaced by C ∈ (0,∞)).

(iii) f ∈ RBq ⇔ f(t)/tγ1 is eventually increasing and f(t)/tγ2 is eventually decreasing for
some γ1 < γ2 (w.l.o.g., monotonicity can be replaced by almost monotonicity; a function f : qN0 →
(0,∞) is said to be almost increasing (almost decreasing) if there exists an increasing (decreasing)
function g : qN0 → (0,∞) and C,D ∈ (0,∞) such that Cg(t) ≤ f(t) ≤ Dg(t)).

(iv) f ∈ RBq ⇔ 0 < lim inft→∞f(τ(λt))/f(t) ≤ lim supt→∞f(τ(λt))/f(t) < ∞ for every
λ ∈ [q,∞) or for every λ ∈ (0, 1).

(v) f ∈ RBq ⇔ R : [1,∞) → (0,∞) defined by R(x) = f(τ(x)) for x ∈ [1,∞) is regularly
bounded.

(vi) f ∈ RBq ⇒ −∞ < lim inft→∞ log f(t)/ log t ≤ lim supt→∞ log f(t)/ log t <∞.

Proof. See [1].

For more information on q-Karamata theory see [1–3].

3. Asymptotic Behavior of Solutions to (1.1) in the Framework of
q-Karamata Theory

First we establish necessary and sufficient conditions for positive solutions of (1.1) to be q-
regularly varying or q-rapidly varying or q-regularly bounded. Then we use this result to
provide a thorough discussion on Karamata-like behavior of solutions to (1.1).

Theorem 3.1. (i) Equation (1.1) has eventually positive solutions u, v such that u ∈ RVq(ϑ1) and
v ∈ RVq(ϑ2) if and only if

lim
t→∞

tαp(t) = P ∈
(
−∞,

ωq

qα−1

)
, (3.1)
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where ϑi = logq[(q − 1)Φ−1(λi) + 1], i = 1, 2, with λ1 < λ2 being the real roots of the equation
λ = h(λ) − P/[1 − α]q. For the indices ϑi, i = 1, 2, it holds that ϑ1 < 0 < 1 < ϑ2 provided P < 0;
ϑ1 = 0, ϑ2 = 1 provided P = 0; 0 < ϑ1 < (α − 1)/α < ϑ2 < 1 provided P > 0. Any of two conditions
u ∈ RVq(ϑ1) and v ∈ RVq(ϑ2) implies (3.1).

(ii) Let (1.1) be nonoscillatory (which can be guaranteed, for example, by tαp(t) ≤ ωq/q
α−1 for

large t; with the note that it allows (3.2)). Equation (1.1) has an eventually positive solution u such
that u ∈ RVq((α − 1)/α) if and only if

lim
t→∞

tαp(t) =
ωq

qα−1
. (3.2)

All eventually positive solutions of (1.1) are q-regularly varying of index (α − 1)/α provided (3.2)
holds.

(iii) Equation (1.1) has eventually positive solutions u, v such that u ∈ RPVq(−∞) and
u ∈ RPVq(∞) if and only if

lim
t→∞

tαp(t) = −∞. (3.3)

All eventually positive solutions of (1.1) are q-rapidly varying provided (3.3) holds.
(iv) If (1.1) is nonoscillatory (which can be guaranteed, e.g., by tαp(t) ≤ ωq/q

α−1 for large t)
and

lim inf
t→∞

tαp(t) > −∞, (3.4)

then all eventually positive solutions of (1.1) are q-regularly bounded.
Conversely, if there exists an eventually positive solution u of (1.1) such that u ∈ RBq, then

−∞ < lim inf
t→∞

tαp(t) ≤ lim sup
t→∞

tαp(t) <
1 + q1−α
(
q − 1

)α . (3.5)

If, in addition, p is eventually positive or u is eventually increasing, then the constant on the right-
hand side of (3.5) can be improved to 1/(q − 1)α.

Proof. (i) Necessity. Assume that u is a solution of (1.1) such that u ∈ RVq(ϑ1). Then, by
Lemma 2.1,

lim
t→∞

tαp(t) = −
(
q − 1

)−α lim
t→∞

L[u](t) = −
(
q − 1

)−α lim
t→∞

F

(
u
(
qt
)

u(t)

)

= −
(
q − 1

)−α
F
(
qϑ1

)
= −[1 − α]q

[
Φ
(
[ϑ1]q

)
− h

(
Φ[ϑ1]q

)]

=
[1 − α]qP
[1 − α]q

= P.

(3.6)

The same arguments work when dealing with v ∈ RVq(ϑ2) instead of u.
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Sufficiency. Assume that (3.1) holds. Then there exist N ∈ [0,∞), t0 ∈ qN0 , and Pη ∈
(0, ωq/q

α−1) such that −N ≤ tαp(t) ≤ Pη for t ∈ [t0,∞)q. Let X be the Banach space of all
bounded functions [t0,∞)q → R endowed with the supremum norm. Denote Ω = {w ∈ X :

Φ(q−η−1) ≤ w(t) ≤ Ñ for t ∈ [t0,∞)q}, where Ñ =N(q−1)α+q1−α, η = logq[(q−1)Φ−1(λη)+1],
λη being the smaller root of λ = h(λ) − Pη/[1 − α]q. In view of Lemma 2.1, it holds that
η < (α − 1)/α. Moreover, if Pη ≥ P (which must be valid in our case), then ϑ1 ≤ η. Further, by
Lemma 2.1, −(q − 1)Pη = Φ(q−η − 1)(1 − q(α−1)(η−1)). Let T : Ω → X be the operator defined by

(Tw)(t) = −
(
q − 1

)α
tαp(t) −Φ

(
1

qΦ−1(w
(
qt
))

+ q
− 1
q

)

. (3.7)

By means of the contraction mapping theorem we will prove that T has a fixed-point in Ω.
First we show that TΩ ⊆ Ω. Let w ∈ Ω. Then, using identities (v) and (vi) from Lemma 2.1,

(Tw)(t) ≥ −
(
q − 1

)α
Pη −Φ

(
1

qq−η
− 1
q

)

=
(
λη − h

(
λη

))(
q − 1

)α[1 − α]q − q(η−1)(α−1)Φ
(
1 − q−η

)

= F
(
qη
)
− q(η−1)(α−1)Φ

(
1 − q−η

)

= Φ
(
q−η − 1

)(
1 − q(α−1)(η−1)

)
− q(η−1)(α−1)Φ

(
1 − q−η

)

= Φ
(
q−η − 1

)

(3.8)

and (Tw)(t) ≤ −(q−1)αtαp(t)+q1−α ≤ Ñ for t ∈ [t0,∞)q. Nowwe prove thatT is a contraction
mapping on Ω. Consider the function g : (−1,∞) → R defined by g(x) = −Φ(1/(qΦ−1(x) +
q) − 1/q). It is easy to see that |g ′(x)| = q1−α(Φ−1(x) + 1)−α. Let w, z ∈ Ω. The Lagrange mean
value theorem yields |g(w(t)) − g(z(t))| = |w(t) − z(t)‖g ′(ξ(t))|, where ξ : qN0 → R is such
that min{w(t), z(t)} ≤ ξ(t) ≤ max{w(t), z(t)} for t ∈ [t0,∞)q. Hence,

|(Tw)(t) − (Tz)(t)| =
∣∣g
(
w
(
qt
))

− g
(
z
(
qt
))∣∣

=
∣∣w

(
qt
)
− z

(
qt
)∣∣∣∣g ′(ξ(t))

∣∣

≤
∣∣w

(
qt
)
− z

(
qt
)∣∣∣∣g ′(Φ

(
q−η − 1

))∣∣

= qηα+1−α
∣∣w

(
qt
)
− z

(
qt
)∣∣

≤ qηα+1−α‖w − z‖

(3.9)

for t ∈ [t0,∞)q. Thus ‖Tw−Tz‖ ≤ qηα+1−α‖w−z‖, where qηα+1−α ∈ (0, 1) by virtue of q > 1 and
η < (α − 1)/α. The Banach fixed-point theorem now guarantees the existence of w ∈ Ω such
that w = Tw. Define u by u(t) =

∏
s∈[t0,t)q(Φ

−1(w(s)) + 1)−1. Then u is a positive solution of
L[u](t) = −(q − 1)αtαp(t) on [t0,∞)q, and, consequently, of (1.1) (this implies nonoscillation

of (1.1)). Moreover, q−η ≤ Φ−1(w(t)) + 1 ≤ 1/N, where N = 1/(Φ−1(Ñ) + 1), and thus
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N ≤ u(qt)/u(t) ≤ qη. Denote M∗ = lim inft→∞u(qt)/u(t) and M∗ = lim supt→∞u(qt)/u(t).
Rewrite L[u](t) = −(q − 1)αtαp(t) as

Φ

(
u
(
q2t

)

qu
(
qt
) − 1

q

)

= Φ

(

1 − u(t)
u
(
qt
)

)

−
(
q − 1

)α
tαp(t). (3.10)

Taking lim inf and lim sup as t → ∞ in (3.10), we getΦ(M∗/q−1/q) = Φ(1−1/M∗)−(q−1)αP
and Φ(M∗/q − 1/q) = Φ(1 − 1/M∗) − (q − 1)αP , respectively. Hence, F(M∗) = F(M∗). Since
M∗,M

∗ ∈ [N, qη] and F is strictly decreasing on (0, q(α−1)/α) (by Lemma 2.1), we haveM :=
M∗ =M∗. Moreover,

F(M) = −
(
q − 1

)α
P =

(
q − 1

)α[1 − α]q
(
Φ
(
[ϑi]q

)
− h

(
Φ[ϑi]q

))
= F

(
qϑi

)
, (3.11)

i = 1, 2, which implies M = qϑ1 , in view of the facts that M,qϑ1 ∈ (0, q(α−1)/α), qϑ2 > q(α−1)/α,
and F is monotone on (0, q(α−1)/α). Thus u ∈ RVq(ϑ1). Now we show that there exists a
solution v of (1.1) with v ∈ RVq(ϑ2). We can assume that N, t0, and Pη are the same
as in the previous part. Consider the set Γ = {w ∈ X : Φ(qζ−1 − 1/q) ≤ w(t) ≤ M̃

for t ∈ [t0,∞)q}, where M̃ = 1 + (q − 1)αN, ζ = logq[(q − 1)Φ−1(λζ) + 1], λζ being the
larger root of λ = h(λ) − Pη/[1 − α]q. It is clear that N can be chosen in such a way that

Φ(qϑ2−1 − 1/q) < M̃. It holds (α − 1)/α < ζ ≤ ϑ2 and −(q − 1)αPη = Φ(q−ζ − 1)(1 − q(α−1)(ζ−1)).
Define S : Γ → X by (Sw)(t) = Φ(1 − 1/(qΦ−1(w(t/q)) + 1)) − (q − 1)αtαp(t) for t ∈ [qt0,∞)q,
and (Sw)(t0) = Φ(qϑ2−1 − 1/q). Using similar arguments as above it is not difficult to see
that SΓ ⊆ Γ and ‖Sw − Sz‖ < qα−1−αζ‖w − z‖ for w, z ∈ Γ. So there exists w ∈ Γ such that
w = Sw. If we define v(t) =

∏
s∈[qt0,t)q(qΦ

−1(w(s/q)) + 1), then v is a positive solution of (1.1)

on [qt0,∞)q, which satisfies qζ ≤ v(qt)/v(t) ≤ qΦ−1(M̃) + 1. Arguing as above we show that
v ∈ RVq(ϑ2).

(ii) Necessity. The proof is similar to that of (i).
Sufficiency. The condition tαp(t) ≤ ωq/q

α−1 for large t implies nonoscillation of (1.1).
Indeed, it is easy to see that y(t) = t(α−1)/α is a nonoscillatory solution of the Euler type
equation Dq(Φ(Dqy(t))) + ωqq

1−αt−αΦ(y(qt)) = 0. Nonoscillation of (1.1) then follows by
using the Sturm type comparison theorem, see also Section 4(i). Let us write P as P = [1 −
α]q(h(Φ([(α − 1)/α]q)) −Φ([(α − 1)/α]q)), with noting that λ = Φ([(α − 1)/α]q) is the double
root of λ = h(λ) −ωqq

1−α/[1 − α]q, see Lemma 2.1. Then, in view of Lemma 2.1, we obtain

F
(
qϑ

)
=
(
q − 1

)α[1 − α]q
[
Φ
(
[ϑ]q

)
− h

(
Φ[ϑ]q

)]
= −

(
q − 1

)α
ωq

qα−1

= −
(
q − 1

)α lim
t→∞

tαp(t) = lim
t→∞

L[u](t).

(3.12)

Let us denote U∗ = lim inft→∞u(qt)/u(t) and U∗ = lim supt→∞u(qt)/u(t). It is impossible
to have U∗ = 0 or U∗ = ∞, otherwise limt→∞L[u](t) = ∞, which contradicts to (3.12). Thus
0 < U∗ ≤ U∗ < ∞. Consider (1.1) in the form (3.10). Taking lim sup, respectively, lim inf as
t → ∞ in (3.10), into which our u is plugged, we obtain F(U∗) = F(q(α−1)/α) = F(U∗). Thanks
to the properties of F, see Lemma 2.1, we get U∗ = U∗ = q(α−1)/α. Hence, u ∈ RVq((α − 1)/α).



Abstract and Applied Analysis 9

Since weworkedwith an arbitrary positive solution, it implies that all positive solutions must
be q-regularly varying of index (α − 1)/α.

(iii) The proof repeats the same arguments as that of [3, Theorem 1] (in spite of no sign
condition on p). Note just that condition (3.3) compels p to be eventually negative and the
proof of necessity does not depend on the sign of p.

(iv) Sufficiency. Let u be an eventually positive solution of (1.1). Assume by a
contradiction that lim supt→∞y(qt)/y(t) = ∞. Then, in view of Lemma 2.1(vii),

∞ = lim sup
t→∞

(

Φ

(
y
(
q2t

)

qy
(
qt
) − 1

q

)

− 1

)

≤ lim sup
t→∞

L
[
y
]
(t) = −

(
q − 1

)αlim inf
t→∞

tαp(t) <∞ (3.13)

by (3.4), a contradiction. If lim inft→∞y(qt)/y(t) = 0, then lim supt→∞y(t)/y(qt) = ∞ and
we proceed similarly as in the previous case. Since we worked with an arbitrary positive
solution, it implies that all positive solutions must be q-regularly bounded.

Necessity. Let y ∈ RBq be a solution of (1.1). Taking lim sup as t → ∞ in −(q −
1)αtαp(t) = L[y](t), we get

−
(
q − 1

)αlim inf
t→∞

tαp(t)

= lim sup
t→∞

L
[
y
]
(t) ≤ lim sup

t→∞
Φ

(
y
(
q2t

)

qy
(
qt
) − 1

q

)

+ lim sup
t→∞

Φ

(
y(t)
y
(
qt
) − 1

)

<∞,
(3.14)

which implies the first inequality in (3.5). Similarly, the lim inf as t → ∞ yields −(q −
1)αlim supt→∞t

αp(t) > −1/qα−1−1, which implies the last inequality in (3.5). If p is eventually
positive, then every eventually positive solution of (1.1) is eventually increasing, which can
be easily seen from its concavity. Hence, y(qt)/y(t) ≥ 1 for large t. Thus the last inequality
becomes −(q − 1)αlim supt→∞t

αp(t) > −1.

We are ready to provide a summarizing thorough discussion on asymptotic behavior
of solutions to (1.1) with respect to the limit behavior of tαp(t) in the framework of q-
Karamata theory. Denote

P = lim
t→∞

tαp(t), P∗ = lim inf
t→∞

tαp(t), P ∗ = lim sup
t→∞

tαp(t). (3.15)

The set of all q-regularly varying and q-rapidly varying functions is said to be q-Karamata
functions. With the use of the previous results we obtain the following statement.

Corollary 3.2. (i) Assume that there exists P ∈ R ∪ {−∞,∞}. In this case, (1.1) possesses solutions
that are q-Karamata functions provided (1.1) is nonoscillatory. Moreover, we distinguish the following
subcases:

(a) P = −∞: (1.1) is nonoscillatory and all its positive solutions are q-rapidly varying (of index
−∞ or ∞).

(b) P ∈ (−∞, ωq/q
α−1): (1.1) is nonoscillatory and there exist a positive solution which is q-

regularly varying of index ϑ1 and a positive solution which is q-regularly varying of index
ϑ2.
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(c) P = γq: (1.1) either oscillatory or nonoscillatory (the latter one can be guaranteed, e.g., by
tαp(t) ≤ ωq/q

α−1 for large t). In case of nonoscillation of (1.1) all its positive solutions are
q-regularly varying of index (α − 1)/α.

(d) P ∈ (ωq/q
α−1,∞) ∪ {∞}: (1.1) is oscillatory.

(ii) Assume that R ∪ {−∞} � P∗ < P ∗ ∈ R ∪ {∞}. In this case, there are no q-Karamata
functions among positive solutions of (1.1). Moreover, we distinguish the following subcases:

(a) P∗ ∈ (ωq/q
α−1,∞) ∪ {∞}: (1.1) is oscillatory.

(b) P∗ ∈ {−∞} ∪ (−∞, ωq/q
α−1]: (1.1) is either oscillatory (this can be guaranteed, e.g., by

P ∗ > (1 + q1−α)/(q − 1)α or by p > 0 and P ∗ ≥ 1/(q − 1)α) or nonoscillatory (this can be
guaranteed, e.g., by tαp(t) ≤ ωq/q

α−1 for large t). If, in addition to nonoscillation of (1.1),
it holds P∗ > −∞, then all its positive solutions are q-regularly bounded, but there is no
q-regularly varying solution. If P∗ = −∞, then there is no q-regularly bounded or q-rapidly
varying solution.

4. Concluding Remarks

(i) We start with some remarks to Kneser type criteria. As a by product of Theorem 3.1(i) we
get the following nonoscillation Kneser type criterion: if limt→∞t

αp(t) < ωq/q
α−1, then (1.1) is

nonoscillatory. However, its better variant is known (it follows from amore general time-scale
case involving Hille-Nehari type criterion [15]), where the sufficient condition is relaxed to
lim supt→∞t

αp(t) < ωq/q
α−1. The constant ωq/q

α−1 is sharp, since lim inft→∞t
αp(t) > ωq/q

α−1

implies oscillation of (1.1), see [15]. But no conclusion can be generally drawn if the equality
occurs in these conditions. The above lim sup nonoscillation criterion can be alternatively
obtained also from the observation presented at the beginning of the proof of Theorem 3.1(ii)
involving the Euler type q-difference equation. And it is worthy of note that the conclusion of
that observation can be reached also when modifying the proof of Hille-Nehari type criterion
in [15]. A closer examination of the proof of Theorem 3.1(iv) shows that a necessary condition
for nonoscillation of (1.1) is −(q − 1)αlim supt→∞t

αp(t) ≥ −q1−α − 1. Thus we have obtained
quite new Kneser type oscillation criterion: if lim supt→∞t

αp(t) > (1 + q1−α)/(q − 1)α, then
(1.1) is oscillatory. If p is eventually positive, then the constant on the right-hand side can be
improved to 1/(q − 1)α and the strict inequality can be replaced by the nonstrict one (this
is because of q-regular boundedness of possible positive solutions). A continuous analog
of this criterion is not known, which is quite natural since 1/(q − 1)α → ∞ as q → 1.
Compare these results with the Hille-Nehari type criterion, which was proved in general
setting for dynamic equations and time-scales, and is valid no matter what the graininess is
(see [15]); in q-calculus it reads as follows: if p ≥ 0 and lim supt→∞t

α−1 ∫∞
t p(s)dqs > 1, then

(1.1) is oscillatory. This criterion holds literally also in the continuous case. Finally note that,
in general, lim supt→∞t

α−1 ∫∞
t p(s)dqs ≤ lim supt→∞ − [1 − α]qtαp(t).

(ii) The results contained in Theorem 3.1 can understood at least in the three following
ways:

(a) As a q-version of the continuous results for (1.2) from [5]. However, there are
several substantial differences: The conditions in the continuous case are (and
somehow must be) in the integral form (see also the item (iii) of this section); there
is a different approach in the proof (see also the item (iv) of this section); the rapid
variation has not been treated in such detail in the continuous case; in the case of the
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existence of the double root, we show that all (and not just some) positive solutions
are q-regularly varying under quitemild assumptions; for positive solutions to be q-
regularly bounded we obtain quite simple and natural sufficient and also necessary
conditions.

(b) As a half-linear extension of the results for D2
qy(t) + p(t)y(qt) = 0 from [1]. In

contrast to the linear case, in the half-linear case a reduction of order formula is
not at disposal. Thus to prove that there are two q-regularly varying solutions of
two different indices we need immediately to construct both of them. Lack of a
fundamental like system for half-linear equations causes that, for the time being,
we are not able to show that all positive solutions are q-regularly varying. This is
however much easier task when p(t) < 0, see [3].

(c) As a generalization of the results from [3] in the sense of no sign condition on the
coefficient p.

(iii) From the continuous theory we know that the sufficient and necessary conditions
for regularly or rapidly varying behavior of solutions to (1.2) are in terms of limit behavior of
integral expressions, typically tα−1

∫∞
t p(s)ds or tα−1

∫λt
t p(s)ds. In contrast to that, in q-calculus

case the conditions have nonintegral form. This is the consequence of specific properties
of q-calculus: one thing is that we use a different approach which does not apply in the
continuous case. Another thing is that the limit limt→∞t

α−1 ∫∞
t p(s)dqs can be expressed in

terms of limt→∞t
αp(t) (and vice versa), provided it exists. Such a relation does not work in

the continuous case.
(iv)As already said, our approach in the proof of Theorem 3.1 is different fromwhat is

known in the continuous theory. Our method is designed just for q-difference equations and
roughly speaking, it is based on rewriting a q-difference equation in terms of the fractions
which appear in Definition 2.2. Such a technique cannot work in the continuous case. Since
this method uses quite natural and simple relations (which are possible thanks to the special
structure of qN0), we believe that it will enable us to prove also another results which are
q-versions of existing or nonexisting continuous results; in the latter case, such results may
serve to predict a possible form of the continuous counterpart, which may be difficult to
handle directly. We just take, formally, the limit as q → 1+.
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