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A Jacobi dual-Petrov-Galerkin (JDPG) method is introduced and used for solving fully integrated
reformulations of third- and fifth-order ordinary differential equations (ODEs) with constant
coefficients. The reformulated equation for the Jth order ODE involves n-fold indefinite integrals
for n = 1, . . . , J . Extension of the JDPG for ODEs with polynomial coefficients is treated using the
Jacobi-Gauss-Lobatto quadrature. Numerical results with comparisons are given to confirm the
reliability of the proposed method for some constant and polynomial coefficients ODEs.

1. Introduction

A well-known advantage of spectral methods is high accuracy with relatively fewer
unknowns when compared with low-order finite-difference methods [1, 2]. On the other
hand, spectral methods typically give rise to full matrices, partially negating the gain in
efficiency due to the fewer degrees of freedom. In general, the use of the Jacobi polynomials

(P (α,β)
n with α, β ∈ (−1,∞) and n is the polynomial degree) has the advantage of obtaining

solutions of ordinary differential equations (ODEs) in terms of the Jacobi indices (see for
instance, [3–5]). Several such pairs (α, β) have been used for approximate solutions of ODEs
(see [6–10]). We avoid developing approximation results for each particular pair of indices
and instead carry out a study with general indices. With this motivation, we introduce in this
paper a family of the Jacobi polynomials with general indices.

Third-order differential equations have applications in many engineering models, see
for instance [11–14]). Fifth-order differential equations generally arise in the mathematical
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modeling of viscoelastic flows and other branches of mathematical physics and engineering
sciences, see [15–17]. Existence and uniqueness of solutions of such boundary value problems
are discussed, for instance, in [18].

In this paper, the proposed differential equations are integrated q times, where q is the
order of the equation, and we make use of the formulae relating the expansion coefficients
of integration appearing in these integrated forms of the proposed differential equations
to the Jacobi polynomials themselves (see, Doha [19]). An advantage of this approach is
that the general equation in the algebraic system then contains a finite number of terms.
We, therefore, motivated our interest in integrated forms of these differential equations. The
interested reader is referred to Doha and Bhrawy [7, 20].

The main aim of this paper is to propose a suitable way to approximate some
integrated forms of third- and fifth-order ODEs with constant coefficients using a spectral
method, based on the Jacobi polynomials such that it can be implemented efficiently and
at the same time has a good convergence property. It is worthy to note here that odd-
order problems lack the symmetry of even-order ones, so we propose a Jacobi dual-Petrov-
Galerkin (JDPG) method. The method leads to systems with specially structured matrices
that can be efficiently inverted. We apply the method for solving the integrated forms
of third- and fifth-order ODEs by using compact combinations of the Jacobi polynomials,
which satisfy essentially all the underlying homogeneous boundary conditions. To be more
precise, for the JDPG we choose the trial functions to satisfy the underlying boundary
conditions of the differential equations, and we choose the test functions to satisfy the dual
boundary conditions. Extension of the JDPG for polynomial coefficient ODEs is obtained by
approximating the weighted inner products in the JDPG by using the Jacobi-Gauss-Lobatto
quadrature. Finally, examples are given to illustrate the efficiency and implementation of the
method. Comparisons are made to confirm the reliability of the method.

The remainder of this paper is organized as follows. In Section 2 we give an overview
of the Jacobi polynomials and their relevant properties needed hereafter. Section 3 is devoted
to the theoretical derivation of the JDPG method for third-order differential equations with
constant and variable polynomial coefficients. Section 4 gives the corresponding results
for those obtained in Section 3, but for the fifth-order differential equations with constant
coefficient and two choices of boundary conditions. In Section 5, we present some numerical
results exhibiting the accuracy and efficiency of our numerical algorithms. Some concluding
remarks are given in the final section.

2. Preliminaries

Let SN(I) be the space of polynomials of degree at mostN on the interval I = (−1, 1). We set

WN =
{
u ∈ SN : u(±1) = u(1)(1) = 0

}
,

W∗
N =

{
u ∈ SN : u(±1) = u(1)(−1) = 0

}
,

(2.1)

and let P (α,β)
n (x) (n = 0, 1, 2, . . .) be the Jacobi polynomials orthogonal with the weight

functions wα,β(x) = (1 − x)α(1 + x)β, where α, β > −1.
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Let x(α,β)N,j , 0 ≤ j ≤ N, be the zeros of (1 − x2)∂xP
(α,β)
N . Denote by �

(α,β)
N,j , 0 ≤ j ≤ N,

the weights of the corresponding Gauss-Lobatto quadrature formula, which are arranged in
decreasing order. We define the discrete inner product and norm of weighted space L2

wα,β(I)
as follows:

(u, v)wα,β ,N =
N∑
k=0

u
(
x
(α,β)
N,k

)
v
(
x
(α,β)
N,k

)
�

(α,β)
N,k

, ‖u‖wα,β ,N =
√
(u, u)wα,β ,N. (2.2)

Obviously (see, e.g., formula (2.25) of [21]),

(u, v)wα,β ,N = (u, v)wα,β ∀u, v ∈ S2N−1. (2.3)

Thus, for any u ∈ SN , the norms ‖u‖wα,β ,N and ‖u‖wα,β coincide.

For any u ∈ C(I), the Jacobi-Gauss-Lobatto interpolation operator IP
(α,β)

N u(x) ∈ SN ,
satisfying

IP
(α,β)

N u
(
x
(α,β)
N,k

)
= u

(
x
(α,β)
N,k

)
, 0 ≤ k ≤ N. (2.4)

We also denote by IcN = IP
(−1/2,−1/2)

N and IlN = IP
(0,0)

N the Chebyshev-Gauss-Lobatto and Legendre-
Gauss-Lobatto interpolation operators, respectively.

For any real numbers α, β > −1, the set of the Jacobi polynomials forms a complete
L2
wα,β (I)-orthogonal system, and

(
P
(α,β)
k

, P
(α,β)
j

)
w(α,β)

= hkδk,j , (2.5)

where δk,j is the Kronecker function and

hk =
2α+β+1Γ(k + α + 1)Γ

(
k + β + 1

)
(
2k + α + β + 1

)
Γ(k + 1)Γ

(
k + α + β + 1

) . (2.6)

The following special values will be of fundamental importance in what follows (see,
[22–24])

P
(α,β)
n (1) =

(α + 1)n
n!

, P
(α,β)
n (−1) = (−1)n(β + 1

)
n

n!
,

DqP
(α,β)
n (1) =

q−1∏
i=0

Γ(n + α + 1)(n + λ + i)
2q
(
n − q)!Γ(q + α + 1

) , DqP
(α,β)
n (−1) = (−1)n+qDqP

(β,α)
n (1),

(2.7)

where (a)k = Γ(a + k)/Γ(a) and λ = 1 + β + α.



4 Abstract and Applied Analysis

If we define the q times repeated differentiation and integration of P (α,β)
n (x) by

DqP
(α,β)
n (x) and I(q,α,β)n (x), respectively, then (cf. Doha [19, 22])

DqP
(α,β)
n (x) = 2−q(n + λ)q

n−q∑
i=0

Cn−q,i
(
q, α, β

)
P
(α,β)
i (x), (2.8)

I
(q,α,β)
n (x) =

2q(
n − q + λ)q

n+q∑
i=q

Cn+q,i
(−q, α, β)P (α,β)

i (x) + πq−1(x),

q ≥ 0, n ≥ q + 1 for α = β = −1
2
, q ≥ 0, n ≥ q for α/= − 1

2
or β /= − 1

2
,

(2.9)

where

C	,i

(
q, α, β

)
=

(
	 + 2q + λ

)
i

(
i + q + α + 1

)
	−i Γ(i + λ)

(	 − i)!Γ(2i + λ)

× 3F2

( −	 + i 	 + 2q + i + λ i + α + 1

i + q + α + 1 2i + λ + 1 1

)
,

(2.10)

with πq−1(x) being a polynomial of degree at most (q − 1). It is to be noted that I(q,α,β)n (x) may

be obtained from DqP
(α,β)
n (x) by replacing q with negative q. In general, the hypergeometric

series 3F2 cannot be summed in explicit form, but it can be summed byWatsons identity [25],
if α = β. The following two lemmas will be of fundamental importance in what follows.

Lemma 2.1 (see, [19, 26]). One has

x	 =
	∑
j=0

D
(γ,δ)
	j

P
(γ,δ)
j (x), (2.11)

where

D
(γ,δ)
	j = 2j	!

(
1 + γ + δ + 2j

)	−j∑
i=0

(−2)i(1 + γ + j)i
i!
(
	 − i − j)!(1 + γ + δ + j

)
i+1

(
2 + γ + δ + i + j

)
j

. (2.12)

Lemma 2.2. If one writes

I
(q,α,β)
k (x) =

k+q∑
i=q

Sq
(
k, i, α, β

)
P
(α,β)
i (x) + πq−1(x), (2.13)
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then

Sq
(
k, i, α, β

)
=

2q(
k − q + λ)

q

Ck+q, i
(−q, α, β), q = 1, 2, . . . . (2.14)

Proof. It is immediately obtained from relation (2.9).

3. Third-Order Differential Equation

We are interested in using the JDPG method to solve the third-order differential equation

u(3)(x) + γ1u(2)(x) + γ2u(1)(x) + γ3u(x) = g(x), in I, (3.1)

subject to

u(±1) = u(1)(1) = 0, (3.2)

where γ1, γ2, and γ3 are constants and g is a given source function. In this paper, we consider
the fully integrated form of the ODE, given by

u(x) + γ1

∫ (1)

u(x)(dx)(1) + γ2

∫ (2)

u(x)(dx)(2) + γ3

∫ (3)

u(x)(dx)(3)

= f(x) +
2∑
i=0

diP
(α,β)
i (x), u(±1) = u′(1) = 0,

(3.3)

where

∫ (q)

u(x)(dx)(q) =

q times︷ ︸︸ ︷∫
· · ·

∫
u(x)

q times︷ ︸︸ ︷
dxdx · · ·dx, f(x) =

∫ (3)

g(x)(dx)(3).
(3.4)

In this work we assume that f , the three-fold indefinite integral form of g, can be evaluated
analytically. We set

SN = span
{
P
(α,β)
0 (x), P (α,β)

1 (x), . . . , P (α,β)
N (x)

}
, (3.5)

then the dual-Petrov-Galerkin approximation to (3.3) is to find uN ∈ WN such that

(uN, v)wα,β + γ1

(∫ (1)

uN(dx)(1), v

)

wα,β

+ γ2

(∫ (2)

uN(dx)(2), v

)

wα,β

+ γ3

(∫ (3)

uN(dx)(3), v

)

wα,β

=

(
f +

2∑
i=0

diP
(α,β)
i , v

)

wα,β

∀v ∈ W∗
N,

(3.6)
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wherewα,β(x) = (1 − x)α(1 + x)β and (u, v)w =
∫
I
uvw dx is the inner product in the weighted

space L2
wα,β (I). The norm in L2

wα,β(I) will be denoted by ‖ · ‖wα,β .

3.1. The Jacobi Dual-Petrov-Galerkin Method

We choose compact combinations of the Jacobi polynomials as basis functions tominimize the
bandwidth hoping to improve the condition number of the coefficient matrix corresponding
to (3.6). We choose the test basis and trial functions of expansions φk(x) and ψk(x) to be of
the form

φk(x) = P
(α,β)
k (x) + εkP

(α,β)
k+1 (x) + εkP

(α,β)
k+2 (x) + ζkP

(α,β)
k+3 (x), (3.7)

ψk(x) = P
(α,β)
k (x) + ρkP

(α,β)
k+1 (x) + �kP

(α,β)
k+2 (x) + σkP

(α,β)
k+3 (x), (3.8)

where εk, εk, ζk, ρk, �k , and σk are the unique constants such that φk(x) ∈ WN and ψk(x) ∈
W∗

N . From the boundary conditions, φk(±1) = φ(1)
k
(1) = 0 and (2.7), hence εk, εk and ζk can be

uniquely determined by using mathematica to give (see, [27])

εk =
−(k + 1)(2k + λ + 2)

(
k − α + 2β + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 4)

,

εk =
−(k + 1)2(2k + λ + 1)

(
k − β + 2α + 3

)

(k + α + 1)2
(
k + β + 1

)
(2k + λ + 5)

,

ζk =
(k + 1)3(2k + λ + 1)2

(k + α + 1)2
(
k + β + 1

)
(2k + λ + 4)2

.

(3.9)

Using (2.7), and ψk(±1) = ψ(1)
k (−1) = 0, one verifies readily that

ρk =
(k + 1)(2k + λ + 2)

(
k − β + 2α + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 4)

,

�k =
−(k + 1)2(2k + λ + 1)

(
k − α + 2β + 3

)
(
k + β + 1

)
2(k + α + 1)(2k + λ + 5)

,

σk =
−(k + 1)3(2k + λ + 1)2(

k + β + 1
)
2(k + α + 1)(2k + λ + 4)2

.

(3.10)
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Now it is clear that (3.6) is equivalent to

(
uN, ψk(x)

)
wα,β + γ1

(∫ (1)

uN(dx)(1), ψk(x)

)

wα,β

+ γ2

(∫ (2)

uN(dx)(2), ψk(x)

)

wα,β

+ γ3

(∫ (3)

uN(dx)(3), ψk(x)

)

wα,β

=

(
f(x) +

2∑
i=0

diP
(α,β)
i (x), ψk(x)

)

wα,β ,N

, k = 0, 1, . . . ,N,

(3.11)

where (·, ·)wα,β ,N is the discrete inner product associated with the Jacobi-Gauss-Lobatto
quadrature. The constants d0, d1, and d2 would not appear if we take k ≥ 3 in (3.11), therefore
we get

(
uN, ψk(x)

)
wα,β + γ1

(∫ (1)

uN(dx)(1), ψk(x)

)

wα,β

+ γ2

(∫ (2)

uN(dx)(2), ψk(x)

)

wα,β

+ γ3

(∫ (3)

uN(dx)(3), ψk(x)

)

wα,β

=
(
f(x), ψk(x)

)
wα,β ,N

, k = 3, 4, . . . ,N.

(3.12)

If we take φk(x) and ψk(x) as defined in (3.7) and (3.8), respectively, and if we denote

fk =
(
f, ψk(x)

)
wα,β ,N

, f =
(
f3, f4, . . . , fN

)T
,

uN(x) =
N−3∑
n=0

vnφn(x), v = (v0, v1, . . . , vN−3)T ,

akj =
(
φj−3(x), ψk(x)

)
wα,β , bkj =

(∫ (1)

φj−3(x)(dx)(1), ψk(x)

)

wα,β

,

ckj =

(∫ (2)

φj−3(x)(dx)(2), ψk(x)

)

wα,β

, dkj =

(∫ (3)

φj−3(x)(dx)(3), ψk(x)

)

wα,β

,

(3.13)

then

WN = span
{
φ0(x), φ1(x), . . . , φN−3(x)

}
, W∗

N = span
{
ψ3(x), ψ4(x), . . . , ψN(x)

}
, (3.14)
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and the nonzero elements (akj), (bkj), (ckj), and (dkj) for 3 ≤ k, j ≤N are given as follows:

akk = ζk−3hk,

ak,k+1 = εk−2hk + ζk−2ρkhk+1,

ak,k+2 = εk−1hk + εk−1ρkhk+1 + ζk−1�khk+2,

ak,k+3 = hk + εkρkhk+1 + εk�khk+2 + ζkσkhk+3,

ak,k+4 = ρkhk+1 + εk+1�khk+2 + εk+1σkhk+3,

ak,k+5 = �khk+2 + εk+2σkhk+3,

ak,k+6 = σkhk+3,

bk,j =
[R1

(
j, k, α, β

)
hk + R1

(
j, k + 1, α, β

)
ρkhk+1 + R1

(
j, k + 2, α, β

)
�khk+2

+R1
(
j, k + 3, α, β

)
σkhk+3

]
, j = k + 	 − 1, 	 = 0, 1, . . . , 8,

ck,j =
[R2

(
j, k, α, β

)
hk + R2

(
j, k + 1, α, β

)
ρkhk+1 + R2

(
j, k + 2, α, β

)
�khk+2

+R2
(
j, k + 3, α, β

)
σkhk+3

]
, j = k + 	 − 2, 	 = 0, 1, . . . , 10,

dk,j = R3
(
j, k, α, β

)
hk + R3

(
j, k + 1, α, β

)
ρkhk+1 + R3

(
j, k + 2, α, β

)
�khk+2

+ R3
(
j, k + 3, α, β

)
σkhk+3, j = k + 	 − 3, 	 = 0, 1, . . . , 12,

(3.15)

where

Ri

(
j, k, α, β

)
= Si

(
j − 3, k, α, β

)
+ εj−3Si

(
j − 2, k, α, β

)

+ εj−3Si
(
j − 1, k, α, β

)
+ ζj−3Si

(
j, k, α, β

)
.

(3.16)

Hence by setting

A =
(
akj

)
, B =

(
bkj

)
, C =

(
ckj

)
, D =

(
dkj

)
, 3 ≤ k, j ≤N, (3.17)

then (3.12) is equivalent to the following matrix equation:

(
A + γ1B + γ2C + γ3D

)
v = f. (3.18)

All the analytical formulae of the nonzero elements of matricesA, B,C and D can be obtained
by direct computations using the properties of the Jacobi polynomials (for details see,
[27, 28]).

In the case of α, β /= 0, α, β ∈ (−1,∞), we can form explicitly the LU factorization, that
is, A + γ1B + γ2C + γ3D = LU. In general, the expense of calculating LU factorization of an
N ×N dense matrix M is O(N3) operations, and the expense of solving Ax = b, provided
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that the factorization is known, is O(N2) (see, [27]). However, in the case of banded matrix
A of bandwidth r, we need just O(r2N) operations to factorize and O(rN) operations to
solve a linear system. In the case of γi /= 0, i = 0, 1, 2, the square matrix A + γ1B + γ2C + γ3D
has bandwidth of 13. So we need just O(13N) operations to solve the linear system (3.18). If
r 
N, this represents a very substantial saving.

It is worthy to note that, for α, β /= 0, the algebraic system (3.18) resulting from fully
integrated reformulation of (3.1) is sparse and is therefore cheaper to solve than those
obtained from the differentiated form (see [27, Theorem 3.1]). Moreover, the savings in
computational effort increase as the size of the systems grow. Thus, we have demonstrated the
advantage of using the integrated forms over the differentiated ones for constant coefficients
ODEs.

3.2. A Quadrature JDPG Method

The JDPG can be extended for ODEs with polynomial coefficients because of analytical form
of a product of an algebraic polynomial, and the Jacobi polynomials are known.

Now the formula of the Jacobi coefficients of the moments of one single Jacobi
polynomial of any degree (see, Doha [22]) is

xmP
(α,β)
j (x) =

2m∑
n=0

Θm,n

(
j
)
P
(α,β)
j+m−n(x) ∀m, j ≥ 0, (3.19)

with P (α,β)
−r (x) = 0, r ≥ 1, where

Θm,n

(
j
)
=
(−1)n2j+m−nm!

(
2j + 2m − 2n + λ

)
Γ
(
j +m − n + λ

)
Γ
(
j + α + 1

)
Γ
(
j + β + 1

)

Γ
(
j +m − n + α + 1

)
Γ
(
j +m − n + β + 1

)
Γ
(
j + λ

)

×
min(j+m−n,j)∑
k=max(0,j−n)

(
j +m − n

k

)
Γ
(
j + k + λ

)

2k
(
n + k − j)!Γ(3j + 2m − 2n − k + λ + 1

)

×
j−k∑
	=0

(−1)	Γ(2j +m − n − k − 	 + α + 1
)
Γ
(
j +m + 	 − n + β + 1

)

	!
(
j − k − 	)!Γ(j − 	 + α + 1

)
Γ
(
k + 	 + β + 1

)

× 2F1
(
j − k − n, j +m + 	 − n + β + 1; 3j + 2m − 2n − k + λ + 1; 2

)
.

(3.20)

This formula can be used to facilitate greatly the setting up of the algebraic systems to be
obtained by applying the spectral methods for solving differential equations with polynomial
coefficients of any order.
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Let us consider the following integrated form of the third-order differential equation:

u(x) +
∫ (1)

γ1(x)u(x)(dx)(1) +
∫ (2)

γ2(x)u(x)(dx)(2) +
∫ (3)

γ3(x)u(x)(dx)(3)

= f(x) +
2∑
i=0

diP
(α,β)
i (x), in I = (−1, 1), u(±1) = u(1)(1) = 0,

(3.21)

where γ1(x), γ2(x), and γ3(x) are the variable polynomial coefficients of the differential
equation. The quadrature dual-Petrov-Galerkin method for (3.21) is to find uN ∈ WN such
that

(uN, vN)wα,β ,N +

(∫ (1)

γ1(x)uN(dx)(1), vN

)

wα,β ,N

+

(∫ (2)

γ2(x)uN(dx)(2), vN

)

wα,β ,N

+

(∫ (3)

γ3(x)uN(dx)(3), vN

)

wα,β ,N

=

(
f +

2∑
i=0

diP
(α,β)
i , vN

)

wα,β ,N

∀vN ∈ W∗
N,

(3.22)

where (u, v)wα,β ,N is the discrete inner product of u and v associated with the Jacobi-Gauss-
Lobatto quadrature.

Let us consider

uN =
N−3∑
k=0

ãkφk, a = (ã0, ã1, . . . , ãN−3)
T , f̃k =

(
f, ψk

)
wα,β ,N, f =

(
f̃3, f̃1, . . . , f̃N

)T
, (3.23)

and using Lemma 2.2 and formula (3.19), we can obtain

ãij =
(
φj−3, ψi

)
wα,β ,N

, b̃ij =

(∫ (1)

γ1(x)φj−3(x)(dx)(1), ψi

)

wα,β ,N

,

c̃ij =

(∫ (2)

γ2(x)φj−3(x)(dx)(2), ψi

)

wα,β ,N

, d̃ij =

(∫ (3)

γ3(x)φj−3(x)(dx)(3), ψi

)

wα,β ,N

.

(3.24)

And by setting

Ã =
(
ãkj

)
, B̃ =

(
b̃kj

)
, C̃ =

(
c̃kj

)
, D̃ =

(
d̃kj

)
, 3 ≤ k, j ≤N, (3.25)

then the linear system of (3.22) becomes

(
Ã + B̃ + C̃ + D̃

)
a = f. (3.26)
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4. Fifth-Order Differential Equation

In this section, we consider the fifth-order differential equation of the form

u(5) + γ1u(3) + γ2u(1) + γ3u = g(x), x ∈ I, (4.1)

but by considering its integrated form, namely,

u(x) + γ1

∫ (2)

u(x)(dx)(2) + γ2

∫ (4)

u(x)(dx)(4) + γ3

∫ (5)

u(x)(dx)(5) = f(x) +
4∑
i=0

diP
(α,β)
i (x).

(4.2)

4.1. First Choice of Boundary Conditions

Here, we apply the dual-Petrov-Galerkin approximation to (4.2) subject to the boundary
conditions

u(±1) = u(1)(±1) = u(2)(1) = 0. (4.3)

We set

VN =
{
v ∈ SN : v(±1) = v(1)(±1) = v(2)(1) = 0

}
,

V ∗
N =

{
v ∈ SN : v(±1) = v(1)(±1) = v(2)(−1) = 0

}
;

(4.4)

then the Jacobi dual-Petrov-Galerkin approximation to (4.2) is to find uN ∈ VN such that

(uN, v)wα,β + γ1

(∫ (2)

uN(dx)(2), v

)

wα,β

+ γ2

(∫ (4)

uN(dx)(4), v

)

wα,β

+ γ3

(∫ (5)

uN(dx)(5), v

)

wα,β

=

(
f +

4∑
i=0

diP
(α,β)
i , v

)

wα,β ,N

∀v ∈ V ∗
N.

(4.5)

We consider the following the Jacobi dual-Petrov-Galerkin procedure for (4.1): find uN ∈ VN
such that

(uN, v)wα,β + γ1

(∫ (2)

uN(dx)(2), v

)

wα,β

+ γ2

(∫ (4)

uN(dx)(4), v

)

wα,β

+ γ3

(∫ (5)

uN(dx)(5), v

)

wα,β

=

(
f +

4∑
i=0

diP
(α,β)
i , v

)

wα,β

∀v ∈ V ∗
N.

(4.6)
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Now, we choose the basis and the dual basis functions Φk(x) and Ψk(x) to be of the form

Φk(x) = P
(α,β)
k (x) + ε̂kP

(α,β)
k+1 (x) + ε̂kP

(α,β)
k+2 (x) + ζ̂kP

(α,β)
k+3 (x)

+ μ̂kP
(α,β)
k+4 (x) + υ̂kP

(α,β)
k+5 (x), k = 0, 1, . . . ,N − 5,

Ψk(x) = P
(α,β)
k (x) + ρ̂kP

(α,β)
k+1 (x) + �̂kP

(α,β)
k+2 (x) + σ̂kP

(α,β)
k+3 (x)

+ ς̂kP
(α,β)
k+4 (x) + τ̂kP

(α,β)
k+5 (x), k = 0, 1, . . . ,N − 5.

(4.7)

It is not difficult to show that the basis functions Φk(x) ∈ Vk+5 and the dual basis functions
Ψk(x) ∈ V ∗

k+5.

We choose the coefficients ε̂k, ε̂k, ζ̂k, μ̂k , and υ̂k such that Φk(x) verifies the boundary
conditions (4.3). Making use of (2.7), then the boundary conditions (4.3) lead to linear system
for these coefficients. The computation of the exact solution of such linear system for the
unknown coefficients is extremely tedious by hand, and we have resorted to the symbolic
computation software mathematica version 6, hence ε̂k, ε̂k, ζ̂k, μ̂k , and υ̂k can be uniquely
determined to give

ε̂k = −(k + 1)(2k + λ + 2)
(
k − 2α + 3β + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 6)

,

ε̂k = − (k + 1)2(2k + λ + 1)(2k + λ + 4)
(k + α + 1)2

(
k + β + 1

)
2(2k + λ + 6)2

×
[
2k2 + 4(α + 3)k +

(
−α2 + 9α + 3β2 + 3(2α − 1)β + 16

)]
,

ζ̂k =
(k + 1)3(2k + λ + 1)2

(k + α + 1)3
(
k + β + 1

)
2(2k + λ + 7)2

×
[
2k2 + 4

(
β + 3

)
k +

(
−3α2 − 3α − β2 + 3(2α + 5)β + 16

)]
,

μ̂k =
(k + 1)4

(
k + 3α − 2β + 5

)
(2k + λ + 1)3

(k + α + 1)3
(
k + β + 1

)
2(2k + λ + 6)2(2k + λ + 9)

,

υ̂k = − (k + 1)5(2k + λ + 1)4
(k + α + 1)3

(
k + β + 1

)
2(2k + λ + 6)4

.

(4.8)
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Since the dual basis functions Ψk(x) satisfy the dual boundary conditions, and making
use of (2.7) then the unknown coefficients ρ̂k, �̂k , σ̂k, ς̂k, and τ̂k are determined by using
Mathematica to give

ρ̂k =
(k + 1)(2k + λ + 2)

(
k + 3α − 2β + 1

)

(k + α + 1)
(
k + β + 1

)
(2k + λ + 6)

,

�̂k = − (k + 1)2(2k + λ + 1)(2k + λ + 4)
(k + α + 1)2

(
k + β + 1

)
2(2k + λ + 6)2

×
[
2k2 + 4

(
β + 3

)
k +

(
−3α2 + 3α − β2 + 3(2α + 3)β + 16

)]
,

σ̂k = − (k + 1)3(2k + λ + 1)2
(k + α + 1)2

(
k + β + 1

)
3(2k + λ + 7)2

×
[
2k2 + 4(α + 3)k +

(
−α2 + 15α − 3β2 + 3(2α − 1)β + 16

)]
,

ς̂k =
(k + 1)4

(
k + 3β − 2α + 5

)
(2k + λ + 1)3

(k + α + 1)2
(
k + β + 1

)
3(2k + λ + 6)2(2k + λ + 9)

,

τ̂k =
(k + 1)5(2k + λ + 1)4

(k + α + 1)2
(
k + β + 1

)
3(2k + λ + 6)4

.

(4.9)

It is clear that (4.6) is equivalent to

(uN,Ψk(x))wα,β + γ1

(∫ (2)

uN(dx)(2),Ψk(x)

)

wα,β

+ γ2

(∫ (4)

uN(dx)(4),Ψk(x)

)

wα,β

+ γ3

(∫ (5)

uN(dx)(5),Ψk(x)

)

wα,β

=

(
f(x) +

4∑
i=0

diP
(α,β)
i (x),Ψk(x)

)

wα,β

, k = 0, 1, . . . ,N.

(4.10)

The constants d0, d1, d2, d3, and d4 would not appear if we take k ≥ 5 in (4.10), therefore we
get

(uN,Ψk(x))wα,β + γ1

(∫ (2)

uN(dx)(2),Ψk(x)

)

wα,β

+ γ2

(∫ (4)

uN(dx)(4),Ψk(x)

)

wα,β

+ γ3

(∫ (5)

uN(dx)(5),Ψk(x)

)

wα,β

=
(
f(x),Ψk(x)

)
wα,β , k = 5, 6, . . . ,N.

(4.11)
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If we take Φk(x) and Ψk(x) as defined in (4.7) and if we denote

fk =
(
f,Ψk(x)

)
wα,β , f =

(
f5, f6, . . . , fN

)T
,

uN(x) =
N−5∑
n=0

vnΦn(x), v = (v0, v1, . . . , vN−5)T ,

pkj =
(
Φj−5(x),Ψk(x)

)
wα,β , qkj =

(∫ (2)

Φj−5(x)(dx)(2),Ψk(x)

)

wα,β

,

skj =

(∫ (4)

Φj−5(x)(dx)(4),Ψk(x)

)

wα,β

, tkj =

(∫ (5)

Φj−5(x)(dx)(5),Ψk(x)

)

wα,β

,

(4.12)

then

VN = span{Φ0(x),Φ1(x), . . . ,ΦN−5(x)}, V ∗
N = span{Ψ5(x),Ψ6(x), . . . ,ΨN(x)}, (4.13)

and the nonzero elements (pkj), (qkj), (skj), and (tkj) for 5 ≤ k, j ≤N are given as follows:

pkk = υ̂k−5hk,

pk,k+1 = μ̂k−4hk + υ̂k−4ρ̂khk+1,

pk,k+2 = ζ̂k−3hk + μ̂k−3ρ̂khk+1 + υ̂k−3�̂khk+2,

pk,k+3 = ε̂k−2hk + ζ̂k−2ρ̂khk+1 + μ̂k−2�̂khk+2 + υ̂k−2σ̂khk+3,

pk,k+4 = ε̂k−1hk + ε̂k−1ρ̂khk+1 + ζ̂k−1�̂khk+2 + μ̂k−1σ̂khk+3 + υ̂k−1ς̂khk+4,

pk,k+5 = hk + ε̂kρ̂khk+1 + ε̂k�̂khk+2 + ζ̂kσ̂khk+3 + μ̂kς̂khk+4 + υ̂kτ̂khk+5,

pk,k+6 = ρ̂khk+1 + ε̂k+1�̂khk+2 + ε̂k+1σ̂khk+3 + ζ̂k+1ς̂khk+4 + μ̂k+1τ̂khk+5,

pk,k+7 = �̂khk+2 + ε̂k+2σ̂khk+3 + ε̂k+2ς̂khk+4 + ζ̂k+2τ̂khk+5,

pk,k+8 = σ̂khk+3 + ε̂k+3ς̂khk+4 + ε̂k+3τ̂khk+5,

pk,k+9 = ς̂khk+4 + ε̂k+4τ̂khk+5,

pk,k+10 = τ̂khk+5,

(4.14)

qk,j = R2
(
j, k, α, β

)
hk + R2

(
j, k + 1, α, β

)
ρ̂khk+1 +R2

(
j, k + 2, α, β

)
�̂khk+2

+ R2
(
j, k + 3, α, β

)
σ̂khk+3 + R2

(
j, k + 4, α, β

)
ς̂khk+4 +R2

(
j, k + 5, α, β

)
τ̂khk+5,

j = k + 	 − 2, 	 = 0, 1, . . . , 14,



Abstract and Applied Analysis 15

sk,j = R4
(
j, k, α, β

)
hk + R4

(
j, k + 1, α, β

)
ρ̂khk+1 +R4

(
j, k + 2, α, β

)
�̂khk+2

+ R4
(
j, k + 3, α, β

)
σ̂khk+3 + R4

(
j, k + 4, α, β

)
ς̂khk+4 +R4

(
j, k + 5, α, β

)
τ̂khk+5,

j = k + 	 − 4, 	 = 0, 1, . . . , 18,

tk,j = R5
(
j, k, α, β

)
hk + R5

(
j, k + 1, α, β

)
ρ̂khk+1 +R5

(
j, k + 2, α, β

)
�̂khk+2

+ R5
(
j, k + 3, α, β

)
σ̂khk+3 + R5

(
j, k + 4, α, β

)
ς̂khk+4 +R5

(
j, k + 5, α, β

)
τ̂khk+5,

j = k + 	 − 5, 	 = 0, 1, . . . , 20,

(4.15)

where

Ri

(
j, k, α, β

)
= Si

(
j − 5, k, α, β

)
+ ε̂j−5Si

(
j − 4, k, α, β

)
+ ε̂j−5Si

(
j − 3, k, α, β

)

+ ζ̂j−5Si
(
j − 2, k, α, β

)
+ μ̂j−5Si

(
j − 1, k, α, β

)
+ υ̂j−5Si

(
j, k, α, β

)
.

(4.16)

Then (4.11) is equivalent to the following matrix equation:

(
P + γ1Q + γ2S + γ3T

)
v = f. (4.17)

4.2. Second Choice of Boundary Conditions

In this subsection, we consider the fifth-order differential equation (4.1) with the following
boundary conditions:

u(±1) = u(1)(±1) = u(3)(−1) = 0. (4.18)

Equation (4.1) subject to the boundary conditions (4.18) has been considered in [29, 30]. Let
us denote

ZN =
{
v ∈ SN : v(±1) = v(1)(±1) = v(3)(−1) = 0

}
,

ẐN =
{
v ∈ SN : v(±1) = v(1)(±1) = v(3)(1) = 0

}
;

(4.19)

then the Jacobi dual-Petrov-Galerkin approximation of (4.1) subject to (4.18) consists of
finding uN ∈ ZN such that

(uN, v)wα,β + γ1

(∫ (2)

uN(dx)(2), v

)

wα,β

+ γ2

(∫ (4)

uN(dx)(4), v

)

wα,β

+ γ3

(∫ (5)

uN(dx)(5), v

)

wα,β

=

(
f +

4∑
i=0

diP
(α,β)
i , v

)

wα,β

∀v ∈ ẐN.

(4.20)
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We consider the following choice of basis functions:

ϕk(x) = P
(α,β)
k (x) + ξ1,kP

(α,β)
k+1 (x) + ξ2,kP

(α,β)
k+2 (x) + ξ3,kP

(α,β)
k+3 (x) + ξ4,kP

(α,β)
k+4 (x) + ξ5,kP

(α,β)
k+5 (x),

(4.21)

and dual basis functions:

ϕ̂k(x) = P
(α,β)
k (x) + δ1,kP

(α,β)
k+1 (x) + δ2,kP

(α,β)
k+2 (x) + δ3,kP

(α,β)
k+3 (x) + δ4,kP

(α,β)
k+4 (x) + δ5,kP

(α,β)
k+5 (x),

(4.22)

where ξ1,k, ξ2,k, ξ3,k, ξ4,k, ξ5,k, δ1,k, δ2,k, δ3,k, δ4,k, and δ5,k are chosen to be the unique constants
such that ϕk(x) ∈ ZN and ϕ̂k(x) ∈ ẐN , for all k = 0, 1, . . . ,N − 5.

Equation (4.20) is equivalent to the following matrix equation:

(
P̂ + γ1Q̂ + γ2Ŝ + γ3T̂

)
v = f, (4.23)

where the elements of the matrices P̂ , Q̂, Ŝ, and T̂ can be obtained similarly as in the previous
sections, but details are not given here.

5. Numerical Results

In this section some examples are considered aiming to illustrate how one can apply the
proposed algorithms presented in the previous sections. Comparisons between JDPGmethod
and other methods proposed in [29–32] are made.

Example 5.1. Consider the one-dimensional third-order equation

u(3)(x) + πu(2)(x) + 2πu(1)(x) + 3πu(x) = f(x), x ∈ I,

u(±1) = ± 1√
2
, u(1)(1) =

π

4
√
2
,

(5.1)

with an exact smooth solution

u(x) = sin
(πx

4

)
. (5.2)

Table 1 lists the maximum pointwise error of u − uN , using the JDPG with various
choices of α, β, andN.

Example 5.2. Consider the one-dimensional fifth-order differential problem

u(5) − γ1u(3) − γ2u(1) − γ3u = f(x), x ∈ I,

u(±1) = 0, u(1)(±1) = ∓π
2
, u(2)(1) = −2,

(5.3)

with the exact solution u(x) = x2 cos((π/2)x).
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Table 1:Maximum pointwise error using JDPG method forN = 8, 16, 24, for Example 5.1.

N α β JDPG α β JDPG

8 8.278 · 10−2 3.645 · 10−2
16

1
2

1
2

1.404 · 10−11 −1
2

1
2

3.368 · 10−12

24 1.249 · 10−16 2.220 · 10−16
8 1.165 · 10−1 5.644 · 10−2
16

1
2

−1
2

2.439 · 10−11 −1
2

−1
2

6.311 · 10−12

24 2.220 · 10−16 2.220 · 10−16

Table 2:Maximum pointwise error using JDPG method forN = 12, 24, 36, for Example 5.2.

N α β γ1 γ2 γ3 JDPG γ1 γ2 γ3 JDPG

12 3.294 · 10−1 9.117 · 10−1
24

1
2

1
2

1 1 1 2.650 · 10−13 N N2 N3 1.052 · 10−10

36 2.116 · 10−16 4.770 · 10−16
12 3.024 · 10−1 8.366 · 10−1
24 0 0 1 1 1 1.982 · 10−13 N N2 N3 7.947 · 10−11
36 3.053 · 10−16 3.053 · 10−16
12 2.748 · 10−1 7.598 · 10−1
24 −1

2
−1
2

1 1 1 1.437 · 10−13 N N2 N3 5.828 · 10−11

36 2.116 · 10−16 1.387 · 10−16

Table 2 lists the maximum pointwise error, using the JDPG method with various
choices of α, β, γ1, γ2, γ3, andN. Numerical results of this example show that the JDPGmethod
converges exponentially.

Example 5.3. Consider the following fifth-order boundary value problem (see [29–32]):

u(5)(x) − u(x) = −(15 + 10x)ex, x ∈ [0, 1],

u(0) = 0, u(1) = 0, u(1)(0) = 1, u(1)(1) = −e, u(3)(0) = −3.
(5.4)

The analytic solution of this problem is u(x) = x(1 − x)ex. Approximate solutions uN(x)
(N = 10, 13, 20, 26, 40) are obtained by using our proposed method. Table 3 exhibits a
comparison between the error obtained by using JDPG method and the sixth-degree B-spline
[31], sextic spline [32], nonpolynomial sextic spline [29], and the computational method
in [30]. The numerical results show that JDPG method is more accurate than the existing
methods.
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Table 3:Maximum pointwise error of u − uN forN = 15, 18, 25, 31, for Example 5.3.

N − 5 α β Our algorithm In [31] In [32] In [29] In [30]

1
2

1
2

2.50 · 10−6

10 0 0 2.28 · 10−6 0.1570 2.2593 · 10−4 6.29887 · 10−5
−1
2

−1
2

2.05 · 10−6

1
2

1
2

1.35 · 10−10
13 0 0 1.17 · 10−10 1.3767 · 10−4 5.91739 · 10−5

−1
2

−1
2

1.00 · 10−10

1
2

1
2

2.49 · 10−16

20 0 0 2.22 · 10−16 0.0747 1.3300 · 10−5 2.14116 · 10−6
−1
2

−1
2

1.87 · 10−16

1
2

1
2

2.22 · 10−16

26 0 0 1.18 · 10−16 7.1273 · 10−6 3.40705 · 10−7
−1
2

−1
2

1.94 · 10−16

Example 5.4. Consider the following third-order ODE with polynomial coefficients:

u(3)(x) + x2u(2)(x) +
(
x3 + 4x

)
u(1)(x) +

(
3x2 + x + 2

)
u(x) = g(x), x ∈ [−1, 1], (5.5)

subject to

u(±1) = u(1)(1) = 0, (5.6)

where g is selected such that exact solution is u(x) = (1 − x2)(1 − x)e2x.

Equation (5.5) can be rearranged to take the form

u(3)(x) +
(
x2u(x)

)(2)
+
(
x3u(x)

)(1)
+ xu(x) = g(x), (5.7)

and accordingly its fully integrated form is

u(x) +
∫ (1)

x2u(x)(dx)(1) +
∫ (2)

x3u(x)(dx)(2) +
∫ (3)

xu(x)(dx)(3)

= f(x) +
2∑
i=0

diP
(α,β)
i (x).

(5.8)
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Table 4: Maximum pointwise error using quadrature JDPG method forN = 12, 16, 20, 24, for Example 5.4.

N α β Quadrature JDPG α β Quadrature JDPG

8

0 0

2.643 · 10−2
1
2

1
2

3.280 · 10−2
12 1.496 · 10−5 2.060 · 10−5
16 2.513 · 10−9 2.920 · 10−9
20 3.613 · 10−14 5.847 · 10−14

Using the quadrature dual-Petrov-Galerkin method described in Section 3.2, we
evaluate the maximum pointwise error of u − uN with various choices of α, β, and N in
Table 4. Numerical results show that there is a very good agreement between the approximate
solution obtained by the quadrature JDPG method and the exact solution and at the same
time ascertain that the JDPG method converges exponentially.

6. Concluding Remarks

In this paper, we described a JDPGmethod for fully integrated forms of third- and fifth-order
ODEs with constant coefficients. Because of the constant coefficients, the matrix elements of
the discrete operators are provided explicitly, and this in turn greatly simplifies the steps and
the computational effort for obtaining solutions. However, the integrated form of the source
function (involving severalfold indefinite integrals) should be known analytically, and the
right hand side vector require quadrature approximations. This approach is also considered
for ODEs with polynomial coefficients. Numerical results exhibit the high accuracy of the
proposed numerical methods of solutions.
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