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We use homotopy perturbation method (HPM) to handle the foam drainage equation. Foaming
occurs in many distillation and absorption processes. The drainage of liquid foams involves
the interplay of gravity, surface tension, and viscous forces. The concept of He’s homotopy
perturbation method is introduced briefly for applying this method for problem solving. The
results of HPM as an analytical solution are then compared with those derived from Adomian’s
decomposition method (ADM) and the variational iteration method (VIM). The results reveal that
the HPM is very effective and convenient in predicting the solution of such problems, and it is
predicted that HPM can find a wide application in new engineering problems.

1. Introduction

Most scientific problems and physical phenomena occur nonlinearly. Except in a limited
number of these problems, finding the exact analytical solutions of such problems are
rather difficult. Therefore, there have been attempts to develop new techniques for obtaining
analytical solutions which reasonably approximate the exact solutions [1]. In recent years,
several such techniques have drawn special attention, such as Hirota’s bilinear method
[2], the homogeneous balance method [3, 4], inverse scattering method [5], Adomian’s
decomposition method (ADM) [6, 7], the variational iteration method (VIM) [8, 9], and
homotopy analysis method (HAM) [10] as well as homotopy perturbation method (HPM).

The homotopy perturbation method was established by He [11]. The method has been
used by many authors to handle a wide variety of scientific and engineering applications to
solve various functional equations. In this method, the solution is considered as the sum of an
infinite series, which converges rapidly to accurate solutions. Recently, considerable research
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Figure 1: Schematic illustration of the interdependence of drainage, coarsening, and rheology of foams
[31].

work has been conducted in applying this method to the linear and nonlinear equations [12–
25].

Foams are of great importance in many technological processes and applications, and
their properties are subject of intensive studies from both practical and scientific points of
view [26]. Liquid foam is an example of soft matter (or complex fluid) with a very well-
defined structure that first clearly described by Joseph plateau in the 19th century. Weaire
et al. [27] showed in their work simple answers to many such questions exist, but no going
experiments continue to challenge our understanding. Foams and emulsions are wellknown
to scientists and the general public alike because of their everyday occurrence [28, 29]. Foams
are common in foods and personal care products such as creams and lotions, and foams often
occur, even when not desired, during cleaning (clothes, dishes, scrubbing) and dispensing
processes [30]. They have important applications in the food and chemical industries,
firefighting, mineral processing, and structural material science [31]. Less obviously, they
appear in acoustic cladding, lightweight mechanical components, and impact absorbing parts
on cars, heat exchangers, and textured wallpapers (incorporated as foaming inks) and even
have an analogy in cosmology. The packing of bubbles or cells can form both random and
symmetrical arrays, such as sea foam and bees’ honeycomb. History connects foams with
a number of eminent scientists, and foams continue to excite imaginations [32]. There are
now many applications of polymeric foams [33] and more recently metallic foams, which
are foams made of metals such as aluminum [34]. Some commonly mentioned applications
include the use of foams for reducing the impact of explosions and for cleaning up oil spills. In
addition, industrial applications of polymeric foams and porous metals include their use for
structural purposes and as heat exchange media analogous to common “finned” structures
[35]. Polymeric foams are used in cushions and packing and structural materials [36]. Glass,
ceramic, and metal foams [37] can also be made and find an increasing number of new
applications. In addition, mineral processing utilizes foam to separate valuable products by
flotation. Finally, foams enter geophysical studies of the mechanics of volcanic eruptions [30].
Recent research in foams and emulsions has centered on three topics which are often treated
separately but are, in fact, interdependent: drainage, coarsening, and rheology; see Figure 1.
We focus here on a quantitative description of the coupling of drainage and coarsening. Foam
drainage is the flow of liquid through channels (plateau borders) and nodes (intersections
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of four channels) between the bubbles, driven by gravity and capillarity [38–40]. During
foam production, the material is in the liquid state, and fluid can rearrange while the bubble
structure stays relatively unchanged. The flow of liquid relative to the bubbles is called
drainage. Generally, drainage is driven by gravity and/or capillary (surface tension) forces
and is resisted by viscous forces [30]. Because of their limited time stability and despite the
numerous studies reported in the literature, many of their properties are still not well under-
stood, in particular the drainage of the liquid in between the bubbles under the influence
of gravity [41, 42]. Drainage plays an important role in foam stability. Indeed, when foam
dries, its structure becomes more fragile; the liquid films between adjacent bubbles being
thinner, then can break, leading to foam collapse. In the case of aqueous foams, surfactant is
added into water, and it adsorbs at the surface of the films, protecting them against rupture
[43]. Most of the basic rules that explain the stability of liquid gas foams were introduced
over 100 years ago by the Belgian Joseph Plateau who was blind before he completed his
important book on the subject. This modern-day book by Weaire and Hutzler provides
valuable summaries of plateaus work on the laws of equilibrium of soap films, and it is
especially useful since the original 1873 French text does not appear to be in a fully translated
English version. Weaire and Hutzler note that Sir W. Thompson (Lord Kelvin)was simulated
by Plateau’s book to examine the optimum packing of free space by regular geometrical cells.
His solution to the problem remained the best until quite recently. Why does this area of
theoretical research, still active today, have connections with the apparently frivolous theme
of bubbles? It is because the packing of free space involves the minimization of the surface
energy of the structure (i.e., least amount of boundary material). Thus, one might ask why
such an often-observed medium as a foam has not provided the optimum solution to this
problemmuch earlier; perhaps, this shows that observation is often biased towards what one
expects to see, rather than to the unexpected. Also, in nature, there are packing problems,
such as the bees’ honeycomb. Its shaped ends provide a nice example of Plateau’s rules in a
natural environment [32]. Recent theoretical studies by Verbist and Weaire describe the main
features of both free drainage [44, 45], where liquid drains out of a foam due to gravity, and
forced drainage [46], where liquid is introduced to the top of a column of foam. In the latter
case, a solitary wave of constant velocity is generated when liquid is added at a constant rate
[47]. Forced foam drainage may well be the best prototype for certain general phenomena
described by nonlinear differential equations, particularly the type of solitary wave which
is most familiar in tidal bores. The model developed by Verbist and Weaire idealizes the
network of Plateau borders, through which the majority of liquid is assumed to drain, as a
set of N identical pipes of cross section A, which is a function of position and time [48]

∂A

∂t
+

∂

∂x

(
A2 −

√
A

2
∂A

∂x

)
= 0, (1.1)

where x and t are scaled position and time coordinates, respectively. In the case of forced
drainage, the solution can be expressed as [48]

A(x, t) =

⎧⎨
⎩
c tanh2(√c(x − ct)

)
x ≤ ct,

0 x ≤ ct,
(1.2)

where c is the velocity of the wave front [46].
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The pursuit of analytical solutions for foam drainage equation is of intrinsic scientific
interest. To the best of the authors’ knowledge, there is no paper that has solved the nonlinear
foam drainage equation by HPM. In this paper, the basic idea of HPM is described, and then,
it is applied to study the following nonlinear foam drainage equation [49]. Finally, the results
of HPM as an analytical solution are then compared with those derived from Adomian’s
decomposition method [49] and the variational iteration method [50].

2. Basic Idea of Homotopy Perturbation Method

To explain this method, let us consider the following function:

A(u) − f(r) = 0, r ∈ Ω, (2.1)

with the boundary conditions of

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (2.2)

where A is a general differential operator f(r) is a known analytic function, B is a boundary
operator, and Γ is the boundary of the domain Ω. The operator A can be generally divided
into two operators, L and N, where L is a linear and N a nonlinear operator. Equation (2.1)
can be, therefore, written as follows:

L(u) +N(u) − f(r) = 0. (2.3)

Using the homotopy technique, we constructed a homotopy v(r, p) : Ω × [0, 1] → R, which
satisfies

H
(
v, p
)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
A(v) − f(r)

]
= 0, (2.4)

or

H
(
v, p
)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0, (2.5)

where p ∈ [0, 1] is called homotopy parameter and u0 is an initial approximation for the
solution of (2.1), which satisfies the boundary conditions. Obviously, from (2.4) or (2.5), we
will have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0.
(2.6)

We can assume that the solution of (2.4) or (2.5) can be expressed as a series in p as follows:

v = v0 + pv1 + p2v2 + · · · . (2.7)
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Figure 2: The solution of (1.1) at c = 1 (a) HPM (b) Exact.

Setting p = 1 results in the approximate solution of (2.1)

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (2.8)

3. Implementation of HPM

In this section, we obtain an analytical solution of (1.1). We first use the transformation

A(x, t) = u2(x, t), (3.1)
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Figure 3: The solution of (1.1) at c = 2 (a) HPM (b) Exact.

to convert (1.1) to

ut + 2u2ux − (ux)2 − 1
2
uxxu = 0, (3.2)

with initial condition

u(x, 0) = −√c tanh
(√

cx
)
. (3.3)
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Figure 4: The solution of (1.1) at c = 3 (a) HPM (b) Exact.

To solve (3.2) with the initial condition (3.3), according to the homotopy perturbation
method, we construct the following He’s polynomials corresponding to (2.5):

L(v) = vt,

N(v) = 2v2vx − (vx)2 − 1
2
vxxv,

H
(
v, p
)
= vt − u0t + pu0t + p

[
2v2vx − (vx)2 − 1

2
vxxv

]
.

(3.4)
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Figure 5: The absolute error of HPM at t = 0.01 (a) c = 1 (b) c = 2.

Substituting v = v0 + pv1 + p2v2 + · · · into (3.2) and rearranging the resultant equation based
on powers of p-terms, one has

p0 : v0t − u0t = 0,

p1 : v1t + u0t +
[
2v2

0v0x − (v0x)2 − 1
2
v0xxv0

]
= 0,

p2 : v2t + 4v0v1v0x + 2v2
0v1x − 2v0xv1x − 1

2
v0xxv1 − 1

2
v1xxv0 = 0,

(3.5)

with the following conditions:

v0(x, 0) = −√c tanh
(√

cx
)
, (3.6)

vi(x, 0) = 0 for i = 1, 2, . . . . (3.7)
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With the effective initial approximation for v0 from the condition (3.6), the solutions of (3.5)
are obtained as follows:

v0(x, t) = −√c tanh
(√

cx
)
,

v1(x, t) =
2c2t

cosh
(
2
√
cx
)2 ,

v2(x, t) =
c7/2t2 sinh

(√
cx
)

cosh
(√

cx
)3 .

(3.8)

In the same manner, the rest of components were obtained using the Maple package. Accord-
ing to the HPM, we can conclude that

u(x, t) = v0(x, t) + v1(x, t) + v2(x, t). (3.9)

Therefore, we will have

u(x, t) = −√c tanh
(√

cx
)
+

2c2t

cosh
(
2
√
cx
)2 +

c7/2t2 sinh
(√

cx
)

cosh
(√

cx
)3 . (3.10)

By substituting (3.10) into (3.1), we can find the solution of (1.1).
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Table 1: Comparison between absolute errors of ADM, VIM, and HPM for t = 0.001, c = 3.

x Aexact-AADM [49] Aexact-AVIM [50] Aexact-AHPM

−10 4.44089E − 16 0 0
−8 2.24265E − 13 0 2.4E − 18
−6 2.29754E − 10 0 2.1059E − 15
−4 2.34498E − 7 0 2.14918E − 12
−2 0.000236656 0 2.17229E − 9
−1 0.00523834 0 5.10302E − 8
0 5.2479E − 8 0 1.45797E − 9

Table 2: Comparison between absolute errors of ADM, VIM, and HPM for t = 0.01, c = 3.

x Aexact- AADM [49] Aexact-AVIM [50] Aexact-AHPM

−10 1.77636E − 15 0 2.00000E − 18
−8 1.86962E − 12 0 2.01600E − 15
−6 1.9087E − 9 0 2.05744E − 12
−4 1.94811E − 6 6E − 08 2.09993E − 9
−2 0.00197296 6.0881E − 05 0.000002123
−1 0.0485679 — 0.000050433
0 0.00051592 8.08544E − 3 0.000014557

4. Results and Discussion

In this section, we present the results with HPM to show the efficiency of the method,
described in the previous section for solving (1.1). By Figures 2, 3, and 4, we may simply
compare the HPM solution and exact solution of (1.1) for c = 1, respectively. It is easy to
verify the accuracy of the obtained results if we graphically compare HPM solutions with the
exact ones. The absolute error of HPM is drawn in Figure 5 at t = 0.01. It can be seen from this
figure that the absolute error is very small and the mentioned method is very accurate. The
effect of velocity of the wave, c, is demonstrated in Figure 6.

It is important to see the difference between the results obtained byADM [49] andVIM
[50] and the results which are obtained by the analytic solution using by the HPM. These can
be seen by comparing Tables 1, 2, and 3. The results which are obtained by the HPM and
the exact solutions are quite similar. It is shown the accuracy of the HPM. The solution of
the HPM is more accurate than the ADM. While using HPM, the difficulty of calculating
Adomian’s polynomials does not occur. Another benefit of using the HPM is that the time
consumption of the numerical calculation is less than the time consumption of ADM.

5. Conclusion

In this work, He’s homotopy perturbation method has been successfully utilized to derive
approximate explicit analytical solution for the nonlinear foam drainage equation. The results
show that this perturbation scheme provides excellent approximations to the solution of this
nonlinear equation with high accuracy and avoids linearization and physically unrealistic
assumptions. This new method is extremely simple, easy to apply, needs less computation,
and accelerates the convergence to the solutions. The results obtained here are compared
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Table 3: Comparison between absolute errors of ADM, VIM, and HPM for t = 0.1, c = 3.

x Aexact-AADM [49] Aexact-AVIM [50] Aexact-AHPM

−10 1.42109E − 14 0 1.59300E − 15
−8 1.40941E − 11 0 1.62593E − 12
−6 1.43842E − 8 5E − 09 1.65952E − 9
−4 0.0000146727 4.527E − 06 1.69379E − 6
−2 0.0064218 4.59239E − 03 0.001716375
−1 0.094494 — 0.043767689
0 3.71367 6.8374E − 01 0.126259125

with results of exact solution. The current work illustrates that the HPM is indeed a powerful
analytical technique for most types of nonlinear problems and several such problems in
scientific studies and engineering may be solved by this method.
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