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Let C0(I) be the set of all continuous self-maps of the closed interval I, and P(u, v) = {f ∈ C0(I) : f
has a cycle with rotation pair (u, v)} for any positive integer v > u. In this paper, we prove that if
(2mns, 2mnt) � (γ, λ), then P(2mns, 2mnt) ⊂ int P(γ, λ), where m ≥ 0 is integer, n ≥ 1 odd, 1 ≤ s < t
with s, t coprime, and 1 ≤ γ < λ.

1. Introduction

Let C0(I) be the set of all continuous self-maps of the closed interval I. For any f, g ∈ C0(I),
we define the distance between f and g by

d
(
f, g

)
= sup

x∈I

∣∣f(x) − g(x)
∣∣. (1.1)

Then (C0(I), d) becomes a metric space. For any subset M of C0(I), we use intM to denote
the interior of M. A point x ∈ I is called a periodic point of f with period n if fn(x) = x and
fi(x)/= x for 1 ≤ i ≤ n − 1, and {fi(x) : 0 ≤ i ≤ n − 1} is called a cycle with period n. Write
F(f) = {x : f(x) = x}, which is called the set of fixed points of f . For any subset A ⊂ I, we
use #A and [A] to denote the cardinal number of A and the smallest closed subinterval of I
containing A, respectively. Write [A] = [a; b] if A = {a, b}. For any positive integer n, write
P(n) = {f ∈ C0(I) : f has a cycle with period n}.
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One of the remarkable results in one-dimensional dynamics is the Sharkovskii theorem.
To state it, let us first introduce the Sharkovskii ordering for positive integers:

3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � · · · � 2k · 3 � 2k · 5 � 2k · 7 � · · · � 23 � 22 � 2 � 1.
(1.2)

Theorem A (see [1]). For any positive integers m and n, P(n) ⊂ P(m) if n � m.
Block [2] studied stability of cycles in the theorem of Sarkovskii and obtained the following

theorem.

Theorem B (see [2]). For any positive integersm and n, P(n) ⊂ intP(m) if n � m.
Blokh [3] introduced the following ordering among all pairs of positive integers (k, l) with

k < l.

(1) If u/v /= 1/2 and k/l ∈ [1/2, u/v) or k/l ∈ (u/v, 1/2], then (u, v) � (k, l).

(2) If u/v = k/l = m/n, where m,n are coprime, then (u, v) � (k, l) if and only if u/m �

k/m.

He also defined the rotation pair and the rotation number of cycles with period n > 1 for the interval
maps.

Definition 1.1 (see [3]). Let f ∈ C0(I), P be a cycle of f with period n > 1, and m = #{y ∈ P :
f(y) < y}. Then (m,n) is called the rotation pair of P andm/n the rotation number of P .

For any positive integer v > u, write P(u, v) = {f ∈ C0(I) : f has a cycle with rotation
pair (u, v)}.

Theorem C (see [3]). For any positive integers v > u and l > k, P(u, v) ⊂ P(k, l) if(u, v) � (k, l).
In this paper, we will study stability of rotation pairs of cycles for the interval maps. Our main

result is the following theorem.

Theorem 1.2. If (2mns, 2mnt) � (γ, λ), then

P(2mns, 2mnt) ⊂ intP
(
γ, λ

)
, (1.3)

wherem ≥ 0 is integer, n ≥ 1 odd, 1 ≤ s < t with s, t coprime, and 1 ≤ γ < λ.

2. Some Lemmas

In this section, we prove Theorem 1.2. To do this, we need the following definitions and
lemmas.

Lemma 2.1 (see [4, Lemma 1.4]). Let f ∈ C0(I). If I0, I1, . . . , Im are compact subintervals of I with
Im = I0 such that f(Ik−1) ⊃ Ik for 1 ≤ k < m, then there exists a point y such that fm(y) = y and
fk(y) ∈ Ik for every 0 ≤ k < m.

Lemma 2.2. Let f ∈ C0(I). If there are points a, b, and c such that f(c) ≤ a = f(a) < b < c ≤ f(b)
(resp., f(c) ≥ a = f(a) > b > c ≥ f(b)), then for any integers m and n with m/n ≤ 1/2 (resp.
1/2 < m/n < 1), f has a cycle Q = {y1 < y2 < · · · < yn} with rotation pair (m,n) satisfying
f(yi) > yi for all 1 ≤ i ≤ n −m and f(yi) < yi for all n −m + 1 ≤ i ≤ n.
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Proof. We only prove the case f(c) ≤ a = f(a) < b < c ≤ f(b) (the proof for the case
f(c) ≥ a = f(a) > b > c ≥ f(b) is similar).

We may assume that (a, b) ∩ F(f) = ∅, then f(x) > x for all x ∈ (a, b). Choose p ∈
(b, c) ∩ F(f). Then there exist points a < e1 < e2 < · · · < en−2m+1 < b such that f(ek) = ek+1 for
every 1 ≤ k ≤ n − 2m and f(en−2m+1) = p. Let

Ik = [ek, ek+1] if 1 ≤ k ≤ n − 2m,

In−2m+2r+1 = [en−2m+1, b] if 0 ≤ r ≤ m − 2,

In−2m+2r+2 =
[
p, c

]
if 0 ≤ r ≤ m − 1,

In−1 =
[
b, p

]
.

(2.1)

Then f(Ii) ⊃ Ii+1 for i ∈ {1, 2, . . . , n − 1} and f(In) ⊃ I1. By Lemma 2.1, there exists a cycle
Q = {x1, x2, . . . , xn} such that xi ∈ Ii(1 ≤ i ≤ n). Furthermore, Q can be renumbered so that
Q = {y1 < y2 < · · · < yn}with the desirable properties.

Lemma 2.3. Let f ∈ P(m,n); then f has a cycleQ = {y1 < y2 < · · · < yn} with rotation pair (m,n)
such that f(yi) > yi for all 1 ≤ i ≤ n −m and f(yi) < yi for all n −m + 1 ≤ i ≤ n.

Proof. Let P = {x1 < x2 < · · · < xn} be a cycle of f with rotation pair (m,n). We may assume
thatm/n ≤ 1/2 (the proof for the case 1/2 < m/n < 1 is similar). Let s = min{k : f(xk) < xk};
then s ≥ 2, (xs−1, xs) ∩ F(f)/= ∅, and f(xi) > xi for each 1 ≤ i ≤ s − 1. We may also assume
that there exists some s < j ≤ n such that f(xj) > xj otherwise; letQ = P which completes the
proof of Lemma 2.3.

Let t = min{k : k > s and f(xk) > xk} and p = max{(xs, xt) ∩ F(f)}. Then f(x) > x
for all x ∈ (p, xt). Let j = min{k : fk+1(xt) ≤ p} and i = min{k : k ≤ j and fk+1(xt) ≥ fj(xt)}.
Then fj+1(xt) < p < fi(xt) < fj(xt) ≤ fi+1(xt). It follows from Lemma 2.2 that f has a cycle
Q = {y1 < y2 < · · · < yn} such that Q with the desirable properties.

Definition 2.4 (see [4]). Let f ∈ C0(I). A cycle P of f with odd period n > 1 is called a cycle of
Stefan type if

P =
{
fn−1(c) < · · · < f2(c) < c < f(c) < · · · < fn−2(c)

}
(2.2)

or

P =
{
fn−2(c) < · · · < f(c) < c < f2(c) < · · · < fn−1(c)

}
. (2.3)

Definition 2.5 (see [4, 5]). Let f ∈ C0(I) and P = {x1 < x2 < · · · < xn2m} be a cycle with period
n2m, where n ≥ 1 is odd and m ≥ 0 is an integer. For each 0 ≤ i ≤ m and each 1 ≤ j ≤ 2i, write
A

j

2i = {x(j−1)2m−in+1 < x(j−1)2m−in+2 < · · · < xj2m−in}. We call P a strongly simple cycle if one of the
following three conditions hold.

(1) If m = 0, then either n = 1 or n > 1 and P is a cycle of f of Stefan type, that is,

P =
{
fn−1(c) < · · · < f2(c) < c < f(c) < · · · < fn−2(c)

}
(2.4)
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or

P =
{
fn−2(c) < · · · < f(c) < c < f2(c) < · · · < fn−1(c)

}
. (2.5)

(2) If n = 1 and m > 0, then for each 1 ≤ i ≤ m and each 1 ≤ 2k ≤ 2i, f2i−1(A2k−1
2i ) = A2k

2i

and f2i−1(A2k
2i ) = A2k−1

2i .

(3) If n > 1 andm > 0, then the following three conditions hold.

(i) For each 1 ≤ i ≤ m and each 1 ≤ 2k ≤ 2i, f2i−1(A2k−1
2i ) = A2k

2i , and f2i−1(A2k
2i ) =

A2k−1
2i .

(ii) For each 1 ≤ j ≤ 2m, Aj
2m is a cycle of f2m of Stefan type.

(iii) f maps eachAi
2m monotonically onto another Aj

2m , with one exception.

Lemma 2.6 (see [4, 5]). If f ∈ C0(I) has a cycle with period n, then f has a strongly simple cycle
with period n.

Let P = {x1 < x2 < · · · < xn} be a cycle of f with period n > 1. Then there is a unique map
g : [x1, xn] → [x1, xn], which is called the linearization of P , satisfying

(1) g(xi) = f(xi) for all 1 ≤ i ≤ n,

(2) g|[xi,xi+1] is linear for all 1 ≤ i ≤ n − 1.

By Theorem 7.5 of [4], we know that if g has a strongly simple cycle with rotation pair (p, q),
then f has also a strongly simple cycle with rotation pair (p, q).

Lemma 2.7. Let f ∈ P(ks, kt), where s, t are coprime, k = n2m, n ≥ 1 is odd, and m ≥ 0 is an
integer. Then f has a cycle P = {z1 < z2 < · · · < zkt} with rotation pair (ks, kt) satisfying

(1) f(y) < y if y ∈ Bi = {z(i−1)2mn+1, . . . , zi2mn} for t − s + 1 ≤ i ≤ t and f(y) > y if
y ∈ Bi = {z(i−1)2mn+1, . . . , zi2mn} for 1 ≤ i ≤ t − s;

(2) B1 is a strongly simple cycle of ft;

(3) f cyclically permutes the sets Bi (i = 1, 2, . . . , t).

Proof. By Lemma 2.3, we may assume that R = {x1 < x2 < · · · < xkt} is a cycle of f with
rotation pair (ks, kt) satisfying

f
(
y
)
> y ∀y ∈ {x1, x2, . . . , xkt−ks},

f
(
y
)
< y ∀y ∈ {xkt−ks+1, . . . , xkt}.

(2.6)

Furthermore, we may assume that f is the linearization of R, I = [x1, xkt], and p be the
unique fixed point of f . Obviously, we have that f(x) > x for all x ∈ [x1, p) and f(x) < x for
all x ∈ (p, xkt].

We may assume that s/t ≤ 1/2 (the proof for the case 1/2 < s/t < 1 is similar). If
s/t = 1/2, then it follows from Theorem 7.18 of [4] that Lemma 2.7 holds. Now we assume
s/t < 1/2.
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By Theorem C, f has a cycle Q = {y1 < y2 < · · · < yt} (t > 2) with rotation pair (s, t)
satisfying f(y) > y for all y ∈ {y1, . . . , yt−s} and f(y) < y for all y ∈ {yt−s+1 . . . , yt}.

We can assume k ≥ 2 since otherwise there is nothing to prove. Furthermore, we may
assume #{x ∈ Q : x > p} ≥ 2 (the proof for the case #{x ∈ Q : x < p} ≥ 2 is similar). Write
x = maxQ; then ft(x) = x.

Claim 1. We may assume that there exists a positive number ε > 0 such that ft(y) > y for all
y ∈ (x, x + ε).

Proof of Claim 1. Since x /∈ R, there exists a positive number ε > 0 such that (ft(y)−y)(y−x) >
0 for all y ∈ (x − ε, x + ε) − {x} or (ft(y) − y)(y − x) < 0 for all y ∈ (x − ε, x + ε) − {x}. If
(ft(y) − y)(y − x) > 0 for all y ∈ (x − ε, x + ε) − {x}, then Claim 1 holds. Now we assume
(ft(y) − y)(y − x) < 0 for all y ∈ (x − ε, x + ε) − {x}. Write u = max{y ∈ (p, x) : ft(y) = y}
since #{x ∈ Q : x > p} ≥ 2.

We claim that for all 1 ≤ i ≤ t, (fi(u)−p)(fi(x)−p) > 0. Indeed, if (fi(u)−p)(fi(x)−p) <
0 for some 1 ≤ i ≤ t, then there exists a point v ∈ (u, x) such that fi(v) = p; thus ft(v) = p,
which implies (u, v) ∩ F(ft)/= ∅. This is a contradiction.

We also claim u = max{fi(u) : 0 ≤ i ≤ t}. Indeed, if fi(u) > u for some 1 ≤ i ≤ t−1, then
there exists a point v ∈ (u, x) such that fi(v) = v since x = maxQ. Let w = max{v ∈ (u, x) :
fi(v) = v}; then ft−i(w) = ft(w) > w. Since ft−i(x) < x, there exists a point e ∈ (w, x) such
that ft−i(e) = e, which implies fi(e) = ft(e) > e and (e, x) ∩ F(fi)/= ∅. This is a contradiction.

By using u to replace x, we know that Claim 1 holds. Claim 1 is proven.

Write S = {y : ft(y) = x} ∩ (x, xkt]. Let T = minS if S/= ∅ and T = xkt; otherwise. Put
J = (x, T).

Claim 2. J, f(J), . . . , f t−1(J) are pairwise disjoint and p /∈ ⋃t−1
i=0 f

i(J).

Proof of Claim 2. We first prove that J, f(J), . . . , f t−1(J) are pairwise disjoint. Suppose that
there exist 0 ≤ i < j ≤ t − 1 and u, v ∈ J such that fi(u) = fj(v), then ft−j+i(u) = ft(v) > x.
Since ft−j+i(x) < x, there exists a point y ∈ (x, u) such that ft−j+i(y) = x, which implies
x > fj−i(x) = ft(y) > x. This is a contradiction.

Now we prove p /∈ ⋃t−1
i=0 f

i(J). Suppose that there exist some 0 ≤ i ≤ t − 1 and u ∈ J

such that fi(u) = p, then ft(u) = p, hence x ∈ ft((x, u)), which contradicts definition of T .
Claim 2 is proven.

By definition of T , it follows thatR∩(⋃t−1
i=0 f

i(J))/= ∅ since otherwise we have ft(T) > T ,
which is impossible.

If ft(J) ⊂ J , then ft|J has a cycle with period k. It follows from Claim 2 and Lemma 2.6
that f has a cycle P = {z1 < z2 < · · · < zkt}with rotation pair (ks, kt) satisfying conditions (1),
(2), and (3) of Lemma 2.7.

If ft(J)/⊂J , then ft(T) = x and there exists a point y ∈ J such that ft(y) ≥ T . Thus
ft([x, y]) ∩ ft([y, T]) ⊃ [x, T]. By Lemma 2.3 of [4], ft has a cycle of period 3 on J . It follows
from Claim 2, Theorem A, and Lemma 2.6 that f has a cycle P = {z1 < z2 < · · · < zkt}
with rotation pair (ks, kt) satisfying conditions (1), (2), and (3) of Lemma 2.7. Lemma 2.7 is
proven.
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3. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. We may assume s/t ≤ 1/2 (the proof for the case 1/2 < s/t < 1 is
similar). Let f ∈ P(2mns, 2mnt). We wish to show that there exists a neighbourhood U of
f in C0(I) such that every g ∈ U has a cycle with rotation pair (γ, λ). The proof will be carried
out in a number of stages.

Claim 3. If m ≥ 0 and n ≥ 3, then there exists a neighourhood U of f in C0(I) such that every
g ∈ U has a cycle with rotation pair (2m(n + 2)s, 2m(n + 2)t).

Proof of Claim 3. By Lemma 2.7, we know that f has a cycle {z1 < z2 < · · · < z2mnt} with
rotation pair (2mns, 2mnt) satisfying

(1) f(y) < y if y ∈ Bi = {z(i−1)2mn+1, . . . , zi2mn} for t − s + 1 ≤ i ≤ t and f(y) > y if
y ∈ Bi = {z(i−1)2mn+1, . . . , zi2mn} for 1 ≤ i ≤ t − s;

(2) B1 is a strongly simple cycle of ft;

(3) f cyclically permutes the sets Bi (i = 1, 2, . . . , t).

For each 1 ≤ l ≤ 2m, let z1(l) denote the midpoint of the n points in Cl = {x(l−1)n+1 <
· · · < xln} and zj(l) = f2mt(j−1)(z1(l)) (1 < j ≤ n). Then for each 1 ≤ l ≤ 2m, we have either

zn(l) < zn−2(l) < · · · < z3(l) < z1(l) < z2(l) < · · · < zn−3(l) < zn−1(l) (3.1)

or

zn(l) > zn−2(l) > · · · > z3(l) > z1(l) > z2(l) > · · · > zn−3(l) > zn−1(l). (3.2)

Furthermore, the blocks Cl can be renumbered so that ft(z1(l)) = z1(l+1) for 1 ≤ l < 2m. Then

ft(zj(l)
)
= zj(l + 1) if 1 ≤ l < 2m, 1 ≤ j ≤ n,

ft(zj(2m)
)
= zj+1(1) if 1 ≤ j < n,

ft(zn(2m)) = z1(1).

(3.3)

Since ft([z1(l); z2(l)]) ⊃ [z1(l + 1); z2(l + 1)] for 1 ≤ l < 2m and ft([z1(2m); z2(2m)]) ⊃
[z3(1); z2(1)], there exist points z−3, z−2, z−1, z0 such that f2mt(z−i) = z−i+1 (i = 0, 1, 2, 3)
satisfying

(1) for 1 ≤ l ≤ 2m either

z1(l) < f (l−1)t(z−1) < f (l−1)t(z−3) < f (l−1)t(z−2) < f (l−1)t(z0) < z2(l) (3.4)

or

z1(l) > f (l−1)t(z−1) > f (l−1)t(z−3) > f (l−1)t(z−2) > f (l−1)t(z0) > z2(l); (3.5)
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(2) f (l−1)t+i(z−j) ∈ [fi(B1)] for 1 ≤ l ≤ 2m and 0 ≤ i < t and j = 0, 1, 2, 3.

Let

ε =
min

{∣∣fi(z−3(1)) − fj(z−3(1))
∣∣ : 0 ≤ i < j < 2m(n + 2)t

}

10
(3.6)

and U = {g ∈ C0(I) : d(fi, gi) < ε for all 1 ≤ i ≤ 2m(n + 2)t}. Then for every g ∈ U and
0 ≤ i < j ≤ 2m(n+2)t−1, we have fi(z−3(1)) < fj(z−3(1)) if and only if gi(z−3(1)) < gj(z−3(1)),
and g2m(n+4)t(z−3(1)) ∈ [g2m2t(z−3(1)); g2m6t(z−3(1))]. Put

Il =
[
gl−1(z−3(1)); g2m2t+l−1(z−3(1))

]
for 1 ≤ l ≤ 2m(n + 2)t. (3.7)

Then we have

g(Il) ⊃ Il+1, if 1 ≤ l ≤ 2m(n + 2)t − 1,

g
(
I2m(n+2)t

) ⊃ I1.
(3.8)

This yields a cycle O = {y, g(y), . . . , g2m(n+2)t(y)} such that gi−1(y) ∈ Ii for i = 1, 2, . . . , 2m(n +
2)t. it is easy to verify that the rotation pair of O is (2m(n + 2)s, 2m(n + 2)t). Claim 3 is
proven.

Claim 4. If m ≥ 1 and n = 1, then there exists a neighourhood U of f in C0(I) such that every
g ∈ U has a cycle with rotation pair (2m−1s, 2m−1t).

Proof of Claim 4. By Lemma 2.7, we know that f has a cycle {x1 < x2 < · · · < x2mt}with rotation
pair (2ms, 2mt) satisfying

(1) if y ∈ Bi = {x(i−1)2m+1, . . . , xi2m} and t − s + 1 ≤ i ≤ t, then f(y) < y; if y ∈ Bi =
{x(i−1)2m+1, . . . , xi2m} and 1 ≤ i ≤ t − s, then f(y) > y;

(2) B1 is a strongly simple cycle of ft;

(3) f cyclically permutes the sets Bi (i = 1, 2, . . . , t).

Since f2m−1t(x1) = x2 and f2m−1t(x2) = x1, there exist points x1 ≤ a < b ≤ x2 such that
f2m−1t(b) = x1 < x2 = f2m−1t(a) and fi(a), f i(b) ∈ [fi(x1); fi(x2)] for 0 ≤ i ≤ 2m−1t − 1. Let

ε =
min

{
b − a,min

{∣∣fi(x1) − fj(x1)
∣∣ : 0 ≤ i < j < 2mt

}}

10
(3.9)

and U = {g ∈ C0(I) : d(fi, gi) < ε for all 1 ≤ i ≤ 2m−1t}. Then for every g ∈ U, we have

g2m−1t(a) > a, g2m−1t(b) < b. (3.10)

This yields a cycle O = {y, f(y), . . . , f2m−1t−1(y)} such that gi(y) ∈ [gi(a); gi(b)] for i =
0, 1, . . . , 2m−1t − 1. it is easy to verify that the rotation pair of O is (2m−1s, 2m−1t). Claim 4 is
proven.
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Claim 5. If m = 0 and n = 1, then there exists a neighourhood U of f in C0(I) such that every
g ∈ U has a cycle with rotation pair (γ, λ).

Proof of Claim 5. By Lemma 2.7, f , has a cycle P = {x1 < x2 < · · · < xt} with rotation pair (s, t)
such that f(xi) > xi for all 1 ≤ i ≤ t − s and f(xi) < xi for all t − s + 1 ≤ i ≤ t.

Choose two integers u, v with u, v coprime such that s/t < u/v < γ/λ. Without loss of
generality, we can assume f(xt−s+1) < xt−s. Take w ∈ F(f) ∩ (xt−s, xt−s+1). Put 1 ≤ l = tu − sv,
then there exist points yi ∈ (xt−s, xt−s+1) (i = 0, 1, . . . , 2l−1) such that xt−s < y2l−2 < y2l−4 < · · · <
y2 < y0 < w < y1 < y3 < · · · < y2l−3 < y2l−1 < xt−s+1 with f(yi) = yi+1 (i = 0, 1, . . . , 2l − 2) and
f(y2l−1) = xt−s. Let

ε =
min

{∣∣fi
(
y0
) − fj

(
y0
)∣∣ : 0 ≤ i < j < 2l + t

}

10
(3.11)

and U = {g ∈ C0(I) : d(fi, gi) < ε for all 1 ≤ i ≤ (t − 2s)v}. Then for every g ∈ U, we have
g(t−2s)v(y0) < y0 < g(y0) and g2(y0) < g(y0).

Let z = max{x ∈ I : x < y0 and g(t−2s)v(x) = x}, α = min{z, g(z), . . . , g(t−2s)v−1(z)}, and
w1 ∈ (y0, g(y0)) ∩ F(g).

Claim 6. (gi(z) −w1)(gi(y0) −w1) > 0 for any i ∈ {0, 1, . . . , (t − 2s)v}.

Proof of Claim 6. Assume on the contrary that (gi(z) − w1)(gi(y0) − w1) ≤ 0 for some i ∈
{0, 1, . . . , (t − 2s)v}; then there exists a point c ∈ [z, y0) such that gi(c) = w1; thus g(t−2s)v(c) =
w1, which implies (z, y0) ∩ F(g(t−2s)v)/= ∅, a contradiction.

Claim 7. If [α, y0] ∩ F(g)/= ∅, then g has a cycle with rotation pair (γ, λ).

Proof of Claim 7. Indeed, if [α, y0] ∩ F(g)/= ∅, let z0 = max{[α, y0] ∩ F(g)}, then z0 ∈ [α, z).
Since g(y0) > y0 and [z, y0] ∩ F(g) = ∅, we have g(z) > z. Let j = min{k : fk+1(z) ≤ z0} and
i = min{k : k ≤ j and fk+1(z) ≥ fj(z)}. Then fj+1(z) ≤ z0 < fi(z) < fj(z) ≤ fi+1(z). It follows
from Lemma 2.2 that g has a cycle with rotation pair (γ, λ).

In the following, we assume that [α, y0] ∩ F(g) = ∅.

Claim 8. gi+1(z) ∈ [gi(z);w1] or w1 ∈ [gi+1(z); gi(z)] for any i ∈ {0, 1, . . . , (t − 2s)v}.

Proof of Claim 8. Assume on the contrary that gi(z) ∈ [gi+1(z);w1] for some i ∈ {0, 1, . . . , (t −
2s)v}; then gi(z) > y0. Since gi+1(y0) ∈ [gi(y0);w1], we have [gi(z); gi(y0)]∩F(g)/= ∅. Letw2 ∈
[gi(z); gi(y0)] ∩ F(g); then w2 > y0 and there exists a point d ∈ [z, y0] such that g(t−2s)v(d) =
w2; thus, (d, y0] ∩ F(g(t−2s)v)/= ∅, a contradiction.

By Claims 7 and 8, we know that g has a cycle with rotation number u/v. It follows
from Theorem C that g has a cycle with rotation pair (γ, λ), which completes the proof of
Claim 5.

Theorem 1.2 now follows immediately from Claim 3, Claim 4, Claim 5, and
Theorem C.
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