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We study the problem of pricing an inflation adjusted annuity in a forward rates market with
jumps. Since the market will be incomplete, we use the minimal fq-martingale measure Qq which
we use for computing discounted expectations. We give explicit results for Qq together with
explicit results for the price of the annuity.

1. Introduction

Inflation derivatives are a new feature in the derivatives markets with active trading starting
in the 1980’s. Their origin has been necessitated by the risk of inflation eroding medium to
long-termmaturity securities. In economies with anticipation of high inflation, it makes sense
to consider the real value of future assets as opposed to the nominal value. According to the
simplified Fisher’s model, the real interest rate equals the nominal interest rate minus the
inflation rate. It is only in cases where inflation rate is negligible that these two rates almost
give the same rate of return. Pricing annuities differ from pricing options in that an annuity
makes periodic or continuous payments usually up to a certain redemption date which could
be predetermined or which is contingent on the life of the policy holder. An option, when
it matures and if its maturity is beneficial to its holder, will make a single payment, the
redemption value of the option. An option can also expire worthless. Annuities do not have
this option of expiring worthless. In elementary Actuarial analysis, the premium to be paid
for an annuity is the expected present value (EPV) of cash flows. As a result, we then find
striking similarities between computing option prices and insurance premiums.

Motivated by the work [1] and references therein, in this paper, we find the premium
of a nonlife-based annuity in a market where bond prices are driven by jump processes. We
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emphasize here that the inclusion of life contingency will not bring much deviation of this
result because market movements are independent of the future lifetime of a policyholder.
Due to incompleteness caused by the introduction of jumps, we consider and give explicitly
the minimal fq-martingale measure studied in [2].

We characterize our problem as one similar to interest rate and foreign exchange
derivatives (see [3] for more). Naturally the premium of an inflation protected annuity is
equal to the premium of an ordinary annuity plus some “penalty” which results from the
extra benefit of the policy holder being cushioned for inflation. This paper concentrates on
finding explicit results of this extra “penalty”.

The paper is organized as follows: the following section looks at the mathematical
preliminaries. For this part, we use the notation in [4]. We also refer the reader to the same text
for more detailed analysis of Lévy processes. Section 3 looks at the assets price dynamics. We
give the Consumer Price Index (CPI) as the ratio of the nominal bond to the real bond. This
approach is similar to foreign exchange derivatives where we consider the nominal bond as
representing the local currency, the real bond as representing the foreign currency, and then the
CPI being the exchange rate of foreign currency to local currency. A high value of exchange
rate indicates a weak local currency with respect to the foreign currency. In the same vein,
high inflation indicates high-interest rates which may not stimulate production due to high
cost of production. Of interest in Chapter 3 is our version of Fisher’s equation (see [5])which
is an extended version that incorporates volatility coefficients and jump terms.

In Section 4, we give the main result which ends with the premium of a non-life
annuity adjusted for inflation being given explicitly.

2. Mathematical Preliminaries

Consider a filtered probability space (Ω,F,Ft, P) where {F}t≥0 is the filtration such that the
Lévy-Itô processes discussed in this paper are adapted.

Given a Lévy process X(t), the jump of X(t) is ΔX(t) = X(t) − X(t−). The number of
jumps, which occur before or at time t and of a size contained in some Borel set U, can be
counted by the measure N(t,U) called the Poisson random measure. It turns out that

N(t,U) =
∑

0≤s≤t
χU(ΔX(s)). (2.1)

For times 0 ≤ t1 ≤ t2 < ∞, we denote the differential form ofN(t2, U)−N(t1, U) byN(dt, dz).
The set function ν(U) = E[N(1, U)] is called the Lévy measure of X and we require that∫
R
min(1, z2)ν(dz) < ∞.

The measure Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is called the compensated Poisson
random measure. In this paper, we will be considering jumps of sizes greater than −1.
Therefore, we have the relationship (see [4]),

Ñ(dt, dz) =

⎧
⎨

⎩
N(dt, dz) − ν(dz)dt, if |z| < 1,

N(dt, dz), if |z| ≥ 1.
(2.2)
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The Lévy-Itô process X(t) that we will consider in this paper is of the form

dX(t) = α(t, X(t))dt + β(t, X(t))dB(t) +
∫

R

γ(t, X(t))Ñ(dt, dz), (2.3)

where B(t) is a standard Brownian motion and the coefficients α(·, ·), β(·, ·) and γ(·, ·) satisfy
the necessary growth conditions (see [4]) for which (2.3) has a unique strong solution X(t).

The unique characteristic function ηX(u) = E[eiuX(t)] is given by the Lévy-Khintchine
formula (see [4] or [6] for more).

Frequently we will be referring to the Lévy-Itô formula for this Lévy process. We refer
the reader to ([4]) for a more general definition. We will, for the purpose of this paper, restrict
ourselves to a two-dimensional version of the definition.

Definition 2.1. Let X(t) ∈ R
2 be an Itô-Lévy process of the form

dX(t) = α(t, ω)dt + σ(t, ω)dB(t) +
∫

R

γ(t, z, ω)Ñ(dt, dz), (2.4)

where α: [0, t] × Ω → R
2, σ : [0, T] × Ω → R

2×1, and γ : [0, T] × R × Ω → R
2×1 are adapted

processes such that the integrals exist. Let f ∈ C1,2([0, T] × R
2;R) and put Y (t) = f(t, X(t)).

Then

dY (t) =
∂f

∂t
dt +

2∑

i=1

∂f

∂xi
(αidt + σidB(t)) +

1
2

2∑

i,j=1

(σσ∗)ij
∂2f

∂xi∂xj
dt

+
2∑

k=1

∫

R

{
f
(
t, X

(
t−
)
+ γ(t, z)

) − f
(
t, X

(
t−
)) −

2∑

i=1

γi(t, z)
∂f

∂xi

(
X
(
t−
))

}
ν(dz)dt

+
2∑

k=1

∫

R

{
f
(
t, X

(
t−
)
+ γ(t, z)

) − f
(
t, X

(
t−
))}

Ñ(dt, dz),

(2.5)

where γ ∈ R
2×1 is column vector γ = ( γ1 γ2 )∗. Here the ∗ represents transposition of a matrix.

The Itô-Lévy formula above shall be useful in the next chapters.

3. Asset Dynamic Models

3.1. The Bond Price Process

Suppose that the real(R) and nominal(N) forward rates are given jointly by

fk(t, T) = fk(0, T) +
∫ t

0
αk(v, T)dv +

∫ t

0
σk(v, T)dB(v)

+
∫T

0
γk(v, T, z)Ñk(dv, dz), k ∈ {N,R}.

(3.1)
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We know that the price of a zero coupon nominal (real) bond is given by

Pk(t, T) = exp

(
−
∫T

t

fk(t, s)ds

)
, ∀t ∈ [0, T]. (3.2)

Proposition 3.1. Let ak(t, T) = − ∫T
t σk(t, s)dt and ck(t, T, z) = − ∫T

t γk(t, s, z)dt. Define also

bk(t, T) = − ∫T
t αk(t, s)dt + (1/2)ak(t, T) −

∫
R
ck(t, T, z)ν(dz). Assume that ak(·), bk(·, ·), and ck(·)

saisfy the necessary regularity conditions for applying Fubini’s theorem. Then Pk(t, T) is given by

dPk(t, T) = Pk(t, T)
[
(rk(t) + bk(t, T))dt + ak(t, T)dB(t) +

∫

R

ck(t, T, z)Ñ(dt, dz)
]
. (3.3)

Proof. Simplifying and using the Fubini’s theorem, we have

lnPk(t, T) = −
∫T

t

fk(t, s)ds

= −
[∫T

t

fk(0, s)ds +
∫T

t

∫ t

0
αk(v, s)dv ds +

∫T

t

∫ t

0
σk(v, s)dB(v)ds

+
∫ t

t

∫ t

0

∫

R

γk(v, s, z)Ñ(dv, dz)dv ds

]

= −
∫ t

t

fk(0, s)ds −
∫ t

0

[∫T

t

αk(v, s)ds

]
dv −

∫ t

0

[∫T

t

σk(v, s)ds

]
dB(v)

−
∫ t

0

[∫T

t

∫

R

γk(v, s, z)Ñ(ds, dz)ds

]
dv

= −
∫T

0
fk(0, s)ds +

∫ t

0
fk(0, s)ds −

∫ t

0

[∫T

v

αk(v, s)ds

]
dv +

∫ t

0

[∫ t

v

αk(v, s)ds

]
dv

−
∫ t

0

[∫T

v

σk(v, s)ds

]
dB(v) +

∫ t

0

[∫ t

v

σk(v, s)ds

]
dB(v)

−
∫ t

0

[∫T

v

∫

R

γk(v, s, z)Ñ(ds, dz)ds

]
dv +

∫ t

0

[∫ t

v

∫

R

γk(v, s, z)Ñ(ds, dz)ds

]
dv

= lnPk(0, T) +
∫ t

0
rk(s)ds −

∫ t

0

[∫T

v

αk(v, s)dv

]
ds −

∫ t

0

[∫T

v

σk(v, s)ds

]
dB(v)

−
∫ t

0

[∫T

v

∫

R

γk(v, s, z)dv ds

]
Ñ(ds, dz).

(3.4)
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Therefore, we have

lnPk(t, T) = lnPk(0, T)

+
∫ t

0

[
rk(s) −

∫T

v

αk(v, s)dv − 1
2

∫T

v

σ2
k(v, s)dv −

∫T

v

∫

R

γk(v, s, z)dvν(dz)

]
ds

−
∫ t

0

∫T

v

σk(v, s)dvdB(s) +
1
2

∫ t

0

∫T

v

σ2
k(v, s)dv ds

−
∫ t

0

∫T

v

∫

R

γk(v, s, z)dv dsÑ(ds, dz) +
∫ t

0

∫T

v

∫

R

(v, s, z)dv dsν(dz).

(3.5)

Let ak(t, T) = − ∫T
t σk(t, s)dt and ck(t, T, z) = − ∫T

t γk(t, s, z)dt. Define also

bk(t, T) = −
∫T

t

αk(t, s)dt +
1
2
ak(t, T) −

∫

R

ck(t, T, z)ν(dz) (3.6)

and assume that cR(t, T, z)/= − 1.
Then from the previous expression we have,

lnPk(t, T) = lnPk(0, T) +
∫ t

0
(rk(s) + bk(s, T))ds +

∫ t

0
ak(v, s)dB(s)

− 1
2

∫ t

0
a2
k(v, s)ds +

∫ t

0

∫

R

ck(v, s, z)Ñ(ds, dz)ds −
∫ t

0

∫

R

ck(v, s, z)dsν(dz),

dPk(t, T) = Pk(t, T)
[
(rk(t) + bk(t, T))dt + ak(t, T)dB(t) +

∫

R

ck(t, T, z)Ñ(dt, dz)
]
.

(3.7)

3.2. The CPI Process

As we said before, the Consumer Price Index (CPI), C(t), is taken as the ratio of the nominal
bond price to the real bond price. By Lévy-Itô formula on C(t) = PN(t, T)/PR(t, T), we have

dC(t) = C(t)
[
a(t)dt + σ(t)dB(t) +

∫

R

γ(t, z)Ñ(dt, dz)
]
, C(0) = c, (3.8)

where

a(t) = rN(t) − rR(t) + bN(t, T) − bR(t, T) − aR(t, T)(aN(t, T) − aR(t, T))

+
∫

|z|<1

{
1 + cN(t, T, z) − (cN(t, T, z) − cR(t, T, z) + 1)(1 + cR(t, T, z))

1 + cR(t, T, z)

}
ν(dz),

(3.9)
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σ(t) = aN(t, T) − aR(t, T), γ(t) =
cN(t, T, z) − cR(t, T, z)

1 + cR(t, T, z)
. (3.10)

Note that the solution of (3.8) is

C(t) = C(0) exp

[∫ t

0

(
a(s) − 1

2
σ2(s)

)
ds +

∫ t

0
σ(s)dB(s)

+
∫ t

0

∫

|z|<1

{
ln

(
1 + γ(s, z)

) − γ(s, z)
}
ν(dz)ds

+
∫ t

0

∫

R

ln
(
1 + γ(s, z)

)
Ñ(ds, dz)

]
, C(0) = c

(3.11)

or alternatively

C(t) = C(0) exp

[∫ t

0
a∗(s)ds +

∫ t

0
σ(s)dB(s)

+
∫ t

0

∫

|z|<1

{
ln

(
1 + γ(s, z)

) − γ(s, z)
}
ν(dz)ds

+
∫ t

0

∫

R

ln
(
1 + γ(s, z)

)
Ñ(ds, dz)

]
, C(0) = c,

(3.12)

where a∗(t) = a(s) − (1/2)(σN(t))2.

Definition 3.2 (Fisher’s inflation model). The rate of inflation I(t) at time t is the drift process
of the CPI, so that

I(t) = rN(t) − rR(t) + bN(t, T) − bR(t,T) − aR(t, T)(aN(t, T) − aR(t, T))

+
∫

|z|<1

{
1 + cN(t, T, z) − (cN(t, T, z) − cR(t, T, z) + 1)(1 + cR(t, T, z))

1 + cR(t, T, z)

}
ν(dz),

(3.13)

which is essentially our version of the Fisher equation.

In particular, if the volatility coefficients are zero and there are no jumps in the bond
price dynamics, then the Fisher’s equation says that the real interest rate is approximately
equal to the nominal rate less inflation rate. High inflation coupled with low nominal rates
may result in negative returns and no incentives for depositors to keep their money in the
bank. This will also affect pensioners whose future payments in the form of annuities will be
eroded by inflation. Keeping inflation low is one of the main tasks of the central bank of any
country since hyperinflation brings with itself also economic and social chaos.

In our case, we see that volatility and jumps can further reduce the real rate to far lower
than the original rate given by Fisher. It is thus crucial to offer annuities that are inflation
adjusted in that case.
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Theorem 3.3 (Girsanov Theorem; see [4]). Suppose that there exists a process u(t) and θ(t, z)
which are Ft-adapted and such that

ak(t, T)u(t) +
∫

R

ck(t, T, z)θ(t, z)ν(dz) = bk(t, T), (3.14)

and such that the process

Z(t) := exp

[
−
∫ t

0
u(s)dB(s) − 1

2

∫ t

0
u2(s)ds +

∫ t

0

∫

R

ln(1 − θ(s, z))Ñ(ds, dz)

+
∫ t

0

∫

R

{ln(1 − θ(s, z)) + θ(s, z)}ν(dz)ds
]
, 0 ≤ t ≤ T

(3.15)

is well defined and satisfies E[Z(T)] = 1 where expectation is taken with respect to the original
probability measure P . Define the probability measure Q = Q(u(t), θ(t,z)) on FT by dQ(ω) =
Z(T)dP(ω). Then

(1) Pk(t, T) is a local martingale with respect to Q,

(2) the process B̃(t) given by dB̃(t) = u(t)dt + dB(t) is a Q-Brownian motion,

(3) the random measure measure ÑQ(dt, dz) given by ÑQ(dt, dz) = θ(t, z)ν(dz)dt +
Ñ(dt, dz) is a Q compensated Poisson random measure in the sense that M(t) =∫ t
0

∫
R
γk(s, z)ÑQ(ds, dz); 0 ≤ t ≤ T is a local Q-martingale provided the condition

∫T
0

∫
R
γk(s, z)θ(s, z)ν(dz)ds < ∞ holds a.s.

For a proof, we just consider the Itô-Lévy formula on Yk(t) = Z(t)Pk(t) and proceed as in ([4]).

We have to observe here that for k ∈ {R,N}, (3.14) will result in infinitely many
solutions (u(t), θ(t, z)) and as such the market of nominal (real) bonds is incomplete. We
do have an infinite number of equivalent martingale measures Q. Let Me(Pk) denote the set
of all equivalent martingale measure Q for Pk(t).

Observe that, with respect to Q, we have

dPk(t, T) = Pk(t, T)
[
rk(t)dt + ak(t, T)dB̃(t) +

∫

R

ck(t, T, z)ÑQ(dt, dz)
]
. (3.16)

Then with respect to Q, we have C(t) given by

dC(t) = C(t)
[
α(t)dt + σ(t)dB̃(t) +

∫

R

γ(t, z)ÑQ(dt, dz)
]
, C(0) = c, (3.17)
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where

α(t) = rN(t) − rR(t) − aR(t, T)(aN(t, T) − aR(t, T))

+
∫

|z|<1

{
1 + cN(t, T, z) − (cN(t, T, z) − cR(t, T, z) + 1)(1 + cR(t, T, z))

1 + cR(t, T, z)

}
ν(dz)

(3.18)

and as before σ(t) = aN(t, T) − aR(t, T) and

γ(t) =
cN(t, T, z) − cR(t, T, z)

1 + cR(t, T, z)
. (3.19)

Consequently, the solution of (3.17) is

C(t) = C(0) exp

[∫ t

0

(
α(s) − 1

2
σ2(s)

)
ds +

∫ t

0
σ(s)dB̃(s)

+
∫ t

0

∫

|z|<1

{
ln

(
1 + γ(s, z)

) − γ(s, z)
}
ν(dz)ds

+
∫ t

0

∫

R

ln
(
1 + γ(s, z)

)
ÑQ(ds, dz)

]
, C(0) = c

(3.20)

or alternatively

C(t) = C(0) exp

[∫ t

0
α∗(s)ds +

∫ t

0
σ(s)dB̃(s) +

∫ t

0

∫

|z|<1

{
ln

(
1 + γ(s, z)

) − γ(s, z)
}
ν(dz)ds

+
∫ t

0

∫

R

ln
(
1 + γ(s, z)

)
ÑQ(ds, dz)

]
, C(0) = c,

(3.21)

where α∗(t) = α(s) − (1/2)(σN(t))2.

4. Pricing an Inflation Adjusted Annuity

Pricing in incomplete markets requires one to choose one of the equivalent martingale
measures in Me(Pk). The most popular measures are minimal martingale measure which
reduces the squared variance between the payoff of a contingent claim and the terminal value
of a portfolio of stocks and bond chosen to hedge the claim. Alternatively theminimal relative
entropy measure has been widely suggested as one of the best measures “closest” in some
sense to the original probability P . In this paper, we will consider the minimal fq-martingale
measure.
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Definition 4.1 ((Minimal fq-martingale measure) (see [2])). Let I = (−∞, 0)
⋃
(1,∞) and let

q ∈ I be arbitrary but fixed. For fq(z) = zq, the minimal fq-martingale measure (qMMM) Qq

is the equivalent martingale measure which minimizes the fq-divergence

fq(Q \ P) := EP

[
fq(Z)

]
= EP

[
Z(T)q

]
. (4.1)

Corollary 4.2 (see [2]). LetMq := {Q(u,θ) ∈ Me(Pk) | fq(Q\P) < ∞} and letM = {Q(u(t),θ(t,z)) ∈
Me(Pk) | (u(t), θ(t, z)) time independent and deterministic}, then

fq(Qq \ P
)
= inf

Q∈M
fq(Q \ P). (4.2)

The above corollary tells us that Q(u(t), θ(t,z))
q consists only of deterministic and time

independent pair (u, θ) which minimizes the fq-divergence.

Theorem 4.3. Let ω1 =
∫
R
ν(dz) and ω2 =

∫
R
ck(t, T, z)ν(dz). Assume that the Girsanov

parameters of Theorem 3.3 are time-independent and constant, that is, assume that u(t) = u and
θ(t, z) = θ. Then the minimal fq-martingale measureQq is given by the optimal Girsanov pair (u, θ)
where θ is a solution of the equation

ω1a
2
k(t, T)(1 − θ)q−1 −ω2

2

(
q − 1

)
θ +

(
q − 1

)
bkω2 +ω1a

2
k(t, T) = 0 , (4.3)

and u and θ are related by

ak(t, T)u + θ

∫

R

ck(t, T, z)ν(dz) = bk(t, T). (4.4)

Proof. First observe that (4.4) is actually (3.14) with u(t) replaced with u and θ(t, z) replaced with
θ. Next, we need also the following proposition which can be found as an exercise in [4]:

Proposition 4.4. Suppose that γ(s, z) is deterministic and satisfies some regularity conditions. Then

EP

[
exp

(∫ t

0

∫

R

γ(s, z)Ñ(ds, dz)

)]
= exp

(∫ t

0

∫

R

{
eγ(s,z) − 1 − γ(s, z)

}
ν(dz)ds

)
. (4.5)

The proof is trivial. We now go back to the proof of Theorem 4.3.
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Assume that u(t) = u and θ(t, z) = θ, then due to independence of the Brownian motion and
the poisson random measure, one has

EP [Zq(T)] = EP

[
e−qukB(T)

]
· EP

[
exp

(∫T

0

∫

R

q ln(1 − θ)Ñ(ds, dz)

)]
,

exp

[
−1
2
qu2T +

∫T

0

∫

R

q{ln(1 − θ) + θ}ν(dz)ds
]

= exp
[
T

2
u2q

(
q − 1

)
+ T

∫

R

{
(1 − θ)q − 1 − qθ

}
ν(dz)

]
.

(4.6)

Therefore Qq is found by solving the following deterministic optimization problem, which is a
particular case of Problem Pq in [2]:

minimize kq(u, θ) =
q
(
q − 1

)

2
u2 +

∫

R

{
(1 − θ)q − 1 − qθ

}
ν(dz),

subject to ak(t, T)u + θ

∫

R

ck(t, T, z)ν(dz) = bk(t, T).

(4.7)

It was proved in [2] that a general solution exists under certain conditions. We conjecture here that
the necessary conditions for a solution exist. We the strive to find the optimal solution explicitly.

Let ω1 =
∫
R
ν(dz) and ω2 =

∫
R
ck(t, T, z)ν(dz). Thus (u, θ) is a solution of

minimize e(u,θ)
q
(
q − 1

)

2
u2 +ω1

[
(1 − θ)q − 1 − qθ

]

subject to ak(t, T)u + θω2 = bk(t, T).

(4.8)

Define the Lagrangian

L(λ, u, θ) =
q
(
q − 1

)

2
u2 +ω1

[
(1 − θ)q − 1 − qθ

]
+ λ[ak(t, T)u + θω2 − bk(t, T)], (4.9)

then one gets the following:

ak(t, T)u + θω2 = bk(t, T),

q
(
q − 1

)
u + λak(t, T) = 0,

ω1q(1 − θ)q−1 + qω1 = λω2.

(4.10)

The result comes from solving these equations.
As a special case, we now let B̃q(t) given by dB̃q(t) = udt + dB(t) denote the Qq-Brownian
motion while ÑQq(dt, dz) given by ÑQq(dt, dz) = θν(dz)dt + N(dt, dz) denote the Qq

compensated Poisson random measure.
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In that case, with respect to Qq, we have

dC(t) = C(t)
[
α(t)dB̃q(t) +

∫

R

γ(t, z)ÑQQ(dt, dz)
]
, C(0) = c. (4.11)

An inflation protected annuity pays if inflation (as measured by the CPI) exceeds a certain
threshold K. The payout at any time t will be given by a payout function ρ(t) given by

ρ(t) = fN

[
1 +max

{(
C(t)
C(0)

− 1
)
−K, 0

}]
, (4.12)

where f is the nominal annuity and N is the notional. Assume that this payment is for a fixed
period [0, T]where T is a predetermined limiting age for the policy holder. In most cases T is
a random variable with a given distribution. For nonlife policies, this may not be necessary.
Assume further that the nominal interest rate rN is constant over time. Then, the premium to
be paid for such an annuity at any time t is given by

π0(c) = EQq

[∫T

0
ρ(t)e−rN(T−t)dt

]
. (4.13)

In order to simplify this value, we may want to consider the fact that f and N are constant
(or at best time dependent) and as such we are interested in the value π∗

0(c) given by

π∗
0(c) = EQq

[∫T

0
ρ∗(t)e−rN(T−t)dt

]
, (4.14)

where ρ∗(t) = max{(C(t)/C(0) − 1) −K, 0}. The following result follows

Theorem 4.5. Let the CPI be given by (3.8) and ρ given by (4.12).
Let Λ(x) = max{(x/c − 1) −K, 0} for some constant c.

(a) Suppose that

γ(t, z) = 0. (4.15)

Then the price of an inflation protected annuity is

π0(c) =
fN

rN

[
1 − e−rNT

]
+ fN · v(t, C(t)) , (4.16)



12 Journal of Applied Mathematics

where

v(t, x) =
x

c
exp

[
−rN(T − t) +

∫T

t

(
α∗(s) +

1
2
σ2(s)

)
ds

]
N(d1) − (1 +K)e−rN(T−t)N(d2),

d1 =
ln(x/c(1 +K)) +

∫T
t

(
α∗(s) + σ2(s)

)
ds

(∫T
t σ2(s)ds

)1/2
,

d2 = d1 −
(∫T

t

σ2(s)ds

)1/2

=
ln(x/c(1 +K)) +

∫T
t α∗(s)ds

(∫T
t σ2(s)ds

)1/2
.

(4.17)

(b) If on the other hand

γ(t, z)/= 0,

α(t) >
1
2
σ2(t) +

1
T
lnx

(4.18)

then

π0(c) =
fN

rN

[
1 − e−rNT

]
+ fN

∫T

0
Axn∗

e−tε
∗(n∗)dt, (4.19)

where, A is a constant,

ε∗(n) = nα(t) +
1
2
σ2(t)n(n − 1) − rN +

∫

|z|<1

{
n∑

k=2

(
n

k

)
γk(t, z)

}
ν(dz), (4.20)

and n∗ is a solution of the equation

1
2
σ2(t)n2 + n

(
Tα(t) − lnx − T

1
2
σ2(t)

)
+ T

∫

|z|<1

{
n∑

k=2

(
n

k

)
γk(t, z)

}
ν(dz)

+ ln
(
Λ(x)
f(0)

)
− rN = 0.

(4.21)

Note that the second expression of (4.16) and (4.19) represents the “penalty” charged to the
investor for protection against inflation. We also assume that payments are not linked to an
inflation index with a time lag, which is a common scenario in real life. We also should point
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out here that the assumption on part (a) of the theorem that γ(t, z) = 0 will not result in a
unique equivalent martingale measure because (3.14) depends on ck(t, T, z) and γ(t, z) = 0 �

ck(t, T, z). However, C(t) given by (4.11) will be a Qq-geometric Brownian motion.

Proof. (a) By Fubini’s Theorem on expectations, it is enough to consider

v(t, C(t)) = EQq

[
e−rN(T−t)

((
C(t)
C(0)

− 1
)
−K

)+

| Ft

]
. (4.22)

Note that v(0, C(t)) = v(t, 0) = 0 for all t ∈ [0, T] and

v(T,C(T)) =
((

C(T)
C(0)

− 1
)
−K

)+

. (4.23)

If γ(t, z) = 0, then

v
(
t, C(t) + C(t)γ(t, z)

)
= v(t, C(t)). (4.24)

Now with respect to Qq, we have

C(T) = c(t) exp

[∫T

t

α∗ds +
∫T

0
σ(s)dB̃q(s)

]
, (4.25)

Therefore, by direct integration or otherwise, (4.22) easily simplifies to

v(t, C(t)) =
C(t)
c

exp

[
−rN(T − t) +

∫T

t

(
α∗(s) +

1
2
σ2(s)

)
ds

]
N(d1)

− (1 +K)e−rN(T−t)N(d2)

(4.26)

with

d1 =
ln(C(t)/C(0)(1 +K)) +

∫T
t

(
α∗(s) + σ2(s)

)
ds

(∫T
t σ2(s)ds

)1/2
,

d2 = d1 −
(∫T

t

σ2(s)ds

)1/2

=
ln(C(t)/C(0)(1 +K)) +

∫T
t α∗(s)ds

(∫T
t σ2(s)ds

)1/2
.

(4.27)

(b) If γ(t, z)/= 0, consider the discounted value function Y (t) = e−rNtv(t, C(t)), then by
the one-dimensional Lévy-Itô formula, we have
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dY (t) = e−rN
[(

vt(t, C(t)) + αC(t)vc(t, C(t)) − rv(t, C(t)) +
1
2
σ2(t)c2(t)vcc(t, C(t))

+
∫

|z|<1

{
v
(
t, C(t)

(
1 + γ(t, z)

)) − v(t, C(t)) − C(t)γ(t, z)vc(t, C(t))
}
ν(dz)

)
dt

+
∫

R

{
v
(
t, C(t)

(
1 + γ(t, z)

))}
ÑQq(dt, dz) + σC(t)vc(t, C(t))dB̃q(t)

]
.

(4.28)

The discounted value function is a Qq-martingale if the dt term equals zero, or alternatively,
if

vt(t, x) + αxvx(t, x) +
1
2
σ2(t)x2vxx(t, x)

+
∫

|z|<1

{
v
(
t, x

(
1 + γ(t, z)

)) −v(t, x) − xγ(t, z)vx(t, x)
}
ν(dz) = rNv(t, x).

(4.29)

Then v(t, x) is a solution of the following boundary value problem:

vt(t, x) + αxvx(t, x) +
1
2
σ2(t)x2vxx(t, x)

+
∫

|z|<1

{
v
(
t, x

(
1 + γ(t, z)

)) − v(t, x) − xγ(t, z)vx(t, x)
}
ν(dz) = rNv(t, x),

v(T, 0) = 0,

v(T, x) = max
{(

x

c
− 1

)
−K, 0

}
,

v(0, x) = 0,

(4.30)

where x = C(t).
We assume a solution of the form v(t, x) = f(t)xn then by substitution into

vt(t, x) + αxvx(t, x) +
1
2
σ2(t)x2vxx(t, x)

+
∫

|z|<1

{
v
(
t, x

(
1 + γ(t, z)

)) −v(t, x) − xγ(t, z)vx(t, x)
}
ν(dz) = rNv(t, x)

(4.31)

we get f ′(t) + ε∗(n)f(t) = 0 where

ε∗(n) = nα(t) +
1
2
σ2(t)n(n − 1) − rN +

∫

|z|<1

{
n∑

k=2

(
n

k

)
γk(t, z)

}
ν(dz). (4.32)
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Therefore v(t, x) = f(0)xne−tε
∗(n) and if we let Λ(x) = f(0)xne−Tε

∗(n), then the terminal
conditions imply

1
2
σ2(t)n2 + n

(
Tα(t) − lnx − T

1
2
σ2(t)

)
+ T

∫

|z|<1

{
n∑

k=2

(
n

k

)
γk(t, z)

}
ν(dz)

+ ln
(
Λ(x)
f(0)

)
− rN = 0.

(4.33)

Suppose that Ta(t) − lnx − T (1/2)σ2(t) > 0, then there exists a unique solution n∗ to this
equation.

Then v(t, x) = f(0)xn∗
e−tε

∗(n∗).

Remark 4.6. Note that if α(t) = α and σ(t) = σ are constants, then one can explicitly
simplify the integral of Theorem 4.5 since for any y > n, then ε(y) > 0 and

∫T
0 v(t, x) =

Axn/ε(n)(1 − e−Tε(n)) which increases with term to maturity. Therefore, inflation adjusted
annuities of this nature have capital losses in that the price charged at issue or purchase is
more than redemption value. This applies to the case of course where we consider the price
as a function of maturity time T .

5. Conclusions

Indexation helps to adjust future earnings in line with the cost of living at that time. Usually
the income is indexed by reference to the values of inflation with some time lag. This is
done to allow for publishing the RPI values. In that case proper adjustment must be made
to the premium. In this paper we have managed to get explicit results to the price of inflation
indexed annuities without time lag. We looked at non-life-based annuities and conjecture that
there is not much value added by considering life based annuities.
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