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The equations of motion of a missile under the air drag effects are constructed. The modified TD88
is surveyed. Using Lagrange’s planetary equations in Gauss form, the perturbations, due to the air
drag in the orbital elements, are computed between the eccentric anomalies of the burn out and
the reentry points [Ey,, 207 — Ep, ], respectively. The range equation is expressed as an infinite series
in terms of the eccentricity e and the eccentric anomaly E. The different errors in the missile-free
range due to the drag perturbations in the missile trajectory are obtained.

1. Introduction

The ballistic missile problem is typically represented in astrodynamics as a simplified planar
two-body problem with a nonrotating Earth. The missile is only guided during the relatively
brief initial and final powered phases of flight, while most of its course, the free flight range, is
subsequently governed by the laws of orbital mechanics and ballistics. From this information
we can usually determine the range of a projectile, the initial flight path angle, the orbit
eccentricity and semimajor axis, and its true/eccentric anomaly angles at launch and impact
points. It is of interest to expand upon this basic model in order to add realism to the problem.

In a previous work, Abd El-Salam and Abd El-Bar [1] computed the different errors
in the free range of the ballistic missiles taking into account an oblate Earth model retaining
the zonal harmonics of the geopotential up to J;. They obtained explicit expressions for the
errors in the missile range due to the in-orbit plane and out-of-orbit plane changes in the
missile range. In this work, the author aims to compute the effect of the atmospheric drag
perturbations solely based on the usage of the TD88 density model on the missile trajectory.
On one hand, the ballistic missile trajectories are very sensitive to any kind of perturbations,
but on the other hand the missile trajectory takes approximately 30 minutes (nearly half an
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only one orbital period of a low Earth orbit, in brief LEO). Therefore, these perturbations can
be safely added up linearly to the gravity perturbations on the missile trajectories obtained
previously by the authors mentioned above.

The problem of the orbital motion of celestial bodies in a resistive medium can be
traced back to Newton’s Principle Newton, (bk. II, Sections I/IV) [2] and Laplace’s analysis
of a possibly finite velocity of gravitation Laplace [3]. However, with the advent of the space
age, there arose the need of precisely predicting the orbital behavior of the newly launched
bodies. Compared to the gravitational perturbations, the adequate allowance for atmospheric
drag turned out to be a problem for unforeseen complexity Brouwer [4]. Besides the obstacles
in the analytical treatment of the drag based on the idealized spherical nonrotating density
model, the upper atmosphere revealed itself to behave unexpectedly. The irregular density
variations derived from orbital analyses of the first launched satellites were attributed to the
influence of the Sun, as they displayed periodical changes of approximately 27 days. Jacchia
[5]; King-Hele and Walker [6] introduced the overall dependence of the drag on the angle
between the perigee and the Sun. In the subsequent years, together with the advances in
theory King-Hele [7], direct evidence has grown indicating that the solar and geomagnetic
effects strongly influence the thermospheric density both periodically and randomly Jacchia
[8-10], Jacchia and Slowey [11, 12].

The literature on the atmospheric drag effects on artificial satellites is very rich; see
for example, King-Hele [7], Hoots and Roehrich [13] Gooding [14], Helali [15] Hoots and
France [16, 17], Danielson et al. [18], Fonte et al. [19], Sehnal [20-22], Sehnal and Pospisilov,
[23, 24], Rossi et al. [25], and Abd El-Salam and Sehnal [26].

Although the literature on the perturbed missile trajectories is very limited, we can
apply the concepts of atmospheric drag effects on artificial satellites on the perturbed missile
trajectories with a modification on the integrating limits.

Isaacson and Vaughan [27] described a method of estimating and predicting ballistic
missile trajectories using a Kalman Filter over a spherical, nonrotating Earth. They de-
termined uncertainties in the missile launch point and missile position during flight. Vinh
et al. [28] obtained a minimum-fuel interception of a satellite, or a ballistic missile, in elliptic
trajectory in a Newtonian central force field, via Lawden’s theory of primer vector. McFarland
[29] treated ballistic missile problem by modeling spherical Earth, rotation, and addition of
atmospheric drag using the state transition matrix. Akgtil and Karasoy [30] developed a
trajectory prediction program to predict the full trajectory of a tactical ballistic missile. Kamal
[31] developed an algorithm that includes detection of cross-range error using Lambert
scheme in free space, in the absence of atmospheric drag. Bhowmik and Chandrani [32]
investigated the advantages and performance of extended Kalman Filter for the estimation
of nonlinear system where linearization takes place about a trajectory that was continually
updated with the state estimates resulting from the measurement. Forden [33] described the
integration of the three degrees of freedom equations of motion, and approximations are
made to the aerodynamic for simulating ballistic missiles. Harlin and Cicci [34] developed a
method for the determination of the trajectory of a ballistic missile over a rotating, spherical
Earth given only the launch position and impact point. The iterative solution presented
uses a state transition matrix to correct the initial conditions of the ballistic missile state
vector based upon deviations from a desired set of final conditions. Kamal [35] presented
an innovative adaptive scheme which was called “the Multistage Lambert Scheme”. Liu and
Chen [36] presented a novel tracking algorithm by integrating input estimation and modified
probabilistic data association filter to identify warhead among objects separation from the
reentry vehicle in a clear environment.
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2. Air Drag Force Model

As an artificial Earth satellite moves through the Earth’s atmosphere, its orbital motion is
perturbed by the resisting force. The main effects of the force are to bring out large secular
decreases in the elements a, the semimajor axis, and e, the eccentricity, that cause the satellite
plunges toward Earth. This perturbing influence is one of the most important perturbing
forces in the altitude regime from 150 to 600 km, which is called the drag force. The drag
force, Fp, per unit mass of the satellite can be represented by

1%=_;b(%)4vw, (2.1)

where Cp is a dimensionless drag coefficient, V is the velocity of the satellite relative to the
atmosphere (called the ambient velocity), A represents the effective cross-sectional area of the
satellite, which is to be found by averaging all possible projected areas of the satellite onto a
plane perpendicular to V, 1 is the mass of the satellite, and p is the density of the atmosphere.
The density p depends on position and time in a very complicated manner. Its variation with
height depends on the form of the atmosphere, since it decreases rapidly with slight growing
in the altitude, the effect of the flattening of the atmosphere is rather significant.

3. Rotation of the Atmosphere

This effect is so small, so a simple approximation is justified. The differential rotation of the
atmosphere complicates the numerical calculation, and it gives no sense in this very small
effect. So we will assume that the atmosphere rotates with the same angular velocity of the
Earth o, then

V=0-6xF7, (3.1)

where 7 is the orbital velocity of the satellite and 7 its radius vector. If (T,]A,E) are the
base vectors of the rectangular geocentric equatorial frame associated with the spherical
coordinates (r,\,8), then G = 0 x k, ¢ =7.27205217 x 10~ rad./sec. Thus

V2 =02 =25 (6 x7) + (& x7)* = v’kg, (3.2)

where I is the orbital inclination, 6 is the satellite’s declination, h is the integral of areas, and
kg is given by

2.2 2
B 2chcos I N o°r“cos 6' (3.3)

kr=1

v? v?

The third term in kg may usually be neglected, being less than about 1/250, and the second
term which is of order of 1/15 may be evaluated at perigee, where the density is much greater
than elsewhere on the orbit, thus we may effectively regard kg as a constant.
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4. Drag Force Components

Let (7,5, lAl) be unit vectors along the radius vector, normal to the radius vector in the
orbital plane, and normal to the orbital plane, that is, along to the angular momentum axis,
respectively; then the drag force given by (2.1) can be written in the components form as

Fp=SF+Ts+Wh, (4.1)

where

1 A Hoo.
S——ECD<E>\/kva\/;esmf,

T=—1CD<é>\/kva<\/EE—orcosI>, (4.2)
2 m pr

W = _%CD<%>\/HPU(W sinlcos(f +w).

4.1. Modified TD88 Density Model

To integrate the equations of motion, an analytical expression is required for the density of
the atmosphere. This density has many irregular and complex variation both in position and
time. it is largely affected by solar activity and by the heating or cooling of the atmosphere.
This time dependence is very difficult to be introduced in an analytical expression. Since the
atmosphere is not actually spherically symmetric but tends to be oblate, we have to allow
for this oblateness in any expression for the air density. The complications which come from
the accuracy demands may cause the impossibility to use these classical aeronomic empirical
models, for example, CIRA 86 Hedien [37], CIRA 72 Oliver [38], and DTM Barlier et al., [39]
for an analytical work. In this work, we will use the modified version of the TD88 model
first proposed and introduced by Sehnal [20, 22] and Sehnal and Pospisilové [23] and then
developed by Abd El-Salam and Sehnal [26] in terms of the eccentric anomaly E as

7 3 6 6
p=fofeko DD D> K, A exp(B;jcosE)

n=1j=0v=01=0 (4.3)

x {Gfml cos(v +1)E + éfml cos(v-NE+G] sin(v+])E+ éfml sin(v — l)E},

where (fo, fx, ko), the main solar and geomagnetic activity parameters affecting the angular
density, are given by

f0=a2+fm, fx:1+a1(Fx—Fb),

_ (Fy—-60)
fm = 160 '

(4.4)
ko =1+ as(K, - 3)
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Table 1: Constants a;.

i 1 2 3 4 5 6 7 8
a; 0.007 0.2875 0.04762 0.0471 7.0 7.0 0.3333 15.0

Table 2: Constants K, ;.

n j=0 j=1 j=2 j=3
1 2.968 x 10715 7.664 x 107 1.657 x 10710 3.871 x 1071
2 2.815 x 10714 -4.401 x 107% 3.343 x 10710 9.352 x 101
3 -1.233 x 1074 1.181 x 10710 —-1.478 x 10710 -1.518 x 10712
4 -1.149 x 1077 -1.597 x 1011 —-6.467 x 10712 -2.049 x 10712
5 -3.901 x 10716 —-2.408 x 10710 -1.399 x 10711 -3.059 x 10712
6 7.424 x 1071 6.438 x 1071 1.362 x 10710 3.517 x 1071
7 —3.416 x 10716 7.447 x 10712 4542 x 10712 2.080 x 10712
Table 3: Phases p,,.
n 3 4 5 6 7
P 263 -263 -29.41 8.0913 10.0813

with F, solar flux measured on 10.7 cm wavelength for a previous day, Fj, solar flux averaged
over three solar rotations (81 days), K, geomagnetic index 3 hours before local time t, H;
the reciprocal of the density scale height H; = j(|j - 1|1%/29( j N2, R, the equatorial radius of
the Earth, ¢ the Earth’s flattening, A; = exp[H;(120 — a + Rs)], B; = Hjae, and a;, K, j, px
numerical constants of the model given by Tables 1, 2, and 3.

The required nonvanishing coefficients for the model are

Gt = %(61)85,1 - §vgfl,z>r Gf;,n,l = %(évgfz,l + gv&i,l)r
(4.5)

Gyt = %(évg,i,z + §vgﬁ,1>/ éff,n,l = %(gvgfl,l - C’ngl,l>,

where the nonvanishing coefficients g, , g, C,, and S, were computed previously by the
author, see Abd El-Salam and Sehnal [26].

5. Integration of the Equations of Motion

The Lagrange’s planetary equations are a very well-known system of six first-order dif-
ferential equations. They are used to evaluate the perturbations in the usual Keplerian orbital
elements (a,e,I,Q, w, E). Gauss modified this system so as to be applicable for all kinds of
force especially nonconservative force, see Roy [40],

da 2 . P
A ()
de VI

e? . .
= T(Ssmf +T(cos f +cosE)),
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dl _ rcos(f +w)
dt  pavi-e
dQ  rsin(f+w)
dt pa2sinlvi-e2

—p2
dw:—cosI@+ ! e(—Scosf+T<1+;£)sinf>,

dt dt nae

dM dw dQ 2r

. — - —_e2( ) _-G§—_

¥ n-VvVl-e <dt +COSIdt> Sna2
(5.1)

withp = a(l - e?), n’a’®= u, where n, p, p are the mean motion in the orbit, the semi-latus
rectum of the orbit, and the gravitational parameter, respectively, and (S, T, W) are the drag
force components given by (4.2).

To integrate the equations of motion (5), we first do the following simplifying steps:

(1) introducing the density given by the modified TD88 model to the drag force
components (S, T, W);

(2) using dt = ((1 — ecosE)/n)dE, to replace the explicit time with the eccentric
anomaly E as an independent variable;

(3) using the binomial theorem and neglecting orders of O(e®) and O(ce?);

(4) since the series expansion of exp(x) for all x € R, the real numbers, is convergent,
then we replace exp(B; cos E) appeared in the density expression with its equivalent
series expansion;

(5) let us define cos(a £ B)E = cos(a + B)E + cos(a — p)E.

5.1. The Increment in the Semimajor Axis

Using the first equation from the equations set (5) and following the above-mentioned
simplifying steps, then after some lengthy algebraic manipulations we obtain the change in
the semimajor axis as

da A 7 3 6 6 4 © 1
da _cD(_) IR N IPIPNL AV
m 71=1 j=0 v=0 1=0 m=0 =0
B}(COSKE (5.2)

X = {Gfml cos(v+I1+m)E + éfml cos(v—1l+m)E

+Gj sin(v +Ixm)E + (NSi,n,, sin(v — 1+ m)E},



Journal of Applied Mathematics 7

where the nonvanishing coefficients are

3 21 4 ocosl ) 1, 3,
by = <1+4e +64e> p \VV(1l-e )<1 ¢ 6_48 ),
bi = (26 + 263),
3, 7 4 ocosl 1, 1,4
a— (= -z 1-e2)( = — 5.3
bj <4e+16e>+ - \/( e)<4e+16e , (5.3)
15

bgzze,

7 1 ocosl
a _ 4 _ o2\ 4
b4 64e * 64 n (1-ee

using the trigonometric identity

1 [(x-1)/2]

cos® [6’;//22 19 Kx/z] 2" P : Cr cos(K—Zr)E], (5.4)
r=

s/ 22 is the usual Kronecker Delta symbol and [« /2] is the greatest integer function,

x € Z*, and Cf = «!/r!(x — r)! is the binomial coefficients. Now (5.4) can be written in the
form

where

d B’f

=—-Kpa fokaOZZZZZZK’UA bf"21<+1 !

n=1j=0v=0 =0 m=0x=0
/2 ~
{6KK/2 Cre [fo,n,l cos(v+1+m)E+Gj jcos(v-l+m)E

+G,  sin(v + I+ m)E + éfml sin(v -1+ m)E]
[(x-1)/2]
+ Z Cr [Gfml cos(k —=2r+ (v+1+m))E
r=0

+GS, cos(x —2r £ (v— £ m))E

+G3, sin((v+1+m) £ (x - 2r))E

+éfml sin((v-1+m) £ (k- 2r))E] }

(5.5)
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Now (5.5) can be integrated between the eccentric anomalies of the burn out and the reentry
points [Epo, 201 — Ep,], respectively, then we have integrals of the form

27—-Epo 00 BK P [(x-1)/2]
0°(x,1,p) = . Z p [ "K/z Cle/2) cos‘uE+ Z Cr{cos(x - Zriy)E}]
0 k=0 r=
(5.6)
from which we can get
(a /2)3 ) 2 [ sin(uEpo)
0°(x, 1, ) =2 Z 65 1 Clesm |1 - —
n#0
(5.7)
[(K—Zl)/z]CK '1 sin((x-2r+ y)Ebo):I
+ 11—
r=0 (K —2r & P‘) (k—=2r%p) #0
Similarly, we can evaluate
2-Epy 0 P [(x-1)/2]
0°(x,1,p) = . ZZKK' [ "K/Z]C’[‘K/2] +2 ZO Cy cos(k — 2r)E] sin uE
0, r=
(5.8)
27mr—Epo o0 /2 [(r-1)/2]
K K K o1
= Lb §)2KK' [6 21 Clie/2) SINPE + 2, Crsin(x - 2r + y)E:I,
which yields
© B} cos(uE) |7
_ j /2 H
) = S { 63 )
x=0 ’ Ebo,r/'{#o
(5.9)

r=0

(/2] Tcos((x —2r+p)E)
C[ (k—2r+p) ]

ZI—EbD
= 0,
Epo,, (1-2r£p) #£0

where terms involving the integrals of the type 0°(x, r, u) within the expression (5.5) have
no contribution to the problem. as usual to the drag theory of artificial satellites. Now
substituting the relevant integrals J¢(x, r, yt) from (5.7) into (5.5) yields the solution as

K'

(3 = Kodfofiky 3,3 33 3 5 1K, A ks

nl]OvOlOmOKO

x{ G5, [9°(, 1, v + 1+ 1) + 0% (7, v + 1 = m)
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+0°%K,r,—v =1 —-m) + O°(x,r,—-v =1 + m)]

+ éiln’, [OC(K,r,v —l+m)+ 0%, r,v—1-m)

+C~§f;rn/lOC (x,r,~v+1l+m)+ 0K, r,-v+I1- m)] }

(5.10)

Using the similar procedure to integrating the rest of (5) between the eccentric anomalies of

the burn out and the re entry points [Epo, 277 — Ep,], respectively, we obtained the following
explicit expressions for the other orbital elements as follows.

5.2, The Increment in the Eccentricity

A , 7 3.6 6 5 o1
(Be)p = _CD<E> kra®fofko 3,333, >, > 5 KnjAjby,

n=1j=0v=0[=0 m=0«x=0

% _]|{ ¢ (05, 1,y + 1+ m) + 0°(,1,v +1 - m)
N (5.11)
+0°(rc,r,—v =1 =m) + O°(xc,1,—v - 1 + m)]

* éf;,n,z[oc(x,r,v —1+m)+ 0%, r,v—1—-m)]

+0°% K, r,—v+1+m)+ 0k, r,—v+1- m)]},

where the nonvanishing coefficients b¢, are:

2
1 15 1 ocoslI /1 5
e _ (2,2 4 - -2, ~ 4
b3—<8€ +—188>+2—n 1—e2<4e +64e>,

1 5 1 ocosl 4

e _ -
=16 T
. 3 4 1 ocoslI ,

b: =

@6 +@—n 1_826 .
(5.12)
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5.3. The Increment in the Inclination

(AD)p = _JrCD(A/m \/EosmI\/ifokao

IS S A

x bl GS 0% (e r, v + 1+ m) + 0 (1, 41— m)] (5.13)

+byeGE  [0°(k, 1, v =1+ m) + 0°(xc,7,v = - m)]

bIch

o0, 1, v +1=m) =0, 1, v + 1+ m)]

+bI sGe

vn,l

[0°(x,r,v—1—-m) - 0%, r,v —l+m)]},

where the nonvanishing coefficients bl¢ and b’ are

3 9 7 1 9 7
ple= (2 _ 224 _4) L7 2 L4 2
0 (4 32€ 256° "\27 32° T 256° ) O

bl = ((e _ ge3> + (e - §e3> c052w>,
1 5 1 3 39
Ie _ 2_ =t — -z’ - ! 2
g ((86 3ze>+<2 8° " 256" >COS w>'
1
ble = g33(1+c052w),

1 1 5
ple = <_ae4 _ (Eez - me4> COSZuJ),

1
bé“ = —ﬁe‘l cos 2w,

1
b{s =V1- ez<§e3 — e) sin 2w,
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1 1
bl = V1= (1o + et ) sin2o,

16 64

1
bés =——e*V1 - e2sin2w.

256
(5.14)
5.4. The Increment in the Ascending Node
xCp(A/m)\/kgo , |a® 7 3 6 6 6 o
(AQ)p = - — fofxko K
) Aj_];{b%ci,n,l[oc("f r,v+l+m)+ 0%, r,v+1-m)]
: (5.15)

+beGe L [0°(k, 1,0 = 1+ m) + 0°(x,1,v = | - m)]
+bGE L [0°(x, 7, v + 1= m) = 0°(xe, 1, v + 1+ m)]

+b,9,,5(~3fml[90(1<, r,v—1-m)-0%k,r,v—1+m)] },
where the nonvanishing coefficients b$ and b$¥® are

11 11
Q 4\ o
b5 = <_16€2 - ¢ )stw,

b?c = —<e - %eS) sin 2w,

Qc 2 4 :
=( = - — _— ),
bz ( 86 2566 )Sll’l w,

1
b?c = §e3 sin 2w,

1 4 .
p ——ﬁe sin 2w,

1
b = \/@(—e + §e3) cos 2w,
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1 1 5
b3 =V1- ez<— - -e? - —64) cos 2w,
256
1
b3 = ~e’V1 - 2 cos 2w,

8

1 1
by =V1- ez<—e2 + —e4> cos 2w,

16 64

1
b = ——e*V1 - e?cos2w.

256
(5.16)

5.5. The Increment in the Argument of the Perigee

7 3 6 6 5 w
(Aw)p = —27(AQ) cos I — ”CD(A/em)\/ﬂpfokaoZZZZZZKn,,-A,-b‘,:is

n=1j=0v=0 =0 m=0x=0

B*
X —]'{Gf,,n,l[OC(K, r,v—1+m)+ 0%, r,v—1—-m)
* (5.17)

0%, r,v+1+m)—-0%x,r,v+1—m)]

+Gs

v,n,l[OC(K’r/v -1- m) - OC(K/T/V_ I+ m)

=0k, r,v+l-m) -0, r,v+1+ m)]},

where the nonvanishing coefficients b%°® are

1 3 ad 5 3
WS = g\V1-e2(2+-e?+ —=e* ) - = (2-3e+ ¢
bi*=a e( + € +32€> 0 Cos ﬂ( 1€ T3¢ )
1 1 5 1
b‘2"5=a\/1—e2<e+—e3>+—ocosl a—(e——e3>,
4 2 U 4
1 9 1 |ad 5
ws — —g\/1 - e2( &2 + 2 et - TA = e? — =& 5.18
b5 4a e <e + 16e>+40'cos P (e 166 , ( )

1 1 5
by = —aV1-e2® -~ —ocosl L,
8 16 ’

3 1 5
bs® = —aVl —e2e* + 6—40COSI'\/%64.

64
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5.6. The Increment in the Eccentric Anomaly

ZJZ'—Ebo 3Aa

(AE)p =J‘ —ﬁ(l—ecosE)dE—Zm‘M[Aw+AQcosI]

Epo

A 7 3 6 6 3
+erD(a)\/EafokaOZZZZZKn,jAjbfj

n=1j=0v=0 I=0 m=1

8 {Girml[oc("'n” —l+m)+0%x,r,v—1-m)
_OC(K/r/V + l + m) - OC(K,r,v + l _ m)]
+G, 0% v — 1= m) = 0¥ (7, v = 1+ m)

=0, r,v+l—-m)-0%%,r,v+1+m)]},
(5.19)

where the nonvanishing coefficients bZ* are

bEs =2e - ;183, bL® = —3163. (5.20)

6. Drag Effect on the Free Flight Range ¥

The usual ICBM problem concerns the determination of the free flight range angle. In order
to improve the results, we will take into account the perturbations in the orbital elements
coming from the atmospheric drag. Following the treatment given by Helali [15] the free
flight range equation reads

¥y 1 — Quocos’Ppo
cos = = , 6.1)
\/1 + Qbo(Qbo - 2)C032¢b0

where Qpo = (v/v.)* = rv?/ u defines the dimensionless parameter, r is the magnitude of the
position vector of the missile relative to the Earth’s center, v is the missile speed at any point in
its orbit, v, is the corresponding missile circular speed at this point, and p is the gravitational
parameter. From the orbital mechanics of the two body problem and the symmetry of the
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free-flight portion (see [41, Figure 6.2.2 and Figure 6.3.3, pages 283-285]) we can express the
range equation in terms of the eccentricity e and the eccentric anomaly E as follows:

R4
cos — = (e+cosE)(1-ecosE)™

o]
= (e + cos E)Ze”cos”E
n=0

Ms IMs

" 1cos"E + e"cos"™ ' E }

{
{e n|n 1|'

= e }cos”E
n=0
© [Tl/2
—1|le™
Z <1 67’1‘1/2>{ nel %} cos(n —2m)E.
n=0 m=0 .

(6.2)

Since the range equation is a function the eccentricity and the eccentric anomaly ¥ = ¥(e, E)
and A¥D and AWE denote the variations in the free flight range angle due to the variation
of the eccentricity and due to the variation of the eccentric anomaly, respectively, under the
effect of the atmospheric drag, therefore, we can write

o ov
AY = Q(Ae)D + ﬁ(AE)D = AYD + AW, (6.3)

The involved partial derivatives in (6.3) are given by

o o [n/2] ., . nzn_l!en—l
== Z Z (1 6m/2>{(n +1)e" + %} cos(n —2m)E,
n=0 m=0
" (6.4)
v & -Cr, . nn-1le
o5 = Z Z <1 6:’,1/2>{ n %}(n 2m) sin(n — 2m)E.

N

3
I
o
3
I
o
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6.1. Computation of the Quantities AYD and AY?

Substituting from (5.11) and (6.4) into the first term of (6.3) yields

oo [1n/2] cn

2 _ n-1
AYY = Zzzn1< m/2>{("+1)n %}

n=0 m=0

x Cp <%> \/ﬂazfokao cos(n —2m)E

7 6.6 5 o 1 EB;,‘
X ZZ;ZOZ ~ 5 KnjAibn—r

3
= ]:O m=0x=0

2

8 {G‘C’/n/l[oc(’('r'””me) + 0%k, r,v+1—-m)
+0°(x, 1, —v =1 =m) + D°(x,1,—v — 1 + m)]
+ G, [0,y =1+ m) + 0°(,,v =1 = m)

+0°x, r,—v+1+m)+ 0k, r,—-v+1- m)]}.

Substituting again from (5.11) and (6.4) into the second term of (6.3) yields

oo [1n/2] n
(n 2m)Cr, . " nln—1|le
Aqrg_zz — (1 5m/2>{ 4 +T}

n=0 m=0

2.71'—Eb(
x sin(n—Zm)E{j 34a

_E_(l —ecosE)dE

Epo

_ZJT\/Q[AW+AQCOSI]+JZ'CD<%>\/E
7 3 6 6 3

X afOkaOZZZZZKn,jAjb,EnS
n=1j=0v=01=0m=1

{Ginlwc(’(/ﬂv—ﬂm)+OC(K,r,v—l—m)
=%k, 1, v + L4 m) = D%k, 1, v + 1 = m)]

+Ginl[OC(K,r,v—l—m) 0%, r,v—1+m)

0%, r,v+1—m) —OC(K,r,v+l+m)]}}.

15

(6.5)

(6.6)
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6.2. Errors in ¥ due to (AQ) |,

For the sake of the simplicity, let us take the burnout point on the equator. If the reentry
point, for some reason, was displaced by an amount, Ax, and if all of the orbital elements
were kept fixed except the longitude of the ascending node, then this displacement Ax could
be interpreted as a change in the longitude of the ascending node (AQ) . Due to this change,
a cross-range error, AYD at impact occurs, the value of which is obtained by applying the
law of cosines in the spherical trigonometry. Hence,

cos AP, = sin®¥ + cos?¥ cos (AQ)p. (6.7)

Since A¥E, and (AQ), are small angles, then we have

AYE) = (AQ)p cos . (6.8)

Substituting (5.15) into (6.8) yields

APD ~— 27Co( A/ m) kR"\/ L fofkocos W

G0k, r, v+ 1+ m) + 0%(xe, 1, v + 1 —m)]

+ bQC G¢

o070, v =1+ m) +0°(x,1,v -1 - m)]

+ bﬁséfml[ﬂc(n r,v+l-m) -0, r,v+1+m)]

bQSGC

v,n,l

[0°(x,r,v—1-m) - D%, 1r,v—1+ m)]}.
(6.9)

6.3. Errors in ¥ due to (Al)p

Again assume that the burnout point were on the equator and assume also the actual launch
azimuth differs from the intended value by an amount, Ap, and if all of the orbital elements
were kept fixed except the orbital inclination, then this displacement Ap could be interpreted
as a change in the orbital inclination (AI)p,. Due to this change a cross-range error, A¥,, at
impact occurs, the value of which is obtained in a similar manner as the previous subsection
by applying the law of cosines in the spherical trigonometry. Hence,

cos A¥Y, = cos¥ + sin®¥ cos (AI) . (6.10)
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Since AW and (AI), are small angles, then we have
AP = (AI)psin¥. (6.11)

Substituting (5.13) into (6.11) yields

AgD _ 2xCp(A/m)\kgosinI  [a° .
1% N R

7 3 6 6 6 o B;c
PP IINIPI
n=1j=0v=0[=0 m=0 k=0 '

X {bf,fo,’n’l[OC(K, r,v+l+m)+0k,r,v+1-m)] (6.12)

+ bfncéf)’n,l[oc(x, r,v—1l+m)+ 0%k, r,v—1—-m)]

+ bf,fo,,nll[Oc(K, r,v+l-m) =0k, r,v+1+m)]

+bISGE [0°(k, 1, v — 1 - m) — O (x,7,v — 1 + m)] }

vn,l

7. Conclusion

In this work, the equations of motion of a missile are constructed. Using Lagrange’s planetary
equations in Gauss form, the perturbations due to the air drag in the orbital elements
are computed between the eccentric anomalies of the burn out and the re entry points
[Epo, 2ot — Epo], respectively. The range equation is expressed in terms of the eccentricity e
and the eccentric anomaly E. The different errors in the missile free range due to the drag
perturbations in the missile trajectory are obtained. These obtained perturbations can be
safely added up linearly to the gravity perturbations on the missile trajectories obtained
previously by Abd El-Salam and Abd El-Bar [1] to constitute a more precise theory of the
missile trajectories and the errors in the free flight range.
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