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Let F be a distribution in D′ and let f be a locally summable function. The composition F(f(x))
of F and f is said to exist and be equal to the distribution h(x) if the limit of the sequence
{Fn(f(x))} is equal to h(x), where Fn(x) = F(x) ∗ δn(x) for n = 1, 2, . . . and {δn(x)} is a certain
regular sequence converging to the Dirac delta function. It is proved that the neutrix composition
δ(rs−1)((tanhx+)

1/r) exists and δ(rs−1)((tanhx+)
1/r) =

∑s−1
k=0

∑Kk

i=0((−1)kcs−2i−1,k(rs)!/2sk!)δ(k)(x) for
r, s = 1, 2, . . ., where Kk is the integer part of (s − k − 1)/2 and the constants cj,k are defined by the

expansion (tanh−1x)k = {∑∞
i=0 (x

2i+1/(2i + 1))}k =
∑∞

j=k cj,kx
j , for k = 0, 1, 2, . . . . Further results are

also proved.

1. Introduction

In the following, we let D be the space of infinitely differentiable functions ϕ with compact
support and let D[a, b] be the space of infinitely differentiable functions with support
contained in the interval [a, b]. A distribution is a continuous linear functional defined on
D. The set of all distributions defined on D is denoted by D′ and the set of all distributions
defined on D[a, b] is denoted by D′[a, b].

Now let ρ(x) be a function in D[−1, 1] having the following properties:

(i) ρ(x) ≥ 0,

(ii) ρ(x) = ρ(−x),
(iii)

∫1
−1 ρ(x)dx = 1.
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Putting δn(x) = nρ(nx) for n = 1, 2, . . ., it follows that {δn(x)} is a regular sequence of
infinitely differentiable functions converging to the Dirac delta-function δ(x). Further, if F
is an arbitrary distribution in D′ and Fn(x) = F(x) ∗ δn(x) = 〈F(x − t), ϕ(t)〉, then {Fn(x)} is a
regular sequence converging to F(x).

Since the theory of distributions is a linear theory, we can extend some operations
which are valid for ordinary functions to space of distributions; such operations may be
called regular operations, and among them are addition andmultiplication by scalars, see [1].
Other operations can be defined only for particular class of distributions; these may be called
irregular, and among them are multiplication of distributions, see [2], and composition [3, 4],
convolution products, see [5–7], further in [8], where some singular integrals were defined
as distributions. Note that it is a difficult task to give a meaning to the expression F(f(x)), if
F and f are singular distributions.

Thus there have been several attempts recently to define distributions of the form
F(f(x)) in D′, where F and f are distributions in D′, see for example [9–12]. In the following,
we are going to consider an alternative approach. As a starting point, we look at the following
definition which is a generalization of Gel’fand and Shilov’s definition of the composition
involving the delta function [13], and was given in [10].

Definition 1.1. Let F be a distribution in D′ and let f be a locally summable function. We say
that the neutrix composition F(f(x)) exists and is equal to h on the open interval (a, b), with
−∞ < a < b <∞, if

N − lim
n→∞

∫∞

−∞
Fn

(
f(x)

)
ϕ(x)dx =

〈
h(x), ϕ(x)

〉
, (1.1)

for all ϕ in D[a, b], where Fn(x) = F(x) ∗ δn(x) for n = 1, 2, . . . and N is the neutrix, see
[14], having domainN ′ the positive integers and rangeN ′′ the real numbers, with negligible
functions which are finite linear sums of the functions

nλlnr−1n, lnrn: λ > 0, r = 1, 2, . . . (1.2)

and all functions which converge to zero in the usual sense as n tends to infinity.

In particular, we say that the composition F(f(x)) exists and is equal to h on the open
interval (a, b) if

lim
n→∞

∫∞

−∞
Fn

(
f(x)

)
ϕ(x)dx =

〈
h(x), ϕ(x)

〉
, (1.3)

for all ϕ in D[a, b].
Note that taking the neutrix limit of a function f(n) is equivalent to taking the usual

limit of Hadamard’s finite part of f(n). If f, g are two distributions then in the ordinary
sense the composition f(g) does not necessarily exist. Thus the definition of the neutrix
composition of distributions was originally given in [10] but was then simply called the
composition of distributions.

We also note that, Ng and van Dam applied the neutrix calculus, in conjunction
with the Hadamard integral, developed by van der Corput, to the quantum field theories,
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in particular, to obtain finite results for the coefficients in the perturbation series. They also
applied neutrix calculus to quantum field theory, and obtained finite renormalization in the
loop calculations, see [15, 16].

The following two theorems involving derivatives of the Dirac-delta function were
proved in [17] and [12], respectively.

Theorem 1.2. The neutrix composition δ(s)(sgnx|x|λ) exists and

δ(s)
(
sgnx|x|λ

)
= 0, (1.4)

for s = 0, 1, 2, . . . and (s + 1)λ = 1, 3, . . . and

δ(s)
(
sgnx|x|λ

)
=

(−1)(s+1)(λ+1)s!
λ[(s + 1)λ − 1]!

δ((s+1)λ−1)(x), (1.5)

for s = 0, 1, 2, . . . and (s + 1)λ = 2, 4, . . ..

Theorem 1.3. The compositions δ(2s−1)(sgnx|x|1/s) and δ(s−1)(|x|1/s) exist and

δ(2s−1)
(
sgnx|x|1/s

)
=

1
2
(2s)!δ′(x),

δ(s−1)
(
|x|1/s

)
= (−1)s−1δ(x),

(1.6)

for s = 1, 2, . . ..

The following two theorems were also proved in [18].

Theorem 1.4. The neutrix composition δ(s)(lnr(1 + |x|)) exists and

δ(s)
(
lnr(1 + |x|)) =

sr+r−1∑

k=0

k∑

i=0

(
k

i

)(−1)s−i
[
1 + (−1)k

]
s!(i + 1)rs+r−1

2r(rs + r − 1)!k!
δ(k)(x), (1.7)

for s = 0, 1, 2, . . . and r = 1, 2, . . ..
In particular, the composition δ(ln(1 + |x|)) exists and

δ(ln[1 + |x|)) = δ(x). (1.8)

Theorem 1.5. The neutrix composition δ(s)(ln(1 + |x|1/r)) exists and

δ(s)
(
ln
(
1 + |x|1/r

))
=

m−1∑

k=0

kr+r−1∑

i=0

(
kr + r − 1

i

) (−1)r+s+i−1
[
1 + (−1)k

]
r(i + 1)s

2k!
δ(k)(x), (1.9)

for s = 0, 1, 2, . . . and r = 2, 3, . . ., where m is the smallest nonnegative integer greater than
(s − r + 1)r−1.
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In particular, the composition δ(s)(ln(1 + |x|1/r)) exists and

δ(s)
(
ln
(
1 + |x|1/r

))
= 0, (1.10)

for s = 0, 1, 2, . . . , r − 2 and r = 2, 3, . . . and

δ(r−1)
(
ln
(
1 + |x|1/r

))
= (−1)r−1r!δ(x), (1.11)

for r = 2, 3, . . ..

The following two theorems were proved in [4].

Theorem 1.6. The neutrix composition δ(s)((sinh−1x+)
r
) exists and

δ(s)
((

sinh−1x+
)r)

=
sr+r−1∑

k=0

k∑

i=0

(
k

i

)
(−1)krcs,k,i

2k+1k!
δ(k)(x), (1.12)

for s = 0, 1, 2, . . . and r = 1, 2, . . ., where

cr,s,k,i =
(−1)ss!

[
(k − 2i + 1)rs+r−1 + (k − 2i − 1)rs+r−1

]

2(rs + r − 1)!
. (1.13)

In particular, the neutrix composition δ(sinh−1x+) exists and

δ
(
sinh−1x+

)
=

1
2
δ(x). (1.14)

Theorem 1.7. The neutrix composition δ(2s−1)(sinh−1(sgnx · x2)) exists and

δ(2s−1)
(
sinh−1

(
sgnx · x2

))
=

2s−1∑

k=0

i+k+1∑

i=0

(
k

i

)
(−1)kbs,k,i

2k+1(2k + 1)!
δ(k)(x), (1.15)

for s = 1, 2, . . ., where

bs,k,i = (k − 2i + 1)2s−1 + (k − 2i − 1)2s−1. (1.16)

In particular

δ′
(
sinh−1

(
sgnx · x2

))
=
δ′(x)
4.3!

− 2δ(x). (1.17)



Journal of Applied Mathematics 5

2. Main Result

In the next theorem, the constants cj,k are defined by the expansion

(
tanh−1x

)k
=

{ ∞∑

i=0

x2i+1

2i + 1

}k

=
∞∑

j=k

cj,kx
j , (2.1)

for k = 0, 1, 2, . . ..

Theorem 2.1. The neutrix composition δ(rs−1)((tanhx+)
1/r) exists and

δ(rs−1)
(
(tanhx+)

1/r
)
=

s−1∑

k=0

Kk∑

i=0

(−1)kcs−2i−1,k(rs)!
2sk!

δ(k)(x), (2.2)

for r, s = 1, 2, . . ., where Kk is the integer part of (s − k − 1)/2.
In particular, the neutrix compositions δ(r−1)((tanhx+)

1/r) and δ(2r−1)((tanhx+)
1/r) exist

and

δ(r−1)
(
(tanhx+)

1/r
)
=

(−1)r−1r!
2

δ(x), (2.3)

δ(2r−1)
(
(tanhx+)

1/r
)
=

(2r)!
4

[
δ(x) − δ′(x)], (2.4)

for r = 1, 2, . . ..

Proof. To prove (2.2), first of all we evaluate

∫1

−1
δ
(rs−1)
n

[
(tanhx+)

1/r
]
xkdx. (2.5)

We have
∫1

−1
δ
(rs−1)
n

[
(tanhx+)

1/r
]
xkdx = nrs

∫1

−1
ρ(rs−1)

[
n(tanhx+)

1/r
]
xkdx

= nrs
∫1

0
ρ(rs−1)

[
n(tanhx)1/r

]
xkdx

+ nrs
∫0

−1
ρ(rs−1)(0)xkdx

= I1,k + I2,k.

(2.6)

It is obvious that

N − lim
n→∞

I2,k =N − lim
n→∞

∫0

−1
δ
(rs−1)
n

[
(tanhx+)

1/r
]
xkdx = 0, (2.7)

for k = 0, 1, 2, . . ..
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Making the substitution t = n(tanhx)1/r , we have for large enough n

I1,k = rnrs−r
∫1

0
tr−1

[

tanh−1
(
t

n

)r]k
[

1 −
(
t

n

)2r
]−1

ρ(rs−1)(t)dt

= r
∞∑

i=0

∞∑

j=k

∫1

0

cj,kt
rj+2ri+r−1

nrj+2ri+r−rs
ρ(rs−1)(t)dt.

(2.8)

It follows that

N − lim
n→∞

I1,k =N − lim
n→∞

nrs
∫1

0
ρ(rs−1)

[
n(tanhx)1/r

]
xkdx

= r
k0∑

i=0

∫1

0
cs−2i−1,ktrs−1ρ(rs−1)(t)dt

(2.9)

=
k0∑

i=0

(−1)rs−1rcs−2i−1,k(rs − 1)!
2

, (2.10)

for k = 0, 1, 2, . . . , s − 1, where k0 denotes the integer part of (s − k − 1)/2 for k = 0, 1, 2, . . ..
In particular, when s = 1, we have k = 0 = k0. It follows from (2.9) that

I1,0 = r
∫1

0
c0,0t

2ri+r−1ρ(r−1)(t)dt, (2.11)

and so ordinary limit exists

lim
n→∞

I1,0 = r
∫1

0
tr−1ρ(r−1)(t)dt =

(−1)r−1r!
2

, (2.12)

for r = 1, 2, . . ., since c0,0 = 1.
Further, when s = 2, we have k = 0, 1 and k0 = 0. It follows from (2.10) that

N − lim
n→∞

I1,0 =
rc1,0(2r − 1)!

2
=

(2r)!
4

,

N − lim
n→∞

I1,1 =
rc1,1(2r − 1)!

2
=

(2r)!
4

,

(2.13)

for r = 1, 2, . . ., since c1,0 = 0, and c1,1 = 1.
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When k = s, we have

|I1,s| = rnrs−r
∫1

0

∣
∣
∣
∣
∣
∣
tr−1

[

tanh−1
(
t

n

)r]s
[

1 −
(
t

n

)2r
]−1

ρ(rs−1)(t)

∣
∣
∣
∣
∣
∣
dt

≤ rnrs−r
∫1

0

∣
∣
∣
∣
∣
∣

[

tanh−1
(
1
n

)r]s
[

1 −
(
t

n

)2r
]−1

ρ(rs−1)(t)

∣
∣
∣
∣
∣
∣
dt

= rnrs−r
∫1

0

∣
∣
∣
[
n−rs +O

(
n−rs−2r

)]
ρ(rs−1)(t)

∣
∣
∣dt

= O
(
n−r

)
.

(2.14)

Thus, if ψ is an arbitrary continuous function, then

lim
n→∞

∫1

0
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

xsψ(x)dx = 0. (2.15)

We also have

∫0

−1
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

ψ(x)dx = nrs
∫0

−1
ρ(rs−1)(0)ψ(x)dx, (2.16)

and it follows that

N − lim
n→∞

∫0

−1
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

ψ(x)dx = 0. (2.17)

If now ϕ is an arbitrary function in D[−1, 1], then by Taylor’s Theorem, we have

ϕ(x) =
s−1∑

k=0

ϕ(k)(0)
k!

xk +
xs

s!
ϕ(s)(ξx), (2.18)

where 0 < ξ < 1, and so

N − lim
n→∞

〈

δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

, ϕ(x)
〉

=N − lim
n→∞

s−1∑

k=0

ϕ(k)(0)
k!

∫1

0
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

xkdx

+N − lim
n→∞

s−1∑

k=0

ϕ(k)(0)
k!

∫0

−1
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

xkdx

+ lim
n→∞

1
s!

∫1

0
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

xsϕ(s)(ξx)dx
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+N − lim
n→∞

1
s!

∫0

−1
δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

xsϕ(s)(ξx)dx

=
s−1∑

k=0

k0∑

i=0

rcs−2i−1,k(rs − 1)!
2

ϕ(k)(0)
k!

+ 0

=
s−1∑

k=0

k0∑

i=0

cs−2i−1,k(rs)!
2s

(−1)k
k!

〈
δ(k)(x), ϕ(x)

〉
,

(2.19)

on using (2.6), (2.7), (2.10), (2.15), and (2.17). This proves (2.2) on the interval (−1, 1).
It is also clear that δ(rs−1)((tanh−1x+)

1/r
) = 0 for x > 0 and so (2.2) holds for x > −1.

Now suppose that ϕ is an arbitrary function in D[a, b], where a < b < 0. Then

∫b

a

δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

ϕ(x)dx = nrs
∫b

a

ρ(rs−1)(0)ϕ(x)dx, (2.20)

and so

N − lim
n→∞

∫b

a

δ
(rs−1)
n

[(
tanh−1x+

)1/r
]

ϕ(x)dx = 0. (2.21)

It follows that δ(rs−1)((tanh−1x+)
1/r

) = 0 on the interval (a, b). Since a and b are arbitrary, we
see that (2.2) holds on the real line.

Equations (2.3) and (2.4) are just particular cases of (2.2). Equation (2.3) follows on
using (2.12) and (2.4) follows on using (2.13). This completes the proof of the theorem.

Corollary 2.2. The neutrix composition δ(rs−1)((tanh |x|)1/r) exists and

δ(rs−1)
(
(tanh |x|)1/r

)
=

s−1∑

k=0

Kk∑

i=0

[
1 + (−1)k

]
rcs−2i−1,k(rs − 1)!

2k!
δ(k)(x), (2.22)

for r, s = 1, 2, . . ., where Kk is the integer part of (s − k − 1)/2.
In particular, the composition δ(r−1)((tanh |x|)1/r) exists and the neutrix composition

δ(2r−1)((tanh |x|)1/r) exists and

δ(r−1)
(
(tanh |x|)1/r

)
= (−1)r−1r!δ(x),

δ(2r−1)
(
(tanh |x|)1/r

)
=

(2r)!
2

δ(x),
(2.23)

for r = 1, 2, . . ..
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Proof. To prove (2.22), we note that

∫1

−1
δ
(rs−1)
n

[(
tanh−1|x|

)1/r
]

xkdx = nrs
∫1

−1
ρ(rs−1)

[(
n tanh−1|x|

)1/r
]

xkdx

= nrs
[
1 + (−1)k

] ∫1

0
ρ(s)

[

n
(
tanh−1x

)1/r
]

xkdx,

(2.24)

and (2.22) now follow as above. Further, (2.23) are particular cases of (2.22) and so follows
immediately. Note that in the particular case s = 1, the ordinary limit exists in (2.12) and
so the composition δ(r−1)((tanh |x|)1/r) exists in this case. This completes the proof of the
corollary.

In the next theorem, the constants bj,k are defined by the following expansion

tanhkx =
∞∑

j=k

bj,kx
j , (2.25)

for k = 0, 1, 2, . . ..

Theorem 2.3. The neutrix composition δ(s)(tanh−1x1/r
+ ) exists and

δ(s)
(
tanh−1x1/r

+

)
=

K−1∑

k=0

(−1)s+kbs+1,kr+r(s + 1)!
2k!

δ(k)(x), (2.26)

for s = 0, 1, 2, . . . and r = 1, 2, . . ., where K is the smallest integer for which s < Kr + r − 1.

Proof. To prove (2.26), first of all we evaluate

∫1

−1
δ
(s)
n

(
tanh−1x1/r

+

)
xkdx. (2.27)

We have

∫1

−1
δ
(s)
n

(
tanh−1x1/r

+

)
xkdx = ns+1

∫1

−1
ρ(s)

(
n tanh−1x1/r

+

)
xkdx

= ns+1
∫1

0
ρ(s)

(
n tanh−1x1/r

)
xkdx + ns+1

∫0

−1
ρ(s)(0)xkdx

= J1,k + J2,k.

(2.28)

It is obvious that

N − lim
n→∞

J2,k =N − lim
n→∞

∫0

−1
δ
(s)
n

(
tanh−1x1/r

+

)
xkdx = 0. (2.29)
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Making the substitution t = n(tanh−1x1/r), we have for large enough n

J1,k = rns
∫1

0
tanhkr+r−1

(
t

n

)

sech2
(
t

n

)

ρ(s)(t)dt

=
ns+1

k + 1

∫1

0
ρ(s)(t)d tanhkr+r

(
t

n

)

= − ns+1

k + 1

∫1

0
tanhkr+r

(
t

n

)

ρ(s+1)(t)dt

= − 1
k + 1

∞∑

j=kr+r

ns−j+1
∫1

0
bj,kr+r t

jρ(s+1)(t)dt,

(2.30)

and it follows that

N − lim
n→∞

J1,k =N − lim
n→∞

rns
∫1

0
tanhkr+r−1

(
t

n

)

sech2
(
t

n

)

ρ(s)(t)dt

= −bs+1,kr+r
k + 1

∫1

0
ts+1ρ(s+1)(t)dt

=
(−1)sbs+1,kr+r(s + 1)!

2(k + 1)
.

(2.31)

In particular, when s = 0 and r = 1, we have K = 1 and then

lim
n→∞

J1,0 =
b1,1
2

=
1
2
. (2.32)

When k = K, we have

|J1,k| ≤ 1
K + 1

∞∑

j=Kr+r

ns−j+1
∫1

0

∣
∣
∣bj,Kr+r t

jρ(s+1)(t)dt
∣
∣
∣

= O
(
ns−Kr−r+1

)
.

(2.33)

Thus, if ψ is an arbitrary continuous function, then
∫1

0
δ
(s)
n

(
tanh−1x1/r

+

)
xKψ(x)dx = O

(
ns−Kr−r+1

)
, (2.34)

and so

lim
n→∞

∫1

0
δ
(s)
n

(
tanh−1x1/r

+

)
xKψ(x)dx = lim

n→∞
rns

∫1

0
tanhKr+r−1

(
t

n

)

sech2
(
t

n

)

ρ(s)(t)ψ(t)dt = 0,

(2.35)

since s −Kr − r + 1 < 0.
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We also have

∫0

−1
δ
(s)
n

(
tanh−1x1/r

+

)
ψ(x)dx = ns+1

∫0

−1
ρ(s)(0)ψ(x)dx, (2.36)

and it follows that

N − lim
n→∞

∫0

−1
δ
(s)
n

(
tanh−1x1/r

+

)
ψ(x)dx = 0. (2.37)

If now ϕ is an arbitrary function in D[−1, 1], then by Taylor’s Theorem, we have

ϕ(x) =
K−1∑

k=0

ϕ(k)(0)
k!

xk +
xK

K!
ϕ(K)(ξx), (2.38)

where 0 < ξ < 1, and so

N − lim
n→∞

〈
δ
(s)
n

(
tanh−1x1/r

+

)
, ϕ(x)

〉

=N − lim
n→∞

K−1∑

k=0

ϕ(k)(0)
k!

∫1

0
δ
(s)
n

(
tanh−1x1/r

+

)
xkdx

+N − lim
n→∞

K−1∑

k=0

ϕ(k)(0)
k!

∫0

−1
δ
(s)
n

[(
tanh−1x+

)1/r
]

xkdx

+ lim
n→∞

1
K!

∫1

0
δ
(s)
n

(
tanh−1x1/r

+

)
xKϕ(K)(ξx)dx

+N − lim
n→∞

1
K!

∫0

−1
δ
(s)
n

(
tanh−1x1/r

+

)
xKϕ(K)(ξx)dx

=
K−1∑

k=0

(−1)sbs+1,kr+r(s + 1)!ϕ(k)(0)
2k!

+ 0

=
K−1∑

k=0

(−1)s+kbs+1,kr+r(s + 1)!
2k!

〈
δ(k)(x), ϕ(x)

〉
,

(2.39)

on using (2.9) and (2.12). This proves (2.26) on the interval (−1, 1). It is clear that
δ(s)(tanh−1x1/r

+ ) = 0 for x > 0 and so (2.2) holds for x > −1.
Now suppose that ϕ is an arbitrary function in [a, b], where a < b < 0. Then

∫b

a

δ
(s)
n

(
tanh−1x1/r

+

)
ϕ(x)dx = ns+1

∫b

a

ρ(s)(0)ϕ(x)dx, (2.40)
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and so

N − lim
n→∞

∫b

a

δ
(s)
n

(
tanh−1x1/r

+

)
ϕ(x)dx = 0. (2.41)

It follows that δ(s)(tanh−1x1/r
+ ) = 0 on the interval (a, b). Since a and b are arbitrary, we see

that (2.26) holds on the real line.

Corollary 2.4. The neutrix composition δ(s)(tanh−1|x|1/r) exists and

δ(s)
(
tanh−1|x|1/r

)
=

K−1∑

k=0

[
(−1)s+k + (−1)s

]
bs+1,kr+r(s + 1)!

2k!
δ(k)(x), (2.42)

for s = 0, 1, 2, . . . and r = 1, 2, . . ., where K is the smallest integer for which s < Kr + r − 1. In
particular, the composition δ(tanh−1|x|) exists and

δ
(
tanh−1|x|

)
= δ(x). (2.43)

Proof. To prove (2.42), we note that

∫1

−1
δ
(s)
n

[(
tanh−1|x|

)1/r
]

xkdx = ns+1
∫1

−1
ρ(s)

[(
n tanh−1|x|

)1/r
]

xkdx

= ns+1
[
(−1)s+k + (−1)s

] ∫1

0
ρ(s)

[

n
(
tanh−1x

)1/r
]

xkdx,

(2.44)

and (2.42) now follows as above. Equation (2.43) is a particular case of (2.42) and so follows
immediately. Note that in the particular case s = 0 and r = 1, the ordinary limit exists in
(2.12), and so the composition δ(tanh |x|) exists in this case. For some related results on the
neutrix composition of distributions, see [19–22].
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[3] B. Fisher and A. Kılıçman, “On the composition and neutrix composition of the delta function and
powers of the inverse hyperbolic sine function,” Integral Transforms and Special Functions, vol. 21, no.
12, pp. 935–944, 2010.
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[18] B. Fisher, T. Kraiweeradechachai, and E. Özçağ, “Results on the neutrix composition of the delta

function,” Hacettepe Journal of Mathematics and Statistics, vol. 36, no. 2, pp. 147–156, 2007.
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