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Using the equivalence relation between K-functional and modulus of smoothness, we establish a
strong direct theorem and an inverse theorem of weak type for multivariate Bernstein-Durrmeyer
operators with Jacobi weights on a simplex in this paper. We also obtain a characterization
for multivariate Bernstein-Durrmeyer operators with Jacobi weights on a simplex. The obtained
results not only generalize the corresponding ones for Bernstein-Durrmeyer operators, but also
give approximation order of Bernstein-Durrmeyer operators.

1. Introduction

LetS=54 (d=1,2,...) beasimplex in R4 defined by
d
S= {xz (x1,%2,...,%a) 1% 20, i=1,2,...,d, |x| = > x < 1}. (1.1)
i=0

For p > 1, we denote by L (S) the space of p-order Lebesgue integrable functions on S with

1/p
(f |w(x)f(x)|pdx> <o 1<p<+oo,
lwfll, =9 ™ (12)

max|w(x) f (x)] p =+,
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where L*(S) = C(S) denote the space of continuous functions on S. For f € L(S), the
multivariate Bernstein-Durrmeyer Operators with d variables on S are given by

(n+d)

Mya(f;x) = D Puk(x)

[k|<n

nk(u)f (u)du, (1.3)

where P, (x) = (n!/(k!(n — |k)")x*(1 = [x))" ¥ (x € S) and x = (x1,x2,...,%x4) € R, k =
(k1,kz, ..., kg) € Ng, with the convention

d
|x| = Zx,, k= alt, k= Dk, K= katka! kgl (1.4)
i=1

For multivariate Jacobi weights w(x) = x“(1—|x|)ﬂ, (xeS,a=(ay,...,a3) € R4, 0<a;,
p<1l,i=12,...,d x" = xfl xgz xgd ). We give some further notations, for x € S, and we

write ¢;(x) = ¢;i(x) = V/xi(1 - |x]) (1 <i<d),gij(x) = /5%, (1<i<j<d)and
Di=Dii=-—, 1<i<d, D;j=D;-Dj, 1<i<j<d,
(1.5)
Dy =Dy(Dy'), 1<i<j<d, reN, D*=DfD{---Df, keN.
For f € LP(S), the weighted Sobolev space is given by
0
W;;P(S) = {f € LP(S) : wf € LP(S), D*f € Lioc <s>

wpDyf € X(S), Ik <7, 1<i<j<d, reN},

Wi=(S) = {f €C(S):wfeC(S), fe c(%) wpl,Df €C(S),1<i<j<d, re N},
(1.6)

0
where S is the interior of S. To characterize the approximation capability of multivariate
Bernstein-Durrmeyer operators, we introduce the weighted K-functional

KL (ft),, = mf {”“’(f Oy +t7 3 [wghD 3”,,} (1.7)

1<1<]<

and a measure of smoothness of f

wp(f,),=sup > [wdy,.,

O<h<t 1<i<j<d |p (1.8)
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Since 1967, Durrmeyer introduced Bernstein-Durrmeyer operators, and there are
many papers which studied theirproperties [1-7]. In 1991, Zhang studied the characterization
of convergence for M, 1(f; x) with Jacobi weights. In 1992, Zhou [5] considered multivariate
Bernstein-Durrmeyer operators M, 4(f; x) and obtained a characterization of convergence.
In 2002, Xuan et al. studied the equivalent characterization of convergence for M, 4(f; x)
with Jacobi weights and obtained the following result.

Theorem 1.1. For wf € LP(S), 0 < r <1, the following results are equivalent:
() llwMpaf = H)ll, =Om™);
(i) K5(f, 1), = O(t").

In this paper, using the Ditzian-Totik modulus of smoothness, we will give the upper
bound and lower bound of approximation function by M, 4(f;x) on simplex. The main
results are as follows.

Theorem 1.2. Ifwf € LP(S), then

lo(Muaf - P, Sc{uﬁ(f,%) + ||w1{||p} (1.9)

And there exists a positive number 6 (0 < 6 < 1) such that the following inequality is satisfied:

n

(5 5) <S3(E) heotuar -, 110

k=1

Throughout the paper, the letter C, appearing in various formulas, denotes a positive
constant independent of #, x, and f. Its value may be different at different occurrences, even
within the same formula.

From Theorem 1.2, we can easily obtain the following corollary.

Corollary 1.3. Ifwf € LP(S), 0 < r <1, we has the following equivalent results:
() llwMpaf = )ll, =Om™);
(it) K3(f, 1), = O(t");
(iii) Wi (f, 1), = O(™).

2. Some Lemmas

To prove Theorem 1.2, we will show some lemmas in this section. For the simplex S, the
transformation T: S — SU% defined by

Xj l= j,
T(x1,x2,...,%a) = (U1, U, ..., Ua), W= ‘ (2.1)
L—|x| I#]
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satisfies T? = I, and I is the identity operator. So we have

o 0 b8 . D0
ou,  0x; Ox;j 1), ouj  0Ox;’ (2.2)
Mya(f;x) = Mua(fr; Tx); Mya(f;Tx) = Mua(fr;x),
where fr(u) = f(Tx).
Lemma 2.1. If wf € LP(S), then
loMaafll, < lofll,,
(2.3)

C r
IIw(Mn,df—f>||ps;<I|wf||p+ > ||w<p;§D?jf||p>, few;h(s).

1<i<j<d

Proof. Letting S' = {X : (x1,X) € Sa), X = (x2,x3,...,%a), k = (ka,k3..., ka), k = (k,k),
pn,kl (X1) = (n!/kll(n - kl)!)xllq(l — xl)n_kl, then

Mn,d(f;x)zipn,kl(xl) )y pn—kl,F<i)M
k1=0

|E|5n—k1 1-x n!

1 —
X J‘ Py, (u1) f Pn_k1/E<1L>f(u)dﬂ duy
0 s — U

n 1 x
= 3P o [ P -u™ 3 Pr (75

k=0 [Flenk, 1-n

% fs P w0 f(u, (L= u)t)dt duy

n 1
= Z Py, (x1)(n + d) f Ppia-1k, (1) Mk, a1 <f(u1, (1-1w)); %)dul.
ki=0 0 -

(2.4)

Using the transformation T, (2.2), (2.4), the method of [7], we can easily get (2.3). O

Lemma 2.2 (see [8]). If f € LF(S), then
e (£,8),, < K(fE), < Cay(£,1),, 25)

Proof. Lemma 2.2 is proved when f € C(S) in [8]. Similarly, we can prove f € LP(S). O
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Lemma23. [f0<a<1,b>0,x€(0,1), P(x) = Ckxk(1 —x)"ik is basis function of the classical
Bernstein operators, then

n-1 a
Pn E < C —KZ/
kZ=1 ,k(x)<k> <Cx
(2.6)

n-1 n b "
épn,k(x)<m> SC(l—.‘Xf) .

Proof. The first inequality can be inferred by Holder inequality. In the following we prove the
second inequality.

(i) If 0 < b < 1, using Holder inequality, we can easily obtain the result.

({i) fb>1,letb=m+r,me N,0<r <1, then

:z;pn,ux)(;j)b::z;pn,kw(ﬁ)m(n’jk)r

_mn—l n+m r (2.7)
<C(1-x) kZ:;P’“m’k(x) (m>

<Cl-x)™"=C(1-x)".

Lemma 2.3 is completed. U

Lemma 2.4. If f € LP(S), 1 < p < oo, then

||w<pf]-Di2jMn,df||p < Cn||wf||p 1<i<j<d. (2.8)

Proof. In the following we use the induction on the dimension number d to prove the result.
The case d = 1 was proved by Lemma 4 of [6]. Next, suppose that Lemma 2.4 is valid for
d =r (r 21); we prove it is also true for d = r + 1. To observe this, we use a decomposition
formula (2.4), and we have

w(x)(sz(x)DgzMn,d (f/ x)

_ n
=21 (1= x1) N Py, (1) (n + d)z25° - 250 29)
k1:0 .

1
x (1 - |Z|)‘6(P%1(Z) J‘ pn+d—1,k1 (ul)Dianfkl,dfl (f(u1, (1 - u1)'),' z)dul,
0
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where z = (z1,22,...,24-1) = (x2/ (1 = x1),x3/(1 = x1),...,x4/(1 = x1)). Thus we have

f |0 D% M ()| ds

1 _ n 1
< CJ. x‘fl 1- x1)|a|+ﬂ Z Py, (x1)(n+4d) J. Poia-1j (u1)(n —ky)
0 ki1=0 0

xf . |w(z) f(u1, (1 — u1)z)|dz dx1du

o . #lip 2.10
SCn+dnJ. Z<k1+1> <w> Pyia1,k (11) o

n+1 0 £ n+1 n+1

xf . |w(z) f(u1, (1 — u1)z)|dz duy

1 _ ay _
<Cn fo uf'(1- ul)lmﬁ(ull) (1- ul)f‘“‘fﬁj‘ |(wf)(u1, (1 —u1)z)|dz duy

z€5,4.1

= Cnl|ewf ;-

In the above derivation, we have used the formula [6]

) ] a laf+p
1 k1 +1 n—ki+1
ot s < 1 1 (2.11)
fo xp (1= x1) P Py (1) dxy —Cn+1<n+1> ( n+1 >
and the inequality
Lk T\ =k 1\ : a
> < nl+ 1 ) < n +11 ) Prsda-t e (1) < Cuf (1 — 1)1 (212)

k=0
When p = oo, we have

w(x) 3, (x) D3 My a(f; x)

_ n
= X7 (1=x0) P Y Py (o) (n + d)z25 - 25

& (2.13)

1
x (1-|z])Pg? (2) fo Pyea1 e (1) DYy My iy a1 (f (1, (1 - w1)-); z)duy,

where z = (z1, 22, ...,24-1) = (x2/(1 = x1),x3/ (1 = x1), ..., xa/ (1 = x1)).
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From the Cauchy-Swartz inequality, Holder inequality, and Lemma 2.3, we have

()93 () DH My (f; ) |

- n 1
< Cxi“l (1- xl)\a\hﬁ Z Py, (x1)(n+d) J. Poia-1j, (u1)(n—ky)
k=0 0

X maXx
z€S

222 (1= |2))P f (1 - ul)z)|du1

a al+ < ! 1\™ -
< Cnfjwf|| x5 (1= xp)™ ﬂZPn,kl(xl)(ner)f Pn+d_1,k1(u1)<u—1> (1= up) P du,
=0 0

- n 1 1/2
< Cn”wf”ooxi‘l (1- x1)|u|+ﬂ Z Py, (x1)(n + d) <f Putd-14 (ul)uIZm du1>
0

k1=0

1 _
x <f Pav i (u1)(1 - u1>“'2ﬁdu1>
0

_ n 1 a/2
< Cn||wf||ooxi‘1 (1- x1)|a|+ﬂ Z Py (x1)(n+d) <J. Ppia-1,, (ul)ul2du1>
0

k1=0

1 (A-a)/2 , g (lal+p)/2d
X <f Poia-1 (ul)du1> <I Pria-1k (u1)(1 —u1)_2ddu1>
0 0

) 1/2-(|al+p)/2d
X <f Poia-1 (ul)du1>
0

C (1= ) 3R gy (2 d=1y™”
< _ al+ nrre—-
< Crflwfl a1 -x1) kzz i (1) (1 + )<k1(k1—1)>

al+p)/2d _ -
% ((n(+ dc_l)]|-)' Enlg_lzl - 1;:)“ P2 <(n+d)1*(|d\+ﬁ)/2d—a1/2) !
n-— . n - K1 — .

1/2

_ n-1 ay \‘;‘Hﬂ
SCn||wf||oox’1”(1—xl)l”"*ﬂZPnlkl(xl)(k%) (L)
ki=1

n-— k1
< Crllwf]|,
(2.14)

By Riesz interpolation theorem, we get

oD Muaf || < Crllwf], (2.15)
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Similarly, the other cases fori =1, 3,4, ...,d(=j) can be proved. For i # j, by the transformation
T, we have

st DfMuaf |, = [lorgf D Muafe|, < Crllwrfrll, = Crllorfll, @16)

Lemma 2.4 is completed. U

Lemma 2.5. If f € w;”’(S) CLP(S), 1<p< oo, then
||w<p?jD,-2jMn,df||p < C||w<p,?]-D,-2]-f||p 1<i<j<d. 2.17)

Proof. We use the induction on the dimension number d to prove Lemma 2.5. The case d = 1
was proved by Lemma 3 of [6], that is,

||w<p2D2Mn,1 f”p < C||w(p2D2 f"p. (2.18)

Next, suppose that Lemma 2.5 is valid for d = r (r > 1), and we prove it is also true for
d =r + 1. Noticing formula (2.4), we have

w(x)‘l’%z(x)DgzMn,d (f;x)

_ n
=3 (=) 3 P () + =2 (2.19)

1
x(1- |Z|)‘6(P%1 (2) fo Puia1k (ul)Dfanfkl,dq (f(u1, 1 -up)-); Z)dul,
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where z = (z1,22,...,24-1) = (x2/(1 = x1),x3/(1 = x1),...,xa/ (1 — x1)). When p = 1, from the
inductive assumption of p = 1, we have

J.S|w(x)(p§2(x)D%2Mn,d (f;x) |ds

1 _ n 1
<C[ X0 3 B (x0)4) [ P ()
0 k1=0 0

x f |w(z)(p%1(z)Df1f(u1, 1 -u1)z) |dz dxiduy
z€S 1

nad (V& Sk + 1N Sn—ky 1\
<C f Z( : > < - > Puid-1)q (u1)

n+1 0 n+1 n+1

xf s |w(z)(p%1(z)Df1f(u1,(1—ul)z)|dzdu1

! a al+ 1\™ —|a|-
SCL U (1= 14y) ﬂ<u—l> (1 - uy) e ﬁf . |(w<p§2D§2f)(u1,(1—u1)z) dz duy
Z€54-1

< C||w<p§2D§2f||1.

(2.20)
When p = oo, we have
w(X)¢3 (%) D3, Mya (f; x)
= x"(1- xl)""*"klz"nzoPn,k1 (x1)(n+d)zPzy - 20 (2.21)

1
x (1= |z)fg7; (2) _[0 Prea-1 e (1) Dfy My a1 (f (u, (1 = 11)-); z)du,

where z = (z1,22,...,24-1) = (x2/(1 = x1),x3/(1 = x1),...,x4/(1 = x1)). From the inductive
assumption, the Cauchy-Swartz inequality, Holder inequality, and Lemma 2.4, we get

0 (x) 9%, () D3 My (f;%) |

_ n 1
< Cx (1= x0) P S Py (1) (1 + d) f Pavitor (1)
k1=0 0

X maX
2€S41

222 (L= 12D 92D2f (n, (1 - )2) | diy
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_ n 1 _
< Cxf (1= x0) P S Py, (1) (n + d) f Pt je (1), (1= x) 1P
k=0 0

x ”“’(P%zD%zf”wd”l
< C”w‘szD%zf”w-

(2.22)

By Riesz interpolation theorem, we get
”w‘l’%zD%zMnldf”p < C”“"szD%zf”p' (2.23)

Similarly, the other cases fori =1, 3,4, ...,d(=j) can be proved. For i # j, by the transformation
T, we have

|siDinnat], = ewreDiMuati], < ClorgDisi], < Cllevipis], @20

Lemma 2.5 is completed. U

Lemma 2.6 (see [9]). Let {04}, {¢pn} be nonnegative sequences (o1 = 0, n € N). For 1 > 0, if the
sequences {0y}, {¢n} satisfy

I
O'nSQ<§> or+¢r (Q>1,1<k<n neN), (2.25)
one has
n
On < Mn™* > k7 . (2.26)
k=1

IfQ=1,thenl=5.1fQ>1,then0<s <l
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3. The Proof of Theorems

Now we prove (1.9) of Theorem 1.2. By using Lemma 2.1, for arbitrary g € W;’p(S) c LP(S),
we have

loMaaf = Pl < C(loMnalf =)l + llwMnag - wgll, + |lw(f - 2)l,)

_ 1 2 2
< C<IIW(f I, +~ <1S§Sd||“"f’ijDifg”p * ”“’g”p>> (3.1)

2 IIW?]-D?]-gII;%nwfnp).

1<i<j<d

sc<||w<f—g>||p+%

Hence, from Lemma 2.2, we obtain

loMuar = £l < (K3 (5.7) +5lleorl,)

n
(3.2)

< C(wi(fi)w + %”“’f"P>

Next, we prove (1.10) of Theorem 1.2. Leting o, = C(l/n)llw(p?].Diszn,d(f)Hp 1<i<j<ad),
¢n = Cllw(M,q(f) - f)”r" then 01 = 0. By Lemmas 2.4 and 2.5, we have

0n < Co o9 D2 Mo (f - Miaf) | + o o D5 MoaMuaf |
< Clleo(f = Miaf)ll, + C% ||W(Pi2jDi2ij,df||p (3.3)
= CSok +¢r (C>1).

Using Lemma 2.6, we get 0, < C(1/n) S7_ (n/k)6 k (0<6<1). Thatis,
g g k=1

o], < €35(5) oot - D1, o)

When n > 2, there exists (m € N) such that n/2 < m < n and satisfies the equation

loMaf = Hll, = min [loMeaf -l (3.5)
Thus,
2
loMmaf = Hll, <= > lwMiaf = Ol (3.6)

n/2<k<n
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Using Lemma 2.2, we have

RGOS D)

<C( wMuaf =l + 5 3 [t D Muaf|, 67)

1<i<j<d
1& /n\°
<C- - Myaf - .
< ng(,j lwo(Miaf = O,
Theorem 1.2 is completed.
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