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We discuss thermodynamical restrictions for a linear constitutive equation containing fractional
derivatives of stress and strain of different orders. Such an equation generalizes several known
models. The restrictions on coefficients are derived by using entropy inequality for isothermal
processes. In addition, we study waves in a rod of finite length modelled by a linear fractional
constitutive equation. In particular, we examine stress relaxation and creep and compare results
with the quasistatic analysis.

1. Introduction

Fractional calculus is intensively used to describe various phenomena in physics and engi-
neering. We mention just few: diffusion and heat conduction processes [1, 2], damping in
inelastic bodies [3], thermoelasticity [4], dissipative bending of rods [5], and concrete behav-
ior of rods [6].

Generalizations of classical equations of mathematical physics in order to include frac-
tional derivatives, can be conducted in several ways. In the first approach, one changes the
ordinary and partial integer order derivatives with the fractional ones in the relevant system
of equations. Often, in this approach, the physical meaning of the newly defined terms with
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fractional derivatives might become unclear. In the second approach, one defines Lagrangian
density function in which the integer order derivatives are replaced with fractional ones. In
the next step, such a modified Lagrangian is used in the Hamilton principle (minimization of
action integral) to obtain a system of the Euler-Lagrange equations, that describes the process
(cf. [7, 8]). Although this variational approach have more sound physical meaning, it is not
frequently used in applications since it, in principle, leads to equations with both left and
right fractional derivatives. In both methods, the obtained equations have to satisfy require-
ments following from the Second Law of Thermodynamics, often expressed in the form of the
Clausius-Duhamel inequality (see e.g., [9, 10]).

In this work we propose a new model for linear viscoelastic body (obtained from the
one-dimensional model) with an arbitrary number of springs and dashpots (see e.g., [11,
page 28]) by replacing integer order derivatives with the Riemann-Liouville derivatives of
real order (the first approach). Thus, we consider the class of constitutive equations of the
form

N∑

n=0

an 0D
αn

t σ =
M∑

m=0

bm 0D
βm
t ε, t > 0. (1.1)

Here σ denotes the Cauchy stress, ε the strain at the time instant t, while 0D
η
t , η ∈ [0, 1],

denotes the operator of the left Riemann-Liouville fractional derivation. Recall, for η ∈ [0, 1],
the left ηth order Riemann-Liouville fractional derivative 0D

η
t y of a function y ∈ AC([0, T]),

T > 0, is defined as

0D
η
t y(t) :=

1
Γ
(
1 − η

)
d

dt

∫ t

0

y(τ)
(t − τ)η

dτ, t > 0, (1.2)

where Γ is the Euler gamma function and AC([0, T]), T > 0, denotes the space of absolutely
continuous functions (for a detailed account on fractional calculus see e.g., [12]). For technical
purposes, the orders of the fractional derivatives in (1.1) are assumed to satisfy

0 ≤ α0 < α1 < · · · < αn < · · · < αN ≤ 1, 0 ≤ β0 < β1 < · · · < βm < · · · < βM ≤ 1. (1.3)

Also, in (1.1), the coefficients {an}n=0,...,N , {bm}m=0,...,M have the physical meaning of relaxation
times and are assumed to be given. Many known constitutive equations of one-dimensional
viscoelasticity are included as special cases of (1.1). For example, the choice α0 = β0 = 0, α1 =
β1 = 1, a0 = b0 = 1, a1 = a and b1 = b, and all other coefficients being equal to zero, leads to the
classical Zener model (see [13]). If a0 = b0 = 1, α0 = β0 = 0, a1 = a, b1 = b, α1 = β1 = α, where
α ∈ [0, 1], and all other coefficients vanishing, then one has the generalized Zener model
(see [9]). It is known that the Clausius-Duhamel inequality in both cases restricts constants
a and b so that a ≤ b. However, we are not aware of restrictions on coefficients and orders of
derivatives in generalized constitutive equation given by (1.1). Thus, in Section 2 of this work
we shall derive these restrictions.

In the second part of this work, we chose one specific equation of the type (1.1), pro-
posed in [14]. Namely, the constitutive equation takes the form

(
1 +

a

b 0D
α−β
t

)
σ(x, t) = E

(
a 0D

α
t +c 0D

γ
t +

ac

b 0D
α+γ−β
t

)
ε(x, t), x ∈ [0, L], t > 0, (1.4)
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where E is the generalized Young modulus (positive constant having dimension of stress), a,
b, and c are given positive constants, while 0 < β < α < γ < 1/2. It should be stressed that
in [14] there is no discussion concerning restrictions on the parameters a, b, c, α, β, and γ .
Instead, only a, b, c ≥ 0, 0 ≤ β < α ≤ 1 and 0 ≤ γ ≤ 1 were assumed. We will show, by the use
of the method presented in [10], that conditions a, b, c ≥ 0, and 0 < β < α < γ < 1/2 guarantee
that the dissipation inequality is satisfied. The constitutive equation of the form (1.4) is
obtained in [14] via the rheological model that generalizes the classical Zener rheological
model by substituting spring and dashpot elements by fractional elements. It is assumed
that the stress-strain relation for the fractional element is given by σ(t)= 0D

η
t ε, t > 0, where

η ∈ [0, 1]. We refer to [14] for more details of the derivation, creep compliance, and relaxation
modulus of (1.4).

The constitutive equation (1.4) actually describes a viscoelastic fluid body. For such
a body of finite dimension wewill analyze the wave propagation as well as two characteristic
properties of the material: stress relaxation and creep. In this respect, the present work is
a continuation of previous investigations (cf. [15–18]), wherewaves in viscoelastic solid body
have been studied. We will consider the equation of motion of one-dimensional continuous
body as

∂

∂x
σ(x, t) = ρ

∂2

∂t2
u(x, t), x ∈ [0, L], t > 0, (1.5)

where ρ, σ, and u denote density, stress, and displacement of material at a point positioned
at x and time t, respectively, as well as the strain measure, defined by

ε(x, t) =
∂

∂x
u(x, t), x ∈ [0, L], t > 0. (1.6)

These two equations are coupledwith a constitutive equation (1.4). Wewill impose initial and
two types of boundary conditions to system (1.4), (1.5), and (1.6). The first type of boundary
conditions describes the rod fixed at one end (displacement is zero during the time), while
the other end is subject to a prescribed displacement. The second type describes the same
rod but its other end is subject to the prescribed stress. We will obtain solutions in both cases
in the convolution form of boundary conditions and the kernel of certain type. This setting
is appropriate for examining stress relaxation and creep processes. If the displacement of the
body’s free end is prescribed as theHeaviside function then one can examine stress relaxation,
while prescribing the stress of rod’s free end by the Heaviside function will enable the study
of creep.

Similar problems have already been studied by several authors. System (1.5) and (1.6)
coupled with the constitutive law of distributed-order type

∫1

0
φσ

(
η
)
0D

η
t σ(x, t)dη = E

∫1

0
φε

(
η
)
0D

η
t ε(x, t)dη, x ∈ [0, L], t > 0, (1.7)

with φσ(η) := aη and φε(η) := bη, a ≤ b, was considered in [15] for the case of the stress
relaxation in a viscoelastic material described by (1.7), and in [16] for the case of the creep
and forced vibrations in a viscoelastic material of the same type. Special cases of (1.7) were
studied in [19] (with φσ(η) := δ(η) + ταε δ(η − α) and φε(η) := E∞τ

β
ε δ(η − β), where δ is
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the Dirac distribution), and in [20] (with φσ(η) := δ(η) + ταε δ(η − α) and φε(η) := E0(δ(η) +
τασ δ(η−α)+τβσδ(η−β)). Also our constitutive law (1.4) follows from (1.7) by choosing φσ(η) :=
δ(η) + (a/b)δ(η − (α − β)) and φε(η) := aδ(η − α) + cδ(η − γ) + (ac/b)δ(η − (α + γ − β)).

We stress here that there is a strong connection between thermodynamical restrictions
on coefficients in (1.1) and conditions for the existence of the inverse Laplace transform of
equation of motion (see [17, 18]). It has been proved that the thermodynamical restrictions
guarantee the existence of solutions.

2. Thermodynamical Restrictions

In this section we consider generalized linear fractional model and distributed-order frac-
tional model of a viscoelastic body and give thermodynamical restrictions on coefficients and
orders of fractional derivatives that appear in those models.

2.1. Generalized Linear Fractional Model

Our aim is to find restrictions on parameters of the model (1.1), that is, on {αn}n=0,...,N ,
{βm}m=0,...,M, {an}n=0,...,N , {bm}m=0,...,M, so that the generalized linear fractional model of a vis-
coelastic body satisfies the requirements of the Second Law of Thermodynamics.

Following the procedure analogous to the one presented in [13], we apply the Fourier
transform to (1.1) and obtain

σ̂(ω)
N∑

n=0

an(iω)αn = ε̂(ω)
M∑

m=0

bm(iω)βm , ω ∈ R, (2.1)

where f̂(ω) = F[f(t)](ω) =
∫∞
−∞ f(t)e−iωtdt, ω ∈ R, and F[ 0D

η
t f](ω) = (iω)ηf̂(ω). Writing

(2.1) in the form

σ̂(ω) = Ê(ω)ε̂(ω), ω ∈ R, (2.2)

with Ê being the complex modulus defined as

Ê(ω) :=
∑M

m=0 bm(iω)βm
∑N

n=0 an(iω)αn
, ω ∈ R, (2.3)

one uses the conditions (cf. [10, 13])

Re Ê(ω) ≥ 0, ∀ω > 0, (2.4)

Im Ê(ω) ≥ 0, ∀ω > 0, (2.5)

which follow from the Second Law of Thermodynamics in case of the isothermal process, in
order to obtain restrictions on parameters αn, βm, an, and bm.
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A straightforward calculation yields

Ê(ω) =
∑M

m=0 bmω
βm cos

(
βmπ/2

)
+ i
∑M

m=0 bmω
βm sin

(
βmπ/2

)

∑N
n=0 anωαn cos(αnπ/2) + i

∑N
n=0 anωαn sin(αnπ/2)

. (2.6)

Introducing Ê′ as

Ê′(ω) = Ê(ω)

∣∣∣∣∣

N∑

n=0

an(iω)αn

∣∣∣∣∣

2

, (2.7)

one obtains

Re Ê′(ω) =

(
N∑

n=0

anω
αn cos

αnπ

2

)(
M∑

m=0

bmω
βm cos

βmπ

2

)

+

(
N∑

n=0

anω
αn sin

αnπ

2

)(
M∑

m=0

bmω
βm sin

βmπ

2

)
,

Im Ê′(ω) =

(
N∑

n=0

anω
αn cos

αnπ

2

)(
M∑

m=0

bmω
βm sin

βmπ

2

)

−
(

N∑

n=0

anω
αn sin

αnπ

2

)(
M∑

m=0

bmω
βm cos

βmπ

2

)
.

(2.8)

Since αn, βm ∈ [0, 1], n = 0, 1, . . . ,N, m = 0, 1, . . . ,M, we have that αnπ/2, βmπ/2 ∈
[0, π/2], and consequently, sine and cosine of those angles are positive. Therefore, assuming
an, bm ≥ 0 we obtain that Re Ê′(ω) ≥ 0, and hence (2.4) is satisfied. In the sequel we will
restrict our attention to this case (i.e., an, bm ≥ 0).

After a straightforward calculation of (2.8) one concludes that (2.5) holds if and only
if

Im Ê′(ω) = −
∑

n∈{0,1,...,N}
m∈{0,1,...,M}

ωαn+βm sin

(
αn − βm

)
π

2
anbm ≥ 0, ∀ω > 0. (2.9)

Lemma 2.1. Let (1.3) hold and an, bm ≥ 0, n = 0, 1, . . . ,N,m = 0, 1, . . . ,M. Suppose that αN /= βM.
Then a necessary condition for (2.9) is that αN < βM.

In other words, the highest order of fractional derivatives of stress in (1.1) could not be greater
than the highest order of fractional derivatives of strain.

Proof. We observe that for large ω the sign of Im Ê′(ω) coincides with the sign of the term in
the sum on the right-hand side of (2.9) with the largest power of ω. It follows from (1.3) that
the latter is achieved for αN and βM. Therefore, in order that Im Ê′(ω) > 0, αN has to be less
than βM, as claimed.
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Remark 2.2. (i) Similarly as in Lemma 2.1 one can prove that if αN = βM then a necessary
condition becomes αn < βm, for the largest αn and βm which do not coincide.

(ii) A similar conclusion for a particular problem with the constitutive equation of the
form (1.1) has been obtained in [21].

Example 2.3. Equation of the form a0σ + aα 0D
α
t σ = b0ε, 0 < α < 1, cannot be a constitutive

equation of a viscoelastic body. It does not obey the Second Law of Thermodynamics. Indeed,
(2.9) reduces to −ωα sin(απ/2)aαb0, which is strictly less than zero for all ω > 0.

For practical purposes it can happen that the condition (2.9) is too general and thus
hardly applicable to concrete problems. Therefore, it will be useful to extract from (2.9) par-
ticular conditions on parameters an, bm, αn and βm which guarantee that (2.5) is satisfied.We
will separately consider several possibilities:

(1) αn /= βm, for all n, m, that is, there are N + 1 and M + 1 terms of different order in
(1.1).

Since we assumed that an, bm ≥ 0, we can choose the orders of fractional derivatives as
αn ≤ βm, for all n,m, so that all sin((αn−βm)π/2) are negative, and consequently Im Ê(ω) ≥ 0.
This, together with (1.3), further leads to the following condition:

0 ≤ α0 < α1 < · · · < αn < · · · < αN < β0 < β1 < · · · < βm < · · · < βM ≤ 1. (2.10)

In other words, an, bm ≥ 0 and (2.10) are sufficient conditions for (2.5).

Remark 2.4. Note that the constitutive equation (1.4) belongs to this class. Indeed, by setting
N = 1, a0 = 1, α0 = 0, a1 = a/b, α1 = α − β, M = 2, b0 = Ea, β0 = α, b1 = Ec, β1 = γ ,
b2 = Eac/b, β2 = α + γ − β in (1.1)we obtain (1.4). Thermodynamical restrictions are satisfied
since constants E, a, b, c are positive, while (2.10) in this case reads

0 ≤ α − β < α < γ < α + γ − β ≤ 1, (2.11)

and is satisfied according to assumption 0 < β < α < γ < 1/2.

(2) M > N and αi = βi, i = 0, 1, . . . ,N, that is, there are N + 1 first terms of the same
order and M −N terms left in (1.1).

Then (2.9) reduces to

Im Ê′(ω) =
∑

i,j∈{0,1,...,N},i<j
ωαi+αj sin

(
αj − αi

)
π

2
(
aibj − ajbi

)

−
∑

i∈{0,1,...,N},m>N

ωαi+βm sin

(
αi − βm

)
π

2
aibm ≥ 0 ∀ω > 0.

(2.12)
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We are interested in a special case when each term in the above sum is nonnegative. Then the
following should hold:

ai

bi
≥ aj

bj
, ∀i, j ∈ {0, 1, . . . ,N} : i < j,

αi ≤ βm, ∀i ∈ {0, 1, . . . ,N}, m > N,

(2.13)

which implies that

a0

b0
≥ a1

b1
≥ · · · ≥ aN

bN
≥ 0,

0 ≤ α0 < α1 < · · · < αN < βN+1 < · · · < βM ≤ 1.
(2.14)

(3) N > M and αN−M+i = βi, i = 0, 1, . . . ,M, that is, there are M + 1 last terms of the
same order and N −M terms left in (1.1).

Then (2.9) reduces to

Im Ê′(ω) = −
∑

n<N−M,i∈{0,1,...,M}
ωαn+αN−M+i sin

(αn − αN−M+i)π
2

anbi

+
∑

i,j∈{0,1,...,M},i<j
ωβi+βj sin

(
βj − βi

)
π

2
(
aN−M+ibj − aN−M+jbi

) ≥ 0, ∀ω > 0.

(2.15)

Again, we concentrate on a special case when each term in the above sum is nonnegative. By
assumption (1.3) it follows that all terms in the first part of the sum are positive. Thus,

aN−M+i

bi
≥ aN−M+j

bj
, ∀i, j ∈ {0, 1, . . . ,M} : i < j, (2.16)

which implies

aN−M
b0

≥ aN−M+1

b1
≥ · · · ≥ aN

bM
≥ 0. (2.17)

(4) N = M and αi = βi, i = 0, 1, . . . ,N, that is, there are N + 1 terms of the same order
on both sides of (1.1).

In this case (2.9) becomes

Im Ê′(ω) =
∑

i,j∈{0,1,...,N},i<j
ωαi+αj sin

(
αj − αi

)
π

2
(
aibj − ajbi

) ≥ 0, ∀ω > 0. (2.18)
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As in the previous cases, we look for those parameters for which all terms in the above sum
are nonnegative. Hence, we have to restrict our attention only to those parameters an, bm ≥ 0
which in addition satisfy

ai

bi
≥ aj

bj
, ∀i, j : i < j. (2.19)

This implies that

a0

b0
≥ a1

b1
≥ · · · ≥ aN

bN
≥ 0. (2.20)

Remark 2.5. It can be shown that in other cases which are not listed above (e.g., when there
are K < min{N,M} terms of the same order in (1.1)) it is not possible to make all terms in
(2.9) nonnegative simultaneously, thus it is more difficult to find some particular conditions
on parameters an, bm, αn, and βm which implies (2.5).

2.2. Distributed-Order Fractional Model

The constitutive equation (1.1) can be generalized by (1.7), and further, if the integrals in (1.7)
are interpreted in the distributional setting as

〈∫

suppφ
φ(α) 0D

α
t hdα, ϕ(t)

〉
:=
〈
φ(α),

〈
0D

α
t h, ϕ(t)

〉〉
, ϕ ∈ D(R), (2.21)

then (1.1) is generalized by

〈
φσ(α),

〈
0D

α
t σ, ϕ(t)

〉〉
=
〈
φε(α),

〈
0D

α
t ε, ϕ(t)

〉〉
, ϕ ∈ D(R) (2.22)

(cf. [22]). Here φσ and φε are positive integrable functions of α, α ∈ [0, 1], or distributions
with compact support in [0, 1], and ϕ denotes a test function belonging to the space D(R) of
compactly supported smooth functions on R.

Notice that by setting φσ(α) :=
∑N

n=0 anδ(α − αn), and φε(α) :=
∑M

m=0 bmδ(α − βm) one
obtains (1.1).

In the sequel, we will consider φσ(α) := aα and φε(α) := bα and look for the restrictions
on a and b. Then constitutive equation (1.7) becomes

∫1
0 a

α
0D

α
t σdα =

∫1
0 b

α
0D

α
t εdα, t > 0.

Interpreting these integrals as the Riemann sums, one obtains

N∑

n=0

aαn

0D
αn

t σΔαn =
N∑

n=0

bαn

0D
αn

t εΔαn, (2.23)

where N → ∞ and Δαn → 0. Putting an := aαnΔαn and bn = bαnΔαn, one obtains (1.1) with
N = M and all terms of the same order.
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Taking a, b > 0 we have that (2.4) holds, while, as in the case (4) above (with equal
number of terms of the same order on both sides of (1.1)), condition

(a
b

)αi ≥
(a
b

)αj

, ∀i, j : i < j, (2.24)

provides validity of (2.5). Since αi ≤ αj , for all i, j, i < j, the latter is equivalent to

a

b
< 1, that is, a < b. (2.25)

3. A Model of Viscoelastic Body of Finite Length

In this section we analyze wave propagation in a viscoelastic rod of finite length. The rod
is made of a viscoelastic material described by a fractional-type constitutive equation (1.4),
which is a special case of generalized linear fractional model (1.1). In fact, we will study an
initial boundary value problem for system (1.4), (1.5), and (1.6).

3.1. Convolution Form of Solutions

Consider system (1.4), (1.5), and (1.6) supplied with initial conditions

u(x, 0) = 0,
∂

∂t
u(x, 0) = 0, σ(x, 0) = 0, ε(x, 0) = 0, x ∈ [0, L], (3.1)

as well as with two types of boundary conditions:

u(0, t) = 0, u(L, t) = Υ(t), t ∈ R,

u(0, t) = 0, σ(L, t) = Σ(t), t ∈ R.
(3.2)

Functions Υ and Σ are locally integrable functions supported in [0,∞). Note that if Υ = Υ0H
we have the case of stress relaxation, while if Σ = Σ0H we have the case of creep, where H is
the Heaviside function.

Introducing dimensionless quantities

x =
x

L
, t =

t

L
√
ρ/E

, u =
u

L
, σ =

σ

E
, Υ =

Υ
L
, Σ =

Σ
E
,

a =
a

(
L
√
ρ/E

)α , b =
b

(
L
√
ρ/E

)β , c =
c

(
L
√
ρ/E

)γ ,
(3.3)
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and using the fact that fractional derivatives are transformed as 0D
η

t
u(t) = (L

√
ρ/E)

η

0D
η
t u(t)

(cf. [17, 23]), after omitting the bar over dimensionless quantities, we obtain the following
system: x ∈ [0, 1], t > 0,

∂

∂x
σ(x, t) =

∂2

∂t2
u(x, t),

ε(x, t) =
∂

∂x
u(x, t),

(
1 +

a

b 0D
α−β
t

)
σ(x, t) = E

(
a 0D

α
t +c 0D

γ
t +

ac

b 0D
α+γ−β
t

)
ε(x, t).

(3.4)

System (3.4) is subject to initial

u(x, 0) = 0,
∂

∂t
u(x, 0) = 0, σ(x, 0) = 0, ε(x, 0) = 0, x ∈ [0, 1], (3.5)

and two types of boundary conditions

u(0, t) = 0, u(1, t) = Υ(t), t ∈ R, (3.6)

u(0, t) = 0, σ(1, t) = Σ(t), t ∈ R (3.7)

as described above.
Solutions of the above system will be determined by the Laplace transform method.

Recall, the Laplace transform of f ∈ L1
loc(R), f ≡ 0 in (−∞, 0), and |f(t)| ≤ Meat, for some

M > 0, a ∈ R and t ≥ 0, is defined by

f̃(s) = L[f(t)](s) :=
∫∞

0
e−stf(t)dt, Re s > a. (3.8)

Thus, applying the Laplace transform to (3.4) and (3.5), one obtains

∂

∂x
σ̃(x, s) = s2ũ(x, s),

ε̃(x, s) =
∂

∂x
ũ(x, s),

(
1 +

a

b
sα−β

)
σ̃(x, s) =

(
asα + csγ +

ac

b
sα+γ−β

)
ε̃(x, s).

(3.9)

System (3.9) reduces to

∂2

∂x2
ũ(x, s) − (sM(s))2ũ(x, s) = 0, x ∈ [0, 1], s ∈ D, (3.10)
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where

M(s) :=

√
1 + (a/b)sα−β

asα + csγ + (ac/b)sα+γ−β
=

1√
asα

√√√√ 1 + (a/b)sα−β

1 + (c/a)sγ−α + (c/b)sγ−β
. (3.11)

It has a solution

ũ(x, s) = C1(s)exsM(s) + C2(s)e−xsM(s), x ∈ [0, 1], s ∈ D, (3.12)

where C1 and C2 are functions of s which will be determined from the boundary conditions.
Since the power function sη is analytic on the complex plane except the branch cut along the
negative axis (including the origin) we take D := C \ (−∞, 0] to be the domain for variable s
in (3.9). Applying either (3.6)1 or (3.7)1, we obtain C1 = −C2 =: C, and thus

ũ(x, s) = C(s)
(
exsM(s) − e−xsM(s)

)
, x ∈ [0, 1], s ∈ C \ (−∞, 0]. (3.13)

From (3.9) and (3.11) it follows that

σ̃(x, s) =
1

M2(s)
∂

∂x
ũ(x, s), x ∈ [0, 1], s ∈ C \ (−∞, 0 ]. (3.14)

As announced in Section 1 we will separately seek solutions in different cases: dis-
placement u and stress σ in the case of prescribed displacement (such as e.g., stress relax-
ation), and displacement u in the case of prescribed stress (e.g., creep). For the former we
supply to the system boundary conditions (3.6), while for the latter we assume (3.7). In the
sequel we derive convolution forms of solutions in all these cases.

In the case of prescribed displacement Υ, substituting (3.13) into (3.12) and using (3.6),
one obtains

ũ(x, s) = Υ̃(s)P̃(x, s), x ∈ [0, 1], s ∈ C \ (−∞, 0 ], (3.15)

where

P̃(x, s) :=
sinh(xsM(s))
sinh(sM(s))

, x ∈ [0, 1], s ∈ C \ (−∞, 0 ]. (3.16)

Clearly, P(1, t) = δ(t), t ∈ R.
Since Υ and P are supported in [0,∞), displacement u is given by

u(x, t) = Υ(t) ∗ P(x, t), x ∈ [0, 1], t ∈ R, (3.17)

u(x, t) = 0, x ∈ [0, 1], t < 0, (3.18)
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where ∗ denotes the convolution with respect to t. Recall, if f, g ∈ L1
loc(R), suppf, g ⊂ [0,∞),

then (f ∗ g)(t) := ∫ t0 f(τ)g(t− τ)dτ , t ∈ R. Explicit calculation of (3.17)will be done by the use
of the Laplace inversion formula applied to (3.15).

Further, from (3.14), (3.15), and (3.16) it follows that

σ̃(x, s) = sΥ̃(s)T̃(x, s), x ∈ [0, 1], s ∈ C \ (−∞, 0 ], (3.19)

where

T̃(x, s) =
cosh(xsM(s))

M(s) sinh(sM(s))
, x ∈ [0, 1], s ∈ C \ (−∞, 0 ]. (3.20)

Applying the Laplace inversion formula to (3.19)we obtain

σ(x, t) =
d

dt
(Υ(t) ∗ T(x, t)), x ∈ [0, 1], t ∈ R, (3.21)

where the derivative is understood in the sense of distributions. Again, σ(x, t) = 0 for x ∈
[0, 1], t < 0.

In the case of prescribed stress Σ, using (3.14) at x = 1 and (3.7), we obtain

∂

∂x
ũ(1, s) = Σ̃(s)M2(s), s ∈ C \ (−∞, 0 ]. (3.22)

This combined with (3.13) gives

ũ(x, s) = Σ̃(s)Q̃(x, s), x ∈ [0, 1], s ∈ C \ (−∞, 0 ], (3.23)

where

Q̃(x, s) =
1
s
M(s)

sinh(xsM(s))
cosh(sM(s))

, x ∈ [0, 1], s ∈ C \ (−∞, 0 ]. (3.24)

Again, applying the Laplace inversion formula to (3.23), the displacement reads

u(x, t) = Σ(t) ∗Q(x, t), x ∈ [0, 1], t > 0, (3.25)

u(x, t) = 0, x ∈ [0, 1], t < 0. (3.26)

Remark 3.1. As in [15] one can show that P , T , and Q are real-valued, locally integrable func-
tions on R, supported in [0,∞) and smooth for t > 0.

3.2. Explicit Forms of Solutions

This subsection is devoted to the calculation of inverse Laplace transforms of certain distri-
butions and functions introduced above. We begin with examining some basic properties of
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M given in (3.11), which will be important for further investigations. In the sequel we shall
write A(x) ∼ B(x) if limx→∞(A(x)/B(x)) = 1.

Proposition 3.2. Let M be the function defined by (3.11). Then

(i) M is an analytic function on C \ (−∞, 0] if 0 < β < α < γ < 1.

(ii) For s ∈ C \ (−∞, 0], lim|s|→ 0M(s) = ∞, lim|s|→ 0sM(s) = 0, lim|s|→∞M(s) = 0, and
lim|s|→∞sM(s) = ∞.

Proof. (i) Since 1 + (a/b)sα−β /= 0 and 1 + (c/a)sγ−α + (c/b)sγ−β /= 0 if arg s ∈ (−π,π) and 0 <
β < α < γ < 1, it follows that the function M given in (3.11) is analytic on the complex plane
except the branch cut along the negative axis, that is, on C \ (−∞, 0].

(ii) Limits in (ii) can easily be calculated.

3.2.1. Determination of Displacement u in the Case of Prescribed Displacement Υ

To begin with, we examine properties of P̃ given by (3.16). P̃ has isolated singularities at Ps
(±)
n ,

n ∈ N, where Ps
(±)
n denotes solutions of the equation

sinh(sM(s)) = 0, that is, sM(s) = ±niπ. (3.27)

Let us examine their position and multiplicity.

Proposition 3.3. There are infinitely many complex conjugated solutions Ps
(±)
n , n ∈ N, of (3.27),

which all lie in the left complex half plane. Moreover, each Ps
(±)
n , n ∈ N, is a simple pole.

Proof. Let us square (3.27) and define

Φ(s, n) := (sM(s))2 + (nπ)2 = s2
1 + (a/b)sα−β

asα + csγ + (ac/b)sα+γ−β
+ (nπ)2. (3.28)

Writing s = Reiϕ it follows that

Φ
(
Reiϕ, n

)
= R2e2iϕ

1 + (a/b)Rα−βei(α−β)ϕ

aRαeiαϕ + cRγeiγϕ + (ac/b)Rα+γ−βei(α+γ−β)ϕ
+ (nπ)2

= R2(cos
(
2ϕ
)
+ i sin

(
2ϕ
))A + iB

C + iD
+ (nπ)2,

(3.29)
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where

A := 1 +
a

b
Rα−β cos

((
α − β

)
ϕ
)
,

B :=
a

b
Rα−β sin

((
α − β

)
ϕ
)
,

C := aRα cos
(
αϕ
)
+ cRγ cos

(
γϕ
)
+
ac

b
Rα+γ−β cos

((
α + γ − β

)
ϕ
)
,

D := aRα sin
(
αϕ
)
+ cRγ sin

(
γϕ
)
+
ac

b
Rα+γ−β sin

((
α + γ − β

)
ϕ
)
.

(3.30)

Real and imaginary parts of Φ are then given by

ReΦ
(
Reiϕ, n

)
=

R2

C2 +D2

[
(AC + BD) cos

(
2ϕ
)
+ (AD − BC) sin

(
2ϕ
)]

+ (nπ)2,

ImΦ
(
Reiϕ, n

)
=

R2

C2 +D2

[
(AC + BD)sin

(
2ϕ
) − (AD − BC)cos

(
2ϕ
)]
,

(3.31)

AC + BD = aRα cos
(
αϕ
)
+ cRγ cos

(
γϕ
)
+
a2

b
R2α−β cos

(
βϕ
)

+
a2c

b2
R2(α−β)+γ cos

(
γϕ
)
+ 2

ac

b
Rα+γ−β cos

((
α − β

)
ϕ
)
cos
(
γϕ
)
,

AD − BC = aRα sin
(
αϕ
)
+ cRγ sin

(
γϕ
)
+
a2

b
R2α−β sin

(
βϕ
)

+
a2c

b2
R2(α−β)+γ sin

(
γϕ
)
+ 2

ac

b
Rα+γ−β cos

((
α − β

)
ϕ
)
sin
(
γϕ
)
.

(3.32)

Let (R, ϕ) be a solution to Φ(s, n) = 0 (or equivalently, ReΦ = ImΦ = 0). Then
changing ϕ → −ϕ, we again obtain that ReΦ = ImΦ = 0, which implies that solutions of
(3.27) are complex conjugated.

Further, we will prove that the function Φ has no zeros in the half plane arg s ∈
[0, π/2]. For that purpose we will use the argument principle. Recall, if Φ is an analytic
function inside and on a regular closed curve c and nonzero on c, then the number of zeros
of Φ is given by NZ = (1/2π)Δ argΦ(s). Let γ = γa ∪ γb ∪ γc be parametrized as

γa : s = x, x ∈ [0, R],

γb : s = Reiϕ, ϕ ∈
[
0,

π

2

]
,

γc : s = xeiπ/2, x ∈ [0, R],

(3.33)
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and let R → ∞. Along γa functionΦ becomes a real-valued function, henceΔ argΦ(s, n) = 0.
Along γb we have that AC + BD, AD − BC ≥ 0 for ϕ ∈ [0, π], since sin(ηϕ), cos(ηϕ) > 0, for
η ∈ {α, β, γ, α − β} ⊂ (0, 1/2), and ϕ ∈ [0, π]. Therefore, (3.31) imply that

ReΦ
(
Reiϕ, n

)
> 0, ϕ ∈

[
0,

π

4

]
,

ImΦ
(
Reiϕ, n

)
> 0, ϕ ∈

[π
4
,
π

2

] (3.34)

(inequalities at boundary points are easily checked by inserting them into (3.31)). Along γc,
we obtain

ReΦ
(
xeiπ/2, n

)
= − R2

C2 +D2

∣∣∣∣∣
R=x,ϕ=π/2

(AC + BD)|R=x,ϕ=π/2 + (nπ)2, (3.35)

ImΦ
(
xeiπ/2, n

)
=

R2

C2 +D2

∣∣∣∣∣
R=x,ϕ=π/2

(AD − BC)|R=x,ϕ=π/2 > 0. (3.36)

From (3.34) and (3.36), we may now conclude that along γb and γc,

Δ argΦ(s, n) = 0. (3.37)

Indeed, this follows from the following. Along γb, in the case ϕ ∈ [0, π/4], ImΦ(Reiϕ, n) can
change its sign, but ReΦ(Reiϕ, n) > 0, while for ϕ ∈ [π/4, π/2], ImΦ(Reiϕ, n) > 0. Along
γc, ImΦ(xeiπ/2, n) > 0. Therefore, there is no change in the argument of Φ along the whole
γ , which implies that Φ has no zeros for ϕ ∈ [0, π/2]. This further implies that (3.27) has no
solutions in the right complex half plane, since its solutions are complex conjugated.

In order to prove that for fixed n ∈ N (3.27) has one solution (and its complex
conjugate), we again use function Φ and the argument principle. Consider now the contour
Γ = ΓA ∪ ΓB ∪ ΓC parametrized by

ΓA : s = xeiπ/2, x ∈ [0, R],

ΓB : s = Reiϕ, ϕ ∈
[π
2
, π
]
,

ΓC : s = xeiπ , x ∈ [0, R],

(3.38)

and let R → ∞. Along ΓA real and imaginary parts ofΦ are given by (3.35) and (3.36). Along
ΓB, using (3.31), we conclude that

ReΦ
(
Reiϕ, n

)
< 0, ϕ ∈

[
π

2
,
3π
4

]
, for R −→ ∞, and n fixed,

ImΦ
(
Reiϕ, n

)
< 0, ϕ ∈

[
3π
4
, π

]
.

(3.39)
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Along ΓC we have

ReΦ
(
Reiϕ, n

)
=

R2

C2 +D2

∣∣∣∣∣
R=x,ϕ=π

(AC + BD)|R=x,ϕ=π + (nπ)2 > 0,

ImΦ
(
Reiϕ, n

)
= − R2

C2 +D2

∣∣∣∣∣
R=x,ϕ=π

(AD − BC)|R=x,ϕ=π < 0.

(3.40)

Along ΓA we have that ImΦ > 0, while ReΦ changes its sign (since ReΦ(0, n) = (nπ)2 and
limx→∞ReΦ(xeiπ/2, n) = −∞, for fixed n ∈ N). Along the part of ΓB where ϕ ∈ [3π/4, π],
and along ΓC, ImΦ < 0. Also, limR→∞ReΦ(Rei3π/4, n) = −∞ and ImΦ(Rei3π/4, n) < 0. This
implies that the argument of Φ changes from 0 to 2π .

As a conclusion one obtains that along Γ

Δ arg Φ(s, n) = 2π, (3.41)

which implies, by the argument principle, that function Φ has exactly one zero in the upper
left complex plane, for each fixed n ∈ N. Since the zeros of Φ are complex conjugated, it
follows that Φ also has one zero in the lower left complex plane, for each fixed n ∈ N.

In the next proposition we examine behavior of simple poles Ps
(±)
n , n ∈ N.

Proposition 3.4. Solutions Ps
(±)
n , n ∈ N, of (3.27), are such that

Re
(
Ps

(±)
n

)
= R cosϕ ∼ 2−γ

√
c(nπ)2 cos

(
π

2 − γ

)
< 0,

Im
(
Ps

(±)
n

)
= R sinϕ ∼ ±2−γ

√
c(nπ)2 sin

(
π

2 − γ

)
,

(3.42)

as n → ∞.

Proof. Let us square (3.27) and insert Ps
(±)
n = Reiϕ, ϕ ∈ (−π,π). Then, after separation of real

and imaginary parts, we obtain

R2 cos
(
2ϕ
)
Re
(
M2

(
Reiϕ

))
− R2 sin

(
2ϕ
)
Im
(
M2

(
Reiϕ

))
= −(nπ)2, (3.43)

R2 sin
(
2ϕ
)
Re
(
M2

(
Reiϕ

))
+ R2 cos

(
2ϕ
)
Im
(
M2

(
Reiϕ

))
= 0. (3.44)

Using notation from the proof of Proposition 3.3 we can write

Re
(
M2

(
Reiϕ

))
=

AC + BD

C2 +D2
,

Im
(
M2

(
Reiϕ

))
=

BC −AD

C2 +D2
.

(3.45)
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Letting R → ∞, one has

Re
(
M2

(
Reiϕ

))
∼
(
a2c/b2

)
R2(α−β)+γ cos

(
γϕ
)

(a2c2/b2)R2(α−β)+2γ =
1

cRγ
cos
(
γϕ
)
,

Im
(
M2

(
Reiϕ

))
∼ −

(
a2c/b2

)
R2(α−β)+γ sin

(
γϕ
)

(a2c2/b2)R2(α−β)+2γ = − 1
cRγ

sin
(
γϕ
)
.

(3.46)

It now follows from (3.44) and (3.46) that

tg
(
2ϕ
)
= − Im

(
M2(Reiϕ

))

Re
(
M2

(
Reiϕ

)) ∼ tg
(
γϕ
)
=⇒ sin

((
2 − γ

)
ϕ
)

cos
(
2ϕ
)
cos
(
γϕ
) ∼ 0 =⇒ ϕ ∼ ± π

2 − γ
. (3.47)

Inserting (3.47) into (3.46), and subsequently into (3.43), we obtain

R2−γ

c
cos
(

2π
2 − γ

)
cos
(

γπ

2 − γ

)
+
R2−γ

c
sin
(

2π
2 − γ

)
sin
(

γπ

2 − γ

)
∼ −(nπ)2,

R ∼ 2−γ
√
c(nπ)2.

(3.48)

Thus, real and imaginary parts of Ps
(±)
n , as R → ∞, are as claimed.

Proposition 3.5. Let p ∈ (0, s0), s0 > 0. Then

M
(
p ± iR

) ∼ 1√
cRγ

e∓iγπ/4 (3.49)

as R → ∞.

Proof. Set μ :=
√
p2 + R2 and ν := arctan(±R/p). Then μ ∼ R and ν ∼ ±π/2, as R → ∞. By

(3.46), we have

M
(
μeiν

)
∼ 1
√
cμγ

e∓iγν/4, μ −→ ∞, (3.50)

as claimed.

In order to obtain the explicit form of solution u to initial-boundary value problem
(3.4), (3.5), and (3.6), it remains to calculate function P .
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R

Γ1
Γ2

Γ3

Γ4

Γ5
Γ6

Γε

s0

γ0

Re s

Im s

Figure 1: Integration contour Γ.

Theorem 3.6. The solution u to initial-boundary value problem (3.4), (3.5), and (3.6) is given by
(3.17), that is, u(x, t) = Υ(t) ∗ P(x, t), where P takes the form

P(x, t) =
1

2πi

∫∞

0

(
sinh

(
xqM

(
qe−iπ

))

sinh
(
qM

(
qe−iπ

)) − sinh
(
xqM

(
qeiπ

))

sinh
(
qM

(
qeiπ

))
)
e−qtdq

+
∞∑

n=1

[
Res

(
P̃(x, s)est,P s

(+)
n

)
+ Res

(
P̃(x, s)est,P s

(−)
n

)]
, t > 0.

(3.51)

The residues at simple poles Ps
(±)
n , n ∈ N, are given by

Res
(
P̃(x, s)est,P s

(±)
n

)
=
[

sinh(xsM(s))
(d/ds)[sinh(sM(s))]

est
]

s=P s
(±)
n

. (3.52)

Proof. Function P(x, t), x ∈ [0, 1], t > 0, will be calculated by integration over a suitable
contour. The Cauchy residues theorem yields

∮

Γ
P̃(x, s)estds = 2πi

∞∑

n=1

[
Res

(
P̃(x, s)est,P s

(+)
n

)
+ Res

(
P̃(x, s)est,P s

(−)
n

)]
, (3.53)

where Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γε ∪ Γ4 ∪ Γ5 ∪ Γ6 ∪ γ0 is such a contour that all poles lie inside the
contour Γ (see Figure 1).

First we show that the series of residues in (3.51) is convergent. By Proposition 3.4,

Ps
(±)
n are simple poles of P̃ , and therefore also simple poles of estP̃ . The residues in (3.53) can

be calculated as it is given in (3.52), so

Res
(
P̃(x, s)est,P s

(±)
n

)
=
[

1
(d/ds)(sM(s))

sinh(xsM(s))
cosh(sM(s))

est
]

s=P s
(±)
n

. (3.54)
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Using (3.27) we have that sinh(xsM(s)) = ±i sin(xnπ), while cosh(sM(s)) = (−1)n. Also, a
calculation gives that (d/ds)(sM(s)) = M(s) +M(s) ·A(s), where

A(s) := 1 +
(a/b)

(
α − β

)
sα−β

2
(
1 + (a/b)sα−β

) − aαsα + cγsγ + (ac/b)
(
α + γ − β

)
sα+γ−β

2
(
asα + csγ + (ac/b)sα+γ−β

) . (3.55)

Take now that Ps
(±)
n = Re±iϕ. Then

Res
(
P̃(x, s)est,P s

(±)
n

)
= (−1)n sin(nπx)

nπ

ReRtcosϕe±i(ϕ+Rtsinϕ)

A
(
Re±iϕ

) . (3.56)

Let n → ∞. Then also |Ps(±)n | → ∞, that is, R → ∞, and

∣∣∣A
(
Re±iϕ

)∣∣∣ −→ 1 − γ

2
. (3.57)

Further, it follows from Proposition 3.4 that

Re
(

Ps
(±)
n

)
= R cosϕ ∼ 2−γ

√
c(nπ)2 cos

(
π

2 − γ

)
≤ −Cn, for some C > 0, (3.58)

and by (3.48), R/n ∼ 2−γ√
cπ2 · nγ/(2−γ). Therefore, as n → ∞,

∣∣∣Res
(
P̃(x, s)est,P s

(+)
n

)
+ Res

(
P̃(x, s)est,P s

(−)
n

)∣∣∣

≤
∣∣∣∣∣
sin(nπx)

nπ

ReRt cosϕ

A
(
Re+iϕ

)

∣∣∣∣∣ +

∣∣∣∣∣
sin(nπx)

nπ

ReRt cosϕ

A
(
Re−iϕ

)

∣∣∣∣∣

≤ 1
π

R

n
e−Cnt

(
1∣∣A

(
Re+iϕ

)∣∣ +
1∣∣A

(
Re−iϕ

)∣∣

)

∼ 4
π
(
2 − γ

)
2−γ√

cπ2 · nγ/(2−γ)e−Cnt,

(3.59)

which implies the convergence of the sum of residues in (3.53).
It remains to calculate the integral over Γ in (3.53). Consider the integral along contour

Γ1 : s = p + iR, s0 > p > 0. Then

∣∣∣∣∣

∫

Γ1
P̃(x, s)estds

∣∣∣∣∣ ≤
∫s0

0

∣∣∣P̃
(
x, p + iR

)∣∣∣
∣∣∣e(p+iR)t

∣∣∣dp. (3.60)

Let R → ∞. In order to estimate |P̃(x, p ± iR)|, using Proposition 3.5, we write

M
(
p ± iR

) ∼ v ± iw, v =
1√
cRγ

cos
(γπ

4

)
, w = − 1√

cRγ
sin
(γπ

4

)
. (3.61)
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Then

∣∣∣P̃
(
x, p ± iR

)∣∣∣ ∼
∣∣∣∣∣
sinh

[
x
(
pv − Rw

) ± ix
(
pw + Rv

)]

sinh
[(
pv − Rw

) ± i
(
pw + Rv

)]

∣∣∣∣∣

≤ ex(pv−Rw) + e−x(pv−Rw)
∣∣epv−Rw − e−(pv−Rw)

∣∣

= e−(1−x)(pv−Rw) 1 + e−2x(pv−Rw)
∣∣1 − e−2(pv−Rw)

∣∣ −→ 0, as R −→ ∞.

(3.62)

The above convergence is valid since

pv − Rw = p
1√
cRγ

cos
(γπ

4

)
+ R

1√
cRγ

sin
(γπ

4

)
−→ ∞, as R −→ ∞. (3.63)

Therefore, according to (3.62), we have

lim
R→∞

∣∣∣∣∣

∫

Γ1
P̃(x, s)estds

∣∣∣∣∣ = 0. (3.64)

The similar argument is valid for the integral along Γ6, thus

lim
R→∞

∣∣∣∣∣

∫

Γ6
P̃(x, s)estds

∣∣∣∣∣ = 0. (3.65)

Next, we consider the integral along contour Γ2 : s = Reiϕ, π/2 < ϕ < π :

∣∣∣∣∣

∫

Γ2
P̃(x, s)estds

∣∣∣∣∣ ≤
∫π

π/2
R
∣∣∣e−R(1−x)e

iϕM(Reiϕ)
∣∣∣

∣∣∣∣∣
1 − e−2xRe

iϕM(Reiϕ)

1 − e−2ReiϕM(Reiϕ)

∣∣∣∣∣e
Rt cosϕdϕ. (3.66)

Since sM(s) → ∞ as |s| → ∞ (see Proposition 3.2 (ii)) and cosϕ ≤ 0 for ϕ ∈ [π/2, π], we
have

lim
R→∞

∣∣∣∣∣

∫

Γ2
P̃(x, s)estds

∣∣∣∣∣ ≤ lim
R→∞

∫π

π/2
R
∣∣∣e−R(1−x)e

iϕM(Reiϕ)
∣∣∣eRt cosϕdϕ = 0. (3.67)

The similar argument is valid for the integral along Γ5, thus

lim
R→∞

∣∣∣∣∣

∫

Γ5
P̃(x, s)estds

∣∣∣∣∣ = 0. (3.68)
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Since sM(s) → 0 as |s| → 0 (see Proposition 3.2 (ii)), the integration along contour Γε : s =
εeiϕ, π > ϕ > −π , gives

lim
ε→ 0

∣∣∣∣∣

∫

Γε
P̃(x, s)estds

∣∣∣∣∣ ≤ lim
ε→ 0

∫−π

π

ε

∣∣∣∣∣
sinh

(
xεeiϕM

(
εeiϕ

))

sinh
(
εeiϕM

(
εeiϕ

))

∣∣∣∣∣e
εt cosϕdϕ = 0. (3.69)

Integrals along parts of contour Γ3 : s = qeiπ , R > q > ε, Γ4 : s = qe−iπ , ε < q < R, and γ0 : s =
s0 + ir, −R < r < R, give

lim
R→∞
ε→ 0

∫

Γ3
P̃(x, s)estds =

∫∞

0

sinh
(
xqM

(
qeiπ

))

sinh
(
qM

(
qeiπ

)) e−qtdq,

lim
R → ∞
ε → 0

∫

Γ4
P̃(x, s)estds = −

∫∞

0

sinh
(
xqM

(
qe−iπ

))

sinh
(
qM

(
qe−iπ

)) e−qtdq,

lim
R→∞

∫

γ0

P̃(x, s)estds = 2πiP(x, t).

(3.70)

Equation (3.51) now follows from (3.53).

Corollary 3.7. In the case of stress relaxation, that is, when Υ(t) = Υ0H(t), Υ0 > 0, t ∈ R, the
solution takes the form

uH(x, t) = Υ0H(t) ∗ P(x, t), x ∈ [0, 1], t ∈ R. (3.71)

We will numerically examine it in the sequel.

3.2.2. Determination of Stress σ in the Case of Prescribed Displacement Υ

In Section 3.1 we determined stress σ (cf. (3.21)) that is a solution to (3.4), (3.5), and (3.6).
In order to obtain an explicit form of σ we need to calculate function T . As in previous
Section 3.2.1 it will be done by inversion of the Laplace transform of T̃ .

Function T̃ , which is given by (3.20), is analytic on the complex plane except the branch
cut (−∞, 0], and has simple poles at the same points as P̃ , that is, Ps

(±)
n , n ∈ N.

Using the similar arguments as in the proof of Theorem 3.6, one can prove the follow-
ing theorem.
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Theorem 3.8. The solution σ to initial-boundary value problem (3.4), (3.5), and (3.6) is given by
(3.21), that is, σ(x, t) = d/dt(Υ(t) ∗ T(x, t)), where T takes the form

T(x, t) =
1

2πi

∫∞

0

(
cosh

(
xqM

(
qeiπ

))

M
(
qeiπ

)
sinh

(
qM

(
qeiπ

)) − cosh
(
xqM

(
qe−iπ

))

M
(
qe−iπ

)
sinh

(
qM

(
qe−iπ

))
)
e−qtdq

+
∞∑

n=1

[
Res

(
T̃(x, s)est,P s

(+)
n

)
+ Res

(
T̃(x, s)est,P s

(−)
n

)]
, t > 0.

(3.72)

The residues at simple poles Ps
(±)
n , n ∈ N, are given by

Res
(
T̃(x, s)est,P s

(±)
n

)
=
[

cosh(xsM(s))
M(s)(d/ds)[sinh(sM(s))]

est
]

s=P s
(±)
n

. (3.73)

Corollary 3.9. Similarly, in the case of stress relaxation Υ = Υ0H we obtain the solution

σH(x, t) = Υ0T(x, t), x ∈ [0, 1], t > 0. (3.74)

In order to check our results for large times, we compare themwith the quasistatic case.
In the quasistatic case one uses only the constitutive equation (3.4)3, that is, the dynamics of
the process is neglected. Taking the Laplace transform of the constitutive equation we obtain
(3.9)2, and define the relaxation modulus G via its Laplace transform, as follows:

G(t) := L−1
[
G̃(s)

]
(t), t > 0,

G̃(s) :=
σ̃(QS)(s)
ε̃(QS)(s)

:=
asα + csγ + (ac/b)sα+γ−β

1 + (a/b)sα−β
, s ∈ C \ (−∞, 0 ].

(3.75)

Then the stress in the quasistatic case is

σ(QS) = G ∗ ε(QS). (3.76)

Following the proof of Theorem 3.6, we obtain that

G(t) =
1

2πi

∫∞

0

[
G̃
(
qe−iπ

)
− G̃

(
qeiπ

)]
e−qtdt. (3.77)

In the quasistatic case it holds that

u(x, t) = x · u(1, t), x ∈ [0, 1] t > 0, (3.78)

and consequently by (3.4),

ε(x, t) = u(1, t) =: ε(QS)(t), x ∈ [0, 1] t > 0. (3.79)
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Since according to boundary condition (3.6), u(1, t) = Υ(t), it follows from (3.76) that

σ(QS) = Υ ∗G, (3.80)

which, in the case of stress relaxation, that is, when Υ = Υ0H, Υ0 > 0, becomes

σ
(QS)
H = Υ0H ∗G. (3.81)

3.2.3. Determination of Displacement u in the Case of Prescribed Stress Σ

In Section 3.1 we determined displacement u (cf. (3.25)) that is a solution to (3.4), (3.5), and
(3.7). As above, we nowwant to find u explicitly, by calculating the inverse Laplace transform
of Q̃.

Function Q̃ given by (3.24) is analytic on the complex plane except the branch cut
(−∞, 0] and has isolated singularities at solutions Qs

(±)
n of the equation

cosh(sM(s)) = 0 that is, sM(s) = ±2n + 1
2

iπ, n ∈ N0. (3.82)

We state a proposition that is analogous to Propositions 3.3 and 3.4. The proof is
omitted since it follows the same lines as those of Propositions 3.3 and 3.4.

Proposition 3.10. (i) There are infinitely many complex conjugated solutions Qs
(±)
n , n ∈ N0, of

(3.82), which all lie in the left complex half plane. Moreover, each Qs
(±)
n , n ∈ N0, is a simple pole.

(ii) Solutions Qs
(±)
n , n ∈ N0, of (3.82), are such that

Re
(

Qs
(±)
n

)
= R cosϕ ∼ 2−γ

√

c

(
2n + 1

2
π

)2

cos
(

π

2 − γ

)
< 0,

Im
(

Qs
(±)
n

)
= R sinϕ ∼ ±2−γ

√

c

(
2n + 1

2
π

)2

sin
(

π

2 − γ

)
,

(3.83)

as n → ∞.

In the following theorem we calculate explicitly displacement u.

Theorem 3.11. The solution u to initial-boundary value problem (3.4), (3.5), and (3.7) is given by
(3.25), that is, u(x, t) = Σ(t) ∗Q(x, t), where Q takes the form

Q(x, t) =
1

2πi

∫∞

0

(
M
(
qe−iπ

)sinh
(
xqM

(
qe−iπ

))

cosh
(
qM

(
qe−iπ

)) −M
(
qeiπ

)sinh
(
xqM

(
qeiπ

))

cosh
(
qM

(
qeiπ

))
)

e−qt

q
dq

+
∞∑

n=0

[
Res

(
Q̃(x, s)est,Qs

(+)
n

)
+ Res

(
Q̃(x, s)est,Qs

(−)
n

)]
, t > 0.

(3.84)
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The residues at simple poles Qs
(±)
n , n ∈ N0, are given by

Res
(
Q̃(x, s)est,Qs

(±)
n

)
=
[
1
s
M(s)

sinh(xsM(s))
(d/ds)[cosh(sM(s))]

est
]

s=Qs
(±)
n

. (3.85)

Corollary 3.12. The case of creep is described by the boundary condition Σ(t) = Σ0H(t), Σ0 > 0,
t ∈ R, in which displacement u, given by (3.25), reads

u(t) = Σ0H(t) ∗Q(x, t), x ∈ [0, 1], t ∈ R. (3.86)

Similarly as in Section 3.2.2, we examine the quasistatic case that corresponds to
displacement u. Again, using only the constitutive equation (3.4)3 and its Laplace transform
(3.9)2, we define the creep compliance J via its Laplace transform as

J(t) := L−1
[
J̃(s)

]
(t), t > 0,

J̃(s) :=
ε̃(QS)(s)
σ̃(QS)(s)

:=
1 + (a/b)sα−β

asα + csγ + (ac/b)sα+γ−β
, s ∈ C \ (−∞, 0].

(3.87)

Strain measure in the quasistatic case now equals

ε(QS) = J ∗ σ(QS). (3.88)

Following the proof of Theorem 3.6 one obtains

J(t) =
1

2πi

∫∞

0

[
J̃
(
qe−iπ

)
− J̃
(
qeiπ

)]
e−qtdt. (3.89)

In the quasistatic case it holds that

u(x, t) = x · u(1, t) = x · u(QS)(t), x ∈ [0, 1], t > 0, (3.90)

and consequently by (3.4),

ε(QS) = u(QS). (3.91)

Also, σ(QS)(t) := σ(1, t) = Σ(t), t > 0, which is the boundary condition (3.7), hence by (3.88)
and (3.91),

u(QS) = Σ ∗ J. (3.92)

In the case of creep (cf. Corollary 3.12)we have

u
(QS)
H = Σ0H ∗ J. (3.93)
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Figure 2: Displacements uH(x, t) in a stress relaxation experiment as functions of time t at x ∈
{0.25, 0.5, 0.75} for t ∈ (0, 10).

0 1 2 3 4 5

t

0

0.2

0.4

0.6

0.8

1

u
H
(x
,t
)

x = 0.25

x = 0.5

x = 0.75

Figure 3: Displacements uH(x, t) in a stress relaxation experiment as functions of time t at x ∈
{0.25, 0.5, 0.75} for t ∈ (0, 5).

3.3. Numerical Examples

In this subsection we give several numerical examples of displacement uH and stress σH ,
given by (3.71) and (3.74), respectively, which correspond to the case of stress relaxation,
and examine solutions (3.86), which correspond to displacement u in the case of creep. In
addition, we investigate solutions uH , σH , and u for different orders of fractional derivatives.

Figure 2 presents displacements in a stress relaxation experiment, determined
according to (3.71), for three different positions. Parameters in (3.71) are chosen as follows:
Υ0 = 1, a = 0.2, b = 0.6, c = 0.45, α = 0.3, β = 0.1, and γ = 0.4. From Figure 2, one sees that
the displacements in the case of stress relaxation show damped oscillatory character and that
they tend to a constant value for large times, namely, limt→∞uH(x, t) = x, x ∈ [0, 1]. Figure 3
presents the same displacements as Figure 2, but close to initial time instant. It is evident that
there is a delay in displacement that increases as the point is further from the end where
the prescribed displacement is applied. This is a consequence of the finite wave propagation
speed.
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Figure 4: Displacements uH(x, t) in a stress relaxation experiment as functions of time t at x ∈
{0.75, 0.8, 0.85, 0.9, 0.95} for t ∈ (0, 5).
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Figure 5: Displacements uH(x, t) in a stress relaxation experiment as functions of time t at x = 0.5 for
t ∈ (0, 20).

Figure 4 presents the displacements uH of the points close to the end of the rod where
the sudden but afterwards constant displacement is applied (i.e., u(1, t) = H(t), t > 0).
One sees that the amplitudes of these points deform in shape so that they do not exceed
the prescribed value of the displacement of the rod’s free end.

In order to examine the influence of the orders of fractional derivatives in the
constitutive equation (1.4) on the displacement uH and stress σH in a stress relaxation
experiment, we plot the displacement uH and stress σH obtained by (3.71) and (3.74) for the
following sets of parameters (α, β, γ) ∈ {(0.1, 0.05, 0.15), (0.3, 0.1, 0.4), (0.45, 0.4, 0.49)}, while
we fix x = 0.5 and leave other parameters as before. In the case of the first set, the constitutive
equation (1.4) describes a body in which the elastic properties are dominant, since the orders
of the fractional derivatives of stress and strain are close to zero, that is, the fractional
derivatives of stress and strain almost coincide with the stress and strain. This is also evident
from Figure 5, since the oscillations of the point x = 0.5 for the first set of parameters vanish
quite slowly comparing to the second set and in particular comparing with the third set
of parameters. Note that the third set of parameters describes a body in which the fluid
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Figure 6: Displacements uH(x, t) in a stress relaxation experiment as functions of time t at x = 0.5 for
t ∈ (0, 8).
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Figure 7: Stresses σH(x, t) and σ
(QS)
H (t) in a stress relaxation experiment as functions of time t at x ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} for t ∈ (0, 5).
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Figure 8: Stresses σH(x, t) in a stress relaxation experiment as functions of time t at x ∈ {0.7, 0.8, 0.9} for
t ∈ (0, 0.5).
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Figure 9: Stresses σH(x, t) and σ
(QS)
H (t) in a stress relaxation experiment as functions of time t at x ∈

{0.7, 0.8, 0.9} for t ∈ (0, 6).
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Figure 10: Stresses σH(x, t) in a stress relaxation experiment as functions of time t at x = 0.5 for t ∈ (0, 10).

properties of the fractional type dominate, since in the constitutive equation (1.4), we have
the low-order derivative of stress (almost the stress itself), while almost all the derivatives
of strain are of order 0.5. Figure 5 also shows that the dissipative properties of a material
grow as the orders of the fractional derivatives increase. Figure 6 shows that the delay in
displacement depends on the order of the fractional derivative, so that a material which has
dominant elastic properties (the first set) has the longest delay, compared to a material with
the dominant fluid properties (the third set).

Figure 7 presents stresses σH in the case of stress relaxation, determined according to
(3.74), for different points of the rod. Parameters are the same as in the previous case. Also,
Figure 7 presents the quasistatic curve σ(QS)

H obtained by (3.81).
Stresses, as it can be seen from Figure 7, show damped oscillatory character and for

large times, in each point x ∈ [0, 1], tend to the quasistatic curve, that is, to the same value.
Eventually, the stresses in all points of the rod tend to zero, namely, limt→∞σH(x, t) = 0,
x ∈ [0, 1]. From Figure 7 it is evident that as further the point is from the rod-free end the
greater is the delay. This is again the consequence of the finite wave speed.

Figures 8 and 9 present the stresses of the points close to the free end. One notices from
Figures 7 and 8 that as the point is closer to the end whose displacement is prescribed, the
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Figure 11: Stresses σH(x, t) in a stress relaxation experiment as functions of time t at x = 0.5 for t ∈ (0, 4.5).
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Figure 12: Displacements u(x, t) and u
(QS)
H (t) in a creep experiment as functions of time t at x ∈

{0.25, 0.5, 0.75, 1} for t ∈ (0, 40).
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Figure 13: Displacements u(x, t) in creep experiment as functions of time t at x ∈ {0.25, 0.5, 0.75, 1} for
t ∈ (0, 10).
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Figure 14: Displacements u(x, t) in creep experiment as functions of time t at x = 0.5 for t ∈ (0, 40).
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Figure 15: Displacements u(x, t) in creep experiment as functions of time t at x = 0.5 for t ∈ (0, 10).

peak of stress is higher and the peak’s width is smaller. Figure 9 presents the compressive
phase in the stress relaxation process and the quasistatic curve as well.

Again, we fix the midpoint of the rod and investigate the influence of the change of
orders of the fractional derivatives (for the same three sets as before) on the stress σH in
a stress relaxation experiment. From Figure 10 one notices that there is a stress relaxation
in a material regardless of the order of fractional derivatives. However, the relaxed stress
depends on the order of the derivatives, as expected from the analysis of the stress σ(QS)

H in the
quasistatic case, given by (3.81). The material with the dominant elastic properties (the first
set) relaxes to the highest stress, and as the fluid properties of the material become more and
more dominant, the relaxed stress decreases. Again, the oscillations of the value of the stress
for the first set (material with dominant elastic properties) are the least damped compared to
the second and third set. Figure 11 shows that the conclusion about the dependence of delay
on the orders of fractional derivatives drown earlier holds.

Figure 12 presents displacements u in the creep experiment, determined according to
(3.86), for four different points. Parameters are the same as in the previous cases (except
that in this case instead of Υ0 = 1 we have Σ0 = 1). For large times, as it can be seen from
Figure 12, the displacement curves are monotonically increasing. This indicates that we deal
with the viscoelastic fluid. Figure 12 also shows good agreement between the displacements
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obtained by the dynamic model (displacement is given by (3.86)) and the quasistatic model
(displacement is given by (3.93)). Figure 13 presents the same displacements as Figure 12, but
close to initial time instant and it is evident that, again, there is a delay, due to the finite speed
of wave propagation.

In order to examine the dependence of the displacement u in the case of creep exper-
iment, given by (3.86), on the orders of fractional derivatives in the constitutive equation
(1.4), we again fix the point x = 0.5 of the rod and plot the displacement u for the same set of
values of α, β, and γ as before. Figure 14 clearly shows that all of the materials exhibits creep,
but the displacements do not tend to a constant value. However, the material which has the
dominant elastic properties (the first set) creeps slower comparing to the material with the
dominant fluid properties (the third set). Figure 15 again supports the conclusion that the
more elastic the material is, the greater the delay is.
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