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In recent decades, many researchers have investigated the ecological models with three and more
species to understand complex dynamical behaviors of ecological systems in nature. However,
when they studied the models with three species, they have just considered the functional
responses between prey and mid-predator and between mid-predator and top predator as the
same type. However, in the paper, in order to describe more realistic ecological world, a three-
species food chain system with two types of functional response, Holling type and Beddington-
DeAngelis type, is considered. It is shown that this system is dissipative. Also, the local and
global stability of equilibrium points of the system is established. In addition, conditions for the
persistence of the system are found according to the existence of limit cycles. Some numerical
examples are given to substantiate our theoretical results. Moreover, we provide numerical
evidence of the existence of chaotic phenomena by illustrating bifurcation diagrams of system
and by calculating the largest Lyapunov exponent.

1. Introduction

Studying the dynamic interaction between predators and preys has long been one of the
main themes in ecological systems. The classical ecological models of interacting populations
typically have focused on two-species continuous time systems with one predator and one
prey. In general, these models consist of two differential equations and a functional response,
which is a function representing the prey consumption per unit time. Many scholars have
studied about classical two-species continuous time systems for several functional responses
such as Holling-Tanner type (cf. [1–3]), Beddington-DeAngelis type (cf. [4, 5]), and ratio-
dependent type (cf. [6, 7]). However, it has been recognized that such classical models
with two-species can describe only a small number of the phenomena that are commonly
observed in nature. In fact, the models can exhibit only two main patterns: approach to an
equilibrium point or to a limit cycle [8]. For the reason, in recent decades, many researchers
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(cf. [9–17]) have turned their concerns to the ecological models with three and more species
to understand complex dynamical behaviors of ecological systems in the real world. They
have demonstrated the very complex dynamic phenomena of those models, including cycles,
periodic doubling, and chaos. In particular, in [10, 12], the authors showed the occurrence of
chaotic dynamics in a simple three-species food chain model with Holling type II functional
response. The occurrence of chaos in basic Lotka-Volterra models of four competing species
was studied in [16], and, in [14, 17], they investigated the complex dynamical behavior of
a three-species food chain model with Beddington-DeAngelis functional response. Thus, in
this paper, we consider the following food chain system with three species:

dx(t)
dt

= x(t)(a − bx(t)) − c1F1
(
x(t), y(t)

)
y(t),

dy(t)
dt

= −d1y(t) + c2F1
(
x(t), y(t)

)
y(t) − c3F2

(
y(t), z(t)

)
z(t),

dz(t)
dt

= −d2z(t) + c4F2
(
y(t), z(t)

)
z(t),

(1.1)

where x(t), y(t), and z(t) are functions of time representing population densities of the prey
and the mid-predator and the top predator, respectively, and all parameters are positive
constants. The constant a is the intrinsic growth rates of the prey population, b is the
coefficient of intraspecific competition, c1 is the per capita rate of predation of the mid-
predator, d1 denotes the death rate of the mid-predator, c2 is the rate of conversion of a
consumed prey to a predator, c3 is the per-capita rate of predation of the top predator, d2

denotes the death rate of the top predator, c4 is the rate of conversion of a consumed prey to
a predator, and here the functions F1 and F2 represent functional responses.

The references mentioned above have though of the functional responses F1 and F2

as the same type. However, from biological point of view, it is unrealistic. In fact, in real
world, predators of different species may feed on preys in different types of consumption
ways. For example, consider crops, aphids, and lady beetles as prey, mid-predator, and top
predator, respectively. In this case, it is natural to assume that the feeding type of aphids on
crops is different from that of lady beetles on aphids. Thus, to describe this phenomenon,
two different types of functional responses are needed. So, in this paper, we consider two
types of functional responses, the Holling type II functional response (cf. [18]) and the
Beddington-DeAngelis functional response (cf. [4]). The former, which can be written as
F1(x, y) = x/(α1 + x), is adopted to describe the relationship between the prey and the mid-
predator, and the latter, which can be written as F2(y, z) = y/(α2 + y + βz), is adopted to
express the relationship between the mid-predator and the top predator. Thus, the following
food chain system with the hybrid type functional responses is considered in this paper:

dx(t)
dt

= x(t)(a − bx(t)) −
c1x(t)y(t)
α1 + x(t)

,

dy(t)
dt

= −d1y(t) +
c2x(t)y(t)
α1 + x(t)

−
c3y(t)z(t)

α2 + y(t) + βz(t)
,

dz(t)
dt

= −d2z(t) +
c4y(t)z(t)

α2 + y(t) + βz(t)
,

(1.2)

where α1 and α2 are the half-saturation constants and the term β scales the impact of the
predator interference.
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The main object of this paper is to investigate the dynamic properties and behaviors
of system (1.2). In this context, the paper is organized as follows. In Section 2, we show the
dissipativeness of system (1.2) and find a necessary condition for the mid-predator to survive.
The local stabilities of the equilibrium points of system (1.2) are examined in Section 3, and
the conditions for persistence of system (1.2) are found out according to the existence of limit
cycles in Section 4 and some numerical examples are given to substantiate our theoretical
results. Moreover, in Section 5, we provide numerical evidence of the existence of chaotic
phenomena by illustrating bifurcation diagrams of system (1.2) and by calculating the largest
Lyapunov exponent. Finally, conclusions are given in Section 6.

2. Dissipativeness

Obviously, the right-hand sides of system (1.2) are continuous and have continuous partial
derivatives on the state space R

3
+ = {(x, y, z)T | x ≥ 0, y ≥ 0, z ≥ 0}. In fact, they are Lips-

chitzian on R
3
+ and then the solution of system (1.2) with nonnegative initial condition exists

and is unique, as the solution of system (1.2) initiating in the nonnegative octant is bounded.
Moreover, from [19], it is easy to show that R

3
+ is an invariant domain of system (1.2).

A system is said to be dissipative if all population initiating in R
3
+ are uniformly limited

by their environment [20]. Thus, the dissipativeness of system (1.2) is carried out in the
following theorem.

Theorem 2.1. System (1.2) is dissipative.

Proof. From the first equation of system (1.2), we get dx(t)/dt ≤ x(t)(a − bx(t)). So, by
comparison theorem, x(t) ≤ a/(b+Ce−at) for all t ≥ 0, where C = (a− bx0)/x0, which implies
that x(t) ≤ a/b for sufficiently large t. Define V (t) = (c2/c1)x(t) + y(t) + (c3/c4)z(t). Then
dV (t)/dt ≤ a(a + 1)c2/bc1 − mV (t), where m = min{1, d1, d2}. So, by comparison theorem,
we obtain that V (t) ≤ a(a + 1)c2/bc1m − (a(a + 1)c2/bc1m)e−mt for t ≥ 0. Thus, (c2/c1)x(t) +
y(t) + (c3/c4)z(t)≤ a(a + 1)c2/bc1m for sufficiently large t, which means that all species are
uniformly bounded for any initial value in R

3
+. Therefore, system (1.2) is dissipative.

The following proposition provides a necessary condition for survival of the mid-
predator in system (1.2).

Proposition 2.2. A necessary condition for the mid-predator species y to survive is

d1 <
ac2

bα1 + a
. (2.1)

Proof. From the second equation of system (1.2), we get

dy(t)
dt

= −d1y(t) +
c2x(t)y(t)
α1 + x(t)

−
c3y(t)z(t)

α2 + y(t) + βz(t)

≤ −d1y(t) +
c2x(t)y(t)
α1 + x(t)

≤ y(t)
(
−d1 +

ac2

bα1 + a

)
(
By Theorem 2.1

)
.

(2.2)

Then we have y(t) ≤ y0e
At, where A = −d1 + ac2/(bα1 + a). Thus, for A < 0, limt→∞y(t) = 0.

Hence, (2.1) is a necessary condition for the survival of the mid-predator y.
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3. Stability Analysis

In order to investigate the stability of the equilibrium points of system (1.2), first, we consider
the following two-dimensional dynamical system:

dx(t)
dt

= x(t)(a − bx(t)) −
c1x(t)y(t)
α1 + x(t)

,

dy(t)
dt

= −d1y(t) +
c2x(t)y(t)
α1 + x(t)

.

(3.1)

It is well known that the Kolmogorov theorem is applicable in two-dimensional
dynamical system and guarantees the existence of either a stable equilibrium point or stable
limit cycle behavior in the positive quadrant of phase space of the system, provided certain
conditions are satisfied (cf. [20, 21]). Such conditions ensure that the parametric values are
biologically relevant.

Now, it is observed that subsystem (3.1) is a Kolmogorov system under the condition

0 <
α1d1

c2 − d1
<
a

b
. (3.2)

From now on, we assume that subsystem (3.1) satisfies the condition (3.2). By applying the
local stability analysis to a Kolmogorov system (3.1) we have the following results [11].

(I) The equilibrium point E00 = (0, 0) always exists and is a saddle point.

(II) The equilibrium point E01 = (a/b, 0) always exists and is a saddle point.

(III) The positive equilibrium point E02 = (x̃, ỹ) exists, where

x̃ =
α1d1

c2 − d1
, ỹ =

(a − bx̃)(α1 + x̃)
c1

, (3.3)

and it is a locally asymptotically stable point if the following condition holds:

d1 >
c2(a − bα1)
a + bα1

. (3.4)

Moreover, the solution to system (3.1) approaches to a stable limit cycle if d1 <
c2(a − bα1)/(a + bα1).

Now, we will study the dynamic behavior of the solution of system (1.2). First, we
think over the stability of equilibrium points of system (1.2). In fact, there are at most
four nonnegative equilibrium points of system (1.2). The existence conditions of them are
mentioned as follows.



Abstract and Applied Analysis 5

(I) The trivial equilibrium point E0 = (0, 0, 0) and one species equilibrium point E1 =
(a/b, 0, 0) always exist. However, the predators die out in the absence of the prey.
Thus the equilibrium points (0, yc, 0) and (0, 0, zc) with yc, zc > 0 do not exist.

(II) Two-species equilibrium point E2 = (x̃, ỹ, 0)exists in the interior of positive
quadrant of xy plane under the Kolmogorov condition (3.2), where x̃ and ỹ are
given in (3.3). On the other hand, the absence of the mid-predator causes no
equilibrium point in the xz plane. Moreover, if there exists no prey, then neither
y nor z can survive, which means that there is no equilibrium point in the yz plane.

(III) The positive equilibrium point E3 = (x∗, y∗, z∗) exists in the interior of the first
octant if and only if there exists a positive solution to the following algebraic
nonlinear simultaneous equations:

f1
(
x, y, z

)
= a − bx −

c1y

α1 + x
= 0,

f2
(
x, y, z

)
= −d1 +

c2x

α1 + x
− c3z

α2 + y + βz
= 0,

f3
(
x, y, z

)
= −d2 +

c4y

α2 + y + βz
= 0.

(3.5)

By applying elementary calculation to (3.5), we obtain that

y∗ =
(a − bx∗)(α1 + x∗)

c1
, z∗ =

(c4 − d2)y∗ − d2α2

d2β
, (3.6)

where x∗ is a positive solution of the quadratic equation px2 + qx + r = 0,

p = −bc2c4β + bc4d1β + bc3c4 − bc3d2,

q = ac2c4β + bc4d1α1β − ac4d1β + ac3d2 + bc3c4α1 − ac3c4 − bc3d2α1,

r = −ac4d1α1β + c1c3d2α2 − ac3c4α1 + ac3d2α1.

(3.7)

Therefore, sufficient conditions for the existence of the positive equilibrium point
in the interior of the first octant are easily obtained as follows:

q2 − 4pr ≥ 0, 0 < x∗ <
a

b
, 0 <

α2d2

c4 − d2
< y∗. (3.8)

Now, in order to investigate the stabilities of the equilibrium points, we consider the
variational matrix V (x, y, z) of system (1.2). Thus, we get the matrix

V
(
x, y, z

)
=

⎛

⎜⎜
⎝

v11 v12 v13

v21 v22 v23

v31 v32 v33

⎞

⎟⎟
⎠, (3.9)
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where

v11 = x
∂f1

∂x
+ f1 = a − 2bx −

c1α1y

(α1 + x)2
, v12 = x

∂f1

∂y
= − c1x

α1 + x
, v13 = x

∂f1

∂z
= 0,

v21 = y
∂f2

∂x
=

c2α1y

(α1 + x)2
, v22 = y

∂f2

∂y
+ f2 = −d1 +

c2x

α1 + x
−

c3z
(
α2 + βz

)

(
α2 + y + βz

)2
,

v23 = y
∂f2

∂z
= −

c3y
(
α2 + y

)

(
α2 + y + βz

)2
, v31 = z

∂f3

∂x
= 0, v32 = z

∂f3

∂y
=

c4z
(
α2 + βz

)

(
α2 + y + βz

)2
,

v33 = z
∂f3

∂z
+ f3 = −d2 +

c4y
(
α2 + y

)

(
α2 + y + βz

)2
,

(3.10)

and f1, f2, and f3 are in (3.5).
Using the variational matrix V (x, y, z), the local stability of system (1.2) near the

equilibrium points are obtained as follows.

(I) The trivial equilibrium point E0 is a hyperbolic saddle point. In fact, near E0 =
(0, 0, 0) the prey population is increasing, while both of the predators populations
are decreasing.

(II) The equilibrium point E1 = (a/b, 0, 0) is locally stable if d1 > ac2/(bα1 + a).
However, under the Kolmogorov condition (3.2), that is, d1 < ac2/(bα1 + a), the
point E1 is a saddle point with locally stable manifold in xz plane and with locally
unstable manifold in y-direction.

(III) Clearly, the equilibrium point E2 = (x̃, ỹ, 0) has the same stability behavior as E02 =
(x̃, ỹ) in the interior of positive coordinate xy plane. However, the stability of the
point E2 is determined by the positive direction orthogonal to the xy plane, that
is, z-direction, depending on whether the eigenvalue λ̃3 = −d2 + c4ỹ/(α2 + ỹ) is
negative or positive, respectively.

(IV) Let V ∗ = (v∗i,j) be the variational matrix at the equilibrium point E3 = (x∗, y∗, z∗).

Then we have v∗11 = x∗(−b + c1y
∗/(α1 + x∗)2), v∗22 = c3y

∗z∗/(α2 + y∗ + βz∗)2(> 0)
and v∗33 = −c4βy

∗z∗/(α2 + y∗ + βz∗)2(< 0) because f1(x∗, y∗, z∗) = f2(x∗, y∗, z∗) =
f3(x∗, y∗, z∗) = 0 and v∗12 < 0, v∗21 > 0, v∗23 < 0, and v∗32 > 0. Moreover, the
characteristic equation of V ∗ is λ3 +Aλ2 + Bλ + C = 0, where

A = −
(
v∗11 + v

∗
22 + v

∗
33
)
,

B = v∗11v
∗
33 + v

∗
22v

∗
33 + v

∗
11v

∗
22 − v∗12v

∗
21 − v

∗
23v

∗
32,

C =
(
v∗12v

∗
21 − v

∗
11v

∗
22
)
v∗33 + v

∗
11v

∗
23v

∗
32.

(3.11)

By the Routh-Hurwitz criterion [20], E3 = (x∗, y∗, z∗) is locally asymptotically stable
if and only if A, C, and AB − C are positive.
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A sufficient condition for the local stability of E3 is given in the following theorem.

Theorem 3.1. Suppose that the positive equilibrium point E3 = (x∗, y∗, z∗) exists in the interior of
the positive octant. Then E3 is locally asymptotically stable if the following conditions hold:

bx∗ > y∗
(
c1x

∗

ϕ2
+
c3z

∗

φ2

)
, (3.12)

bc3z
∗ϕ3 < c1

(
c2α1φ

2 + c3y
∗z∗ϕ

)
,

c4β − c3 > 0,
(3.13)

where ϕ = α1 + x∗ and φ = α2 + y∗ + βz∗.

Proof. Under the condition (3.12), it is easy to show that A,C > 0. By expanding AB and
calculating AB − C, we get

AB − C =
(
v∗11 + v

∗
22
)(
v∗12v

∗
21 − v

∗
11v

∗
22 +Av

∗
33
)
+ v∗23v

∗
32
(
v∗22 + v

∗
33
)
. (3.14)

From the conditions (3.13), it is proven that v∗12v
∗
21 − v

∗
11v

∗
22 < 0 and v∗22 + v

∗
33 < 0. Therefore,

from the signs of variational matrix elements v∗i,j (i, j = 1, 2, 3), we get AB − C > 0. Hence, E3

is locally asymptotically stable.

In the following theorem, the global stability of the equilibrium point E3 is
investigated.

Theorem 3.2. Suppose that the positive equilibrium point E3 = (x∗, y∗, z∗) is locally asymptotically
stable. Then it is a globally asymptotically stable if the following condition is satisfied:

c2(a + bx∗)2

4bc1
+ d1y

∗ +
c3d2

c4
z∗ +M

(
c2x

∗

α1
+
c3y

∗

α2

)

<
ac2

c1
x∗ +M

(
c2y

∗

α1 +M
+

c3z
∗

α2 +
(
1 + β

)
M

)

,

(3.15)

whereM = a(a + 1)c2/bc1m andm = min{1, d1, d2}.

Proof. The proof can be reached by using a Lyapunov stability theorem which gives
a sufficient condition. Now, let us consider a positive definite function W(x, y, z) =
(c2/c1)W1(x, y, z)+W2(x, y, z)+(c3/c4)W3(x, y, z) in the interior of the positive octant, where

W1
(
x, y, z

)
= x − x∗ ln

( x
x∗

)
,

W2
(
x, y, z

)
= y − y∗ ln

(
y

y∗

)
,

W3
(
x, y, z

)
= z − z∗ ln

( z
z∗

)
.

(3.16)
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Note that

dW1

dt
=
(
a − bx −

c1y

α1 + x

)
(x − x∗),

dW2

dt
=
(
−d1 +

c2x

α1 + x
− c3z

α2 + y + βz

)
(
y − y∗

)
,

dW3

dt
=
(
−d2 +

c4y

α2 + y + βz

)
(z − z∗).

(3.17)

Thanks to Theorem 2.1, without loss of generality, we may assume that there exists a constant
M = a(a+ 1)c2/bc1m satisfying x(t), y(t), z(t) < M, where m = min{1, d1, d2}. Thus, we have

dW

dt
=
c2

c1

dW1

dt
+
dW2

dt
+
c3

c4

dW3

dt

≤ c2

c1

(
ax − bx2 − ax∗ + bxx∗

)
+
c2x

∗M

α1
− d1y + d1y

∗ −
c2y

∗M

α1 +M
+
c3y

∗M

α2

+
c3

c4
(−d2z + d2z

∗) − c3z
∗M

α2 +
(
1 + β

)
M

≤ −bc2

c1

(
x − a + bx∗

2b

)2

− d1y −
c3d2

c4
z +M

(
c2x

∗

α1
−

c2y
∗

α1 +M
+
c3y

∗

α2
− c3z

∗

α2 +
(
1 + β

)
M

)

+
c2(a + bx∗)2

4bc1
− ac2

c1
x∗ + d1y

∗ +
c3d2

c4
z∗.

(3.18)

It is easy to see that dW/dt < 0 under the condition (3.15). Therefore, the function W in
the interior of the positive octant is a Lyapunov function with respect to E3. Hence, the
equilibrium point E3 = (x∗, y∗, z∗) is globally asymptotically stable.

Example 3.3. Let a = 1.5, b = 1, c1 = 0.6, c2 = 0.6, c3 = 0.7, c4 = 0.7, d1 = 0.1, d2 = 0.45,
α1 = 1, α2 = 1.1, and β = 1.1. Then it follows from (3.6) and Theorem 3.1 that the unique
positive equilibrium point E3 = (x∗, y∗, z∗) ≈ (0.3435, 2.5863, 0.3079) is locally stable as shown
in Figure 1. However, even if these parameters do not satisfy the conditions of Theorem 3.2,
Figure 2 exhibits that the positive equilibrium point E3 seems to be globally stable.

Example 3.4. Consider system (1.2) with the parameters a = 1, b = 0.4, c1 = 0.7, c2 = 0.6,
c3 = 0.01, c4 = 1.4, d1 = 0.3, d2 = 0.45, α1 = 1.3, α2 = 0.6, and β = 1.0. From Theorem 3.2,
the positive equilibrium point E3 = (x∗, y∗, z∗) ≈ (1.3502, 1.7413, 3.0762) is globally stable as
shown in Figure 3.



Abstract and Applied Analysis 9

0.4
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Figure 1: a = 1.5, b = 1, c1 = 0.6, c2 = 0.6, c3 = 0.7, c4 = 0.7, d1 = 0.1, d2 = 0.45, α1 = 1, α2 = 1.1, and β = 1.1
and an initial condition (0.3, 2.5, 0.3). (a) The trajectory of system (1.2). (b)–(d) Time series for x(t), y(t),
and z(t).
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1
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Figure 2: a = 1.5, b = 1, c1 = 0.6, c2 = 0.6, c3 = 0.7, c4 = 0.7, d1 = 0.1, d2 = 0.45, α1 = 1, α2 = 1.1, and β = 1.1
and an initial condition (100, 100, 100). (a) The trajectory of system (1.2). (b)–(d) Time series for x(t), y(t),
and z(t).

4. Persistence of System (1.2)

The term persistence is given to systems in which strict solutions do not approach the
boundary of the nonnegative cones as time goes to infinity. Therefore, for the continuous
biological system, survival of all interacting species and the persistence are equivalent. In the
following, we will find out some persistence conditions of the food chain system (1.2) with
two-type functional responses.
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Figure 3: a = 1, b = 0.4, c1 = 0.7, c2 = 0.6, c3 = 0.01, c4 = 1.4, d1 = 0.3, d2 = 0.45, α1 = 1.3, α2 = 0.6, and β = 1.0
and an initial condition (1, 1, 1). (a) The trajectory of the system (1.2). (b)–(d) Time series for x(t), y(t), and
z(t).

Theorem 4.1. Suppose that there are no nontrivial periodic solutions in the xy plane. Then the
necessary condition for the persistence of system (1.2) is

λ̃3 ≥ 0 (4.1)

and the sufficient condition for the persistence of system (1.2) is

λ̃3 > 0, (4.2)

where λ̃3 = −d2 +c4ỹ/(α2 + ỹ) =(−α2d1c1(c2−d1)
2 +α1c2(c4−d2)(ac2−ad1−bα1d1))/(α2c1(c2−

d1)
2 + α1c2(ac2 − ad1 − bα1d1)).

Proof. Note that the boundedness of system (1.2) is shown in Theorem 2.1 and λ̃3 is the
eigenvalue, which gives the stability of the equilibrium point E2 = (x̃, ỹ, 0) in the positive
direction orthogonal to the xy plane, that is, z-direction. Since there are no nontrivial periodic
solutions in the xy plane, so E02 becomes a stable equilibrium point under the Kolmogorov
condition (3.2). Therefore, if (4.1) does not hold (i.e., λ̃3 < 0), then there is an orbit in the
positive cone, which approaches to E2. Hence, the condition (4.1) is one of the necessary
conditions for the persistence of system (1.2). Now, we will use the abstract theorem of
Freedman and Waltman [20] for a sufficient condition of the persistence of system (1.2). For
this, consider the growth functions f1, f2, and f3 of system (1.2) in (3.5). Then the following
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four conditions are satisfied:

(C1) ∂f1/∂y < 0, ∂f1/∂z = 0, ∂f2/∂x > 0, ∂f3/∂x = 0, ∂f3/∂y > 0, f2(0, y, z) < 0, and
f3(0, 0, z) < 0,

(C2) the prey population grows up to its carrying capacity b/a in the absence of
predators, that is, f1(0, 0, 0) = a > 0, f1(b/a, 0, 0) = 0, and (∂f1/∂x)(x, 0, 0) < 0,

(C3) there are no equilibrium points in the xy and yz planes,

(C4) the mid-predator can survive on its prey in the absence of the top predator. In other
words, there exists an equilibrium point E2 = (x̃, ỹ, 0) in the xy plane such that
f3(x̃, ỹ, 0) > 0 by (4.2). However, the top predator cannot survive on the prey x in
the xz plane.

Therefore, by Freedman and Waltman theorem [20], system (1.2) persists if condition (4.2)
holds.

Theorem 4.2. Suppose that condition (4.2) holds and there are a finite number of limit cycles in xy
plane. Then, for each limit cycle (u(t), v(t)) in xy plane, system (1.2) is persistent if the following
condition holds:

∫T

0
f3(u(t), v(t), 0)dt > 0, (4.3)

where T is the time period of the limit cycle.

Proof. Note that the variational matrix V about the limit cycle (u(t), v(t), 0) is as follows:

V (u(t), v(t), 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

u(t)
∂f1

∂x
+ f1 u(t)

∂f1

∂y
0

v(t)
∂f2

∂x
v(t)

∂f2

∂y
+ f2 v(t)

∂f2

∂z

0 0 f3

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.4)

where all the partial derivatives and fi (i = 1, 2, 3) are computed at the limit cycle
(u(t), v(t), 0). Now, consider a solution of system (1.2) with positive initial condition
(u0, v0, w0) sufficiently close to the limit cycle. It is from the variational matrix V (u(t), v(t), 0)
that ∂z/∂w0 is a solution of system dz/dt = f3(u(t), v(t), 0)z with z(0) = 1. So we have

∂z

∂w0
(t, u0, v0, w0) = exp

(∫ t

o

f3(u(s), v(s), 0)ds

)

. (4.5)

Therefore, by using Taylor expansion, we have

z(t, u0, v0, w0) − z(t, u0, v0, 0) ≈ exp

(∫ t

o

f3(u(s), v(s), 0)ds

)

w0. (4.6)
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Figure 4: Bifurcation diagrams of system (1.2) with respect to d1: (a) maxima for the prey; (b) maxima for
the mid-predator; (c) maxima for the top predator.

Thus, the value of z increases or decreases according to the sign of that of exp(
∫ t
o f3(u(s),

v(s), 0)ds). Since the equilibrium point E3 = (x∗, y∗, z∗) and these limit cycles are the only
possible limit in the xy plane of trajectories with positive initial condition, these trajectories
go away from the xy plane if the conditions (4.2) and (4.3) hold.

5. Bifurcation Analysis via Numerical Simulations

In this section, we will investigate various dynamic behaviors of system (1.2) by using
numerical simulations. In particular, we will focus on exploring the possibility of chaotic
behavior for the food chain with two different types of functional responses.

In fact, the dynamic behavior of system (1.2) depends on eleven independent
parameters. So it is very difficult to study the system for complete range of parametric space.
For the reason, two bifurcation parameters, the death rates d1 and d2 of the mid-predator
and the top predator, respectively, are considered. In order to accomplish our purpose, fix the
parameters except d1 and d2 as follows:

a = 1.5, b = 1,

c1 = 1, c2 = 0.9, c3 = 1, c4 = 0.8,

α1 = 0.5, α2 = 0.5, β = 0.1.

(5.1)

First, fix d2 = 0.2 and initial value (1, 1, 1). The bifurcation diagrams of system (1.2) for
the successive maxima of the prey population x and the mid-predator population y and the
top predator population z are plotted in Figure 4 in the range of 0 < d1 < 0.5.

Figure 5 is the magnified parts of Figure 4, and the windows of periodic behaviors are
more visible.

The resulting bifurcation diagrams clearly show that system (1.2) has rich dynamics
including stable limit cycles, period-doubling bifurcation, chaotic bands, periodic windows,
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Figure 5: Magnification of Figure 4 when 0.355 < d1 < 0.375.
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Figure 6: Period-doubling bifurcation: (a) attractor with period-1 when d1 = 0.15; (b) attractor with period-
2 when d1 = 0.22; (c) attractor with period-2 when d1 = 0.25; (d) chaotic attractor when d1 = 0.33.

and period-halving bifurcation. Especially, the values of d1 between 0 and 0.2 result in a
stable limit cycle, then a cascade of period-doubling bifurcation leads system (1.2) to a chaotic
region (see Figure 6). And Figure 7 illustrates periodic halving phenomena.

Now, in order to investigate the dynamical behaviors with respect to the death rate d2

of the top predator via bifurcation diagrams, fix the death rate d1 = 0.35, and keep other
parameters as given in (5.1). The bifurcation diagrams of system (1.2) for the successive
maxima of the prey population x and the mid-predator population y and the top predator
population z as a function of d2 are plotted in Figure 8.

According to these bifurcation diagrams the dynamic behaviors of the solutions of
system (1.2) also have different types of attracting sets including periodic and chaotic as d2
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Figure 7: Period-halving bifurcation: (a) attractor with period-2 when d1 = 0.42; (b) attractor with period-1
when d1 = 0.47.
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Figure 8: Bifurcation diagrams of system (1.2) with respect to d2: (a) maxima for the prey; (b) maxima for
the mid-predator; (c) maxima for the top predator.

varies between 0 and 0.43. However, a stable limit cycle can be shown in the range d2 > 0.43.
As is the case of d1, these figures show the evidence of the route to chaos through the cascade
of periodic doubling.

Thus, from the above facts, we can induce that the dynamic behavior of system (1.2)
is extremely sensitive to the death rates d1 and d2. Moreover, in both cases, chaotic attractors
can be easily observed as shown in Figure 6. In order to provide a quantitative measure of the
degree of chaotic motion, the largest Lyapunov exponent is considered, which is the average
exponential rates of divergence or convergence of nearby orbits in phase space (cf. [22]). In
fact, a trajectory with the positive largest Lyapunov exponent is chaotic provided that it is
not asymptotic to an unstable periodic solution. Or if the largest Lyapunov exponent of a
trajectory is negative, then it is stable. Reviewing the bifurcation diagrams in Figures 4 and 8,
the corresponding largest Lyapunov exponents (d1 from 0.24 to 0.45 and d2 from 0.02 to 0.42)
to system (1.2) are calculated in Figure 9 by using the method in [23].
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Figure 9: The largest Lyapunov exponent of system (1.2): (a) 0.24 < d1 < 0.45; (b) 0.02 < d2 < 0.42.

6. Conclusion

In this paper, we have proposed an ecological system with the hybrid type of functional
responses, Holling type, and Beddington-DeAngelis type and have studied their dynamic
behaviors. In the context, we have shown the dissipative nature of the system and have given
sufficient conditions for the local and global stability of the equilibrium points of the system,
as well as for permanence of the system. Furthermore, by illustrating bifurcation diagrams,
we have shown that a food chain system with two kinds of functional responses may have a
chaotic phenomenon. Based on these facts, we have concluded that three-species ecological
models with hybrid functional responses can also have complex dynamical phenomena
including chaotic behaviors.
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