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We also introduce forward curvature of a curve and give some formulas to calculate forward
curvature of a curve on time scales which may be an arbitrary closed subsets of the set of all real
numbers. We also introduce the length of a curve parametrized by a time scale parameter in R

3.

1. Introduction

The study of dynamic equations on time scales is an area of mathematics that recently has
received a lot of attention. The calculus on time scales has been introduced in order to unify
the theories of continuous and discrete processes and in order to extend those theories to a
more general class of so-called dynamic equations.

In recent years there have been a few research activities concerning the application of
differential geometry on time scales. In [1] Guseinov and Ozyılmaz have defined the notions
of forward tangent line, Δ-regular curve, and natural Δ-parametrization. Furthermore, in
[2] Bohner and Guseinov, have introduced the concept of a curve parametrized by a time
scale parameter and they have given integral formulas for computation of its length in plane.
They have established a version of the classical Green formula suitable to time scales. In [3]
Ozyılmaz has introduced the directional derivative according to the vector fields.

The general idea of this paper is to study forward curvature of curves where in the
parametric equations the parameter varies in a time scale. We present the “differential” part
of classical differential geometry on time scale calculus. The new results generalize the well
known formulas stated in classical differential geometry. We illustrate our results by applying
them to various kinds of time scales.
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2. Basic Definitions

A time scale T is an arbitrary nonempty closed subset of the real numbers R. The time scale
T is a complete metric space with the usual metric. We assume throughout that a time scale
T has the topology that it inherits from the real numbers with the standard topology.

For t ∈ T we define the forward jump operator σ : T → T by

σ(t) := inf{s ∈ T : s > t}, (2.1)

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}. (2.2)

If σ(t) > t, we say that t is right-scattered, while, if ρ(t) < t, we say that t is left-scattered.
Also, if σ(t) = t, then t is called right-dense, and, if ρ(t) = t, then t is called left-dense. The
graininess function μ : T → [0,∞) is defined by

μ(t) := σ(t) − t. (2.3)

We introduce the set T
κ which is derived from the time scale T as follows. If T has

left-scattered maximum m, then T
κ = T − {m}, otherwise T

κ = T. For a, b ∈ T with a ≤ b we
define the interval [a, b] in T by

[a, b] = {t ∈ T : a ≤ t ≤ b}. (2.4)

We will let [a, b]κ denote [a, ρ(b)] if b is left-scattered and [a, b] if b is left-dense.

Definition 2.1 (see [4]). Assume that f : T → R is a function, and let t ∈ T
κ. Then we define

fΔ(t) to be the number (provided it exists) with the property that, given any ε > 0, there is a
neighborhood U of t such that

∣
∣
∣f(σ(t)) − f(s) − fΔ(t)[σ(t) − s]

∣
∣
∣ ≤ ε|σ(t) − s|, ∀ s ∈ U. (2.5)

We call fΔ(t) the delta (orHilger) derivative of f at t. Moreover, we say that f is delta (orHilger)
differentiable on T

κ provided fΔ(t) exists for all t ∈ T
κ.

Theorem 2.2 (see [4]). For f : T → R and t ∈ T
κ the following hold.

(i) If f is Δ-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is Δ-differentiable at t and

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t
(2.6)
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(iii) If t is right-dense, then f is Δ-differentiable at t if and only if the limit

lim
s→ t

f(t) − f(s)
t − s

(2.7)

exists as a finite number. In this case fΔ(t) is equal to this limit.

(iv) If f is Δ-differentiable at t, then

f(σ(t)) = f(t) + μ(t)fΔ(t). (2.8)

Theorem 2.3 (see [4]). If f, g is Δ-differentiable at t ∈ T
κ, then

(i) f + g is Δ-differentiable at t and

(

f + g
)Δ(t) = fΔ(t) + gΔ(t). (2.9)

(ii) For any constant c, cf is Δ-differentiable at t and

(

cf
)Δ(t) = cfΔ(t). (2.10)

(iii) fg is Δ-differentiable at t and

(

fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)). (2.11)

(iv) If g(t)g(σ(t))/= 0, then f/g is Δ-differentiable at t and

(
f

g

)Δ

(t) =
fΔ(t)g(t) − gΔ(t)f(t)

g(t)g(σ(t))
. (2.12)

Theorem 2.4 (chain rule [4]). Assume that ν : T → R is strictly increasing and T̃ := ν(T) is a
time scale. Let w : T̃ → R. If νΔ(t) and wΔ̃(ν(t)) exists for t ∈ T

κ, then

(w ◦ ν)Δ =
(

wΔ̃ ◦ ν
)

νΔ, (2.13)

where one denotes the derivative on T̃ by Δ̃.
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Theorem 2.5 (derivative of the inverse [4]). Assume that ν : T → R is strictly increasing and
T̃ := ν(T) is a time scale. Then

1
νΔ

=
(

ν−1
)Δ̃

◦ ν (2.14)

at points where νΔ is different from zero.

Definition 2.6 (see [4]). A function f : T → R is called rd-continuous provided it is continuous
at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T.

Definition 2.7 (see [1]). A Δ-regular curve (or an arc of a Δ-regular curve) γ is defined as a
mapping γ : [a, b] ⊂ T → R

3 that is Δ-differentiable on [a, b]κ with rd-continuous Δ-
derivatives and

∥
∥
∥γΔ(t)

∥
∥
∥/= 0, for t ∈ [a, b]κ. (2.15)

Definition 2.8 (see [1]). Let γ : [a, b] ⊂ T → R
3 be a curve, Q0 a point on γ , and L a line

through Qσ
0 , where

Q0 =
(

γ1(t0), γ2(t0), γ3(t0)
)

, Qσ
0 =
(

γ1(σ(t0)), γ2(σ(t0)), γ3(σ(t0))
)

, t0 ∈ [a, b]κ. (2.16)

Take on γ any point Q. Denote by d the distance of the point Q from the point Qσ
0 , and by δ

the distance of Q from the line L. If δ/d → 0 as Q → Q0, Q /=Qσ
0 , then we say that L is the

forward tangent line to the curve γ at the point Q0.

Theorem 2.9 (see [1]). Every Δ-regular curve γ : [a, b] ⊂ T → R
3 has at any point Q0 =

(γ1(t0), γ2(t0), γ3(t0)), t0 ∈ [a, b]κ, the forward tangent line that has the vector γΔ(t0) as its direction
vector.

Definition 2.10 (see [1]). Let γ be a Δ-regular curve in R
3 given by the equation

γ = γ(t), t ∈ [a, b] ⊂ T. (2.17)

We define the function p by

p(t) =
∫ t

a

∥
∥
∥γΔ(s)

∥
∥
∥Δs, t ∈ [a, b]. (2.18)
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The variable p can be used as a parameter for the curve γ . Such a parametrization of a curve
we call natural Δ-parametrization.

Theorem 2.11 (see [1]). In the case of natural Δ-parametrization of the curve γ the forward tangent
vector is a unit vector.

Definition 2.12 (see [2]). Let γ be a continuous curve with equation γ(t) = (γ1(t), γ2(t)). A
partition of [a, b] is any finite ordered set

P = {t0, t1, . . . , tn} ⊂ [a, b], where a = t0 < t1 < · · · < tn = b. (2.19)

Let us set

l
(

γ, P
)

=
n∑

i=1

√
[

γ1(ti) − γ1(ti−1)
]2 +
[

γ2(ti) − γ2(ti−1)
]2
. (2.20)

The curve γ is rectifiable if

sup
P

{

l
(

γ, P
)

: P is a partition of [a, b]
}

=: l
(

γ
)

< ∞. (2.21)

The nonnegative number l(γ) is called the length of the curve γ . If the supremum does not
exist, the curve is said to be nonrectifiable.

Theorem 2.13 (see [2]). Let the functions γ1 and γ2 be continuous on [a, b] and Δ-differentiable
on [a, b). If their Δ-derivatives γΔ1 and γΔ2 are bounded and Δ-integrable over [a, b), then the curve
γ(t) = (γ1(t), γ2(t)) is rectifiable and its length l(γ) can be evaluated by the formula

l
(

γ
)

=
∫b

a

√
[

γΔ1 (t)
]2 +
[

γΔ2 (t)
]2Δt. (2.22)

3. Forward Curvatures on Time Scales

It is easy to see that the notion of rectifiable curve in Definition 2.12 for R
2 can be adapted to

R
3.

Definition 3.1. Let γ be a continuous curve in R
3. Let P be a partition of [a, b] as in (2.19), and

set

l
(

γ, P
)

=
n∑

i=1

√
√
√
√

3∑

j=1

[

γj(ti) − γj(ti−1)
]2
, (3.1)

where γ(t) = (γ1(t), γ2(t), γ3(t)). We say that curve γ is rectifiable if

sup
P

{

l
(

γ, P
)

: P is a partition of [a, b]
}

=: l
(

γ
)

< ∞. (3.2)
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In Theorem 2.13, the length of the curve in plane is given. We introduce the length of a
curve parametrized by a time scale parameter in R

3 in the following lemma.

Lemma 3.2. Let the functions γ1, γ2, and γ3 be continuous on [a, b] and Δ-differentiable on [a, b).
If their Δ-derivatives γΔ1 , γΔ2 , and γΔ3 are bounded and Δ-integrable over [a, b), then the curve γ(t) =
(γ1(t), γ2(t), γ3(t)) is rectifiable and its length l(γ) can be evaluated by the formula

l
(

γ
)

=
∫b

a

√
[

γΔ1 (t)
]2 +
[

γΔ2 (t)
]2 +
[

γΔ3 (t)
]2Δt. (3.3)

Proof. We show that the curve γ is rectifiable. Let an arbitrary partition of [a, b] be of the form
(2.19). Consider l(γ, P) defined by (3.1). Applying to each of the functions γ1, γ2, and γ3 the
mean value theorem (see [5, Theorem 4.2]) on [ti−1, ti] for i ∈ {1, 2, . . . , n}, we get that there
exist points ξi, ξ′i, ηi, η

′
i and ζi, ζ

′
i in [ti−1, ti) such that

γΔ1 (ξi)(ti − ti−1) ≤ γ1(ti) − γ1(ti−1) ≤ γΔ1
(

ξ′i
)

(ti − ti−1), (3.4)

γΔ2
(

ηi
)

(ti − ti−1) ≤ γ2(ti) − γ2(ti−1) ≤ γΔ2
(

η′
i

)

(ti − ti−1), (3.5)

γΔ3 (ζi)(ti − ti−1) ≤ γ3(ti) − γ3(ti−1) ≤ γΔ3
(

ζ′i
)

(ti − ti−1). (3.6)

From (3.4), (3.5), and (3.6) it follows that

∣
∣γ1(ti) − γ1(ti−1)

∣
∣ ≤ Ai(ti − ti−1),

∣
∣γ2(ti) − γ2(ti−1)

∣
∣ ≤ Bi(ti − ti−1),

∣
∣γ3(ti) − γ3(ti−1)

∣
∣ ≤ Ci(ti − ti−1),

(3.7)

where

Ai = max
{∣
∣
∣γΔ1 (ξi)

∣
∣
∣,
∣
∣
∣γΔ1
(

ξ′i
)
∣
∣
∣

}

,

Bi = max
{∣
∣
∣γΔ2
(

ηi
)
∣
∣
∣,
∣
∣
∣γΔ2
(

η′
i

)
∣
∣
∣

}

,

Ci = max
{∣
∣
∣γΔ3 (ζi)

∣
∣
∣,
∣
∣
∣γΔ3
(

ζ′i
)
∣
∣
∣

}

.

(3.8)

By the assumption of the theorem, the derivatives γΔ1 , γ
Δ
2 , and γΔ3 are bounded on [a, b), so

that there is a finite positive constant M such that

∣
∣
∣γΔj (t)

∣
∣
∣ ≤ M, j = 1, 2, 3 (3.9)

for all t ∈ [a, b). Thus

∣
∣γj(ti) − γj(ti−1)

∣
∣ ≤ M(ti − ti−1), j = 1, 2, 3 (3.10)
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for all i ∈ {1, 2, . . . , n}, and we have from (3.1)

l
(

γ, P
) ≤ M

√
3

n∑

i=1

(ti − ti−1) = M
√
3(b − a), (3.11)

so that we get that the curve γ is rectifiable.Now we prove the formula (3.3). Consider the
Riemann Δ-sum

S =
n∑

i=1

√
[

γΔ1 (ξi)
]2 +
[

γΔ2 (ξi)
]2 +
[

γΔ3 (ξi)
]2(ti − ti−1) (3.12)

of the Δ-integrable function
√

[γΔ1 (t)]
2 + [γΔ2 (t)]

2 + [γΔ3 (t)]
2, corresponding to the partition P

of [a, b] and the choice of intermediate points ξi defined in (3.4). For every δ > 0, there exists
(see [6, Lemma 5.7]) at least one partition P of [a, b] of the form (2.19) such that for each
i ∈ {1, 2, . . . , n} either ti − ti−1 ≤ δ or ti − ti−1 > δ and σ(ti−1) = ti. Let us denote by Pδ([a, b])
the set of all such partitions P of [a, b]. For an arbitrary ε > 0, there exists δ > 0 such that

∣
∣l
(

γ, P
) − I

∣
∣ <

ε

2
∀P ∈ Pδ([a, b]), (3.13)

where

I =
∫a

b

√
[

γΔ1 (t)
]2 +
[

γΔ2 (t)
]2 +
[

γΔ3 (t)
]2Δt. (3.14)

From (3.4), (3.5), and (3.6)we get

0 ≤ γ1(ti) − γ1(ti−1) − γΔ1 (ξi)(ti − ti−1) ≤
[

γΔ1
(

ξ′i
) − γΔ1 (ξi)

]

(ti − ti−1),

0 ≤ γ2
(

ηi
) − γ2(ti−1) − γΔ2

(

ηi
)

(ti − ti−1) ≤
[

γΔ2
(

η′
i

) − γΔ2
(

ηi
)]

(ti − ti−1),

0 ≤ γ3(ζi) − γ3(ti−1) − γΔ3 (ζi)(ti − ti−1) ≤
[

γΔ3
(

ζ′i
) − γΔ3 (ζi)

]

(ti − ti−1),

(3.15)

and, consequently,

γ1(ti) − γ1(ti−1) =
[

γΔ1 (ξi) + αi

]

(ti − ti−1),

γ2(ti) − γ2(ti−1) =
[

γΔ2
(

ηi
)

+ βi
]

(ti − ti−1),

γ3(ti) − γ3(ti−1) =
[

γΔ3 (ζi) +ωi

]

(ti − ti−1),

(3.16)

where

0 ≤ αi ≤ γΔ1
(

ξ′i
) − γΔ1 (ξi) ≤ Mi −mi,

0 ≤ βi ≤ γΔ2
(

η′
i

) − γΔ2
(

ηi
) ≤ Ni − ni,

0 ≤ ωi ≤ γΔ3
(

ζ′i
) − γΔ3 (ζi) ≤ Ri − ri,

(3.17)
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in whichMi andmi are the supremum and infimum of γΔ1 on [ti−1, ti) andNi, ni and Ri, ri are
corresponding numbers for γΔ2 and γΔ3 , respectively. Using the inequality

∣
∣
∣
∣

√

x2 + y2 + z2 −
√

x2
1 + y2

1 + z21

∣
∣
∣
∣
≤ |x − x1| +

∣
∣y − y1

∣
∣ + |z − z1| (3.18)

for x, y, z, x1, y1, z1 ∈ R, we obtain

∣
∣
∣
∣

√
[

γΔ1 (ξi) + αi

]2 +
[

γΔ2
(

ηi
)

+ βi
]2 +
[

γΔ3 (ζi) +ωi

]2 −
√
[

γΔ1 (ξi)
]2 +
[

γΔ2 (ξi)
]2 +
[

γΔ3 (ξi)
]2
∣
∣
∣
∣

≤ |αi| +
∣
∣
∣γΔ2
(

ηi
)

+ βi − γΔ2 (ξi)
∣
∣
∣ +
∣
∣
∣γΔ3 (ζi) +ωi − γΔ3 (ξi)

∣
∣
∣

≤ |αi| +
∣
∣βi
∣
∣ + |ωi| +

∣
∣
∣γΔ2
(

ηi
) − γΔ2 (ξi)

∣
∣
∣ +
∣
∣
∣γΔ3 (ζi) − γΔ3 (ξi)

∣
∣
∣

≤ Mi −mi + 2(Ni − ni) + 2(Ri − ri).

(3.19)

Therefore,

∣
∣l
(

γ, P
) − S

∣
∣ =

∣
∣
∣
∣
∣

n∑

i=1

(√
[

γΔ1 (ξ) + αi

]2 +
[

γΔ2
(

ηi
)

+ βi
]2 +
[

γΔ3 (ζi) +ωi

]2
)

(ti − ti−1)

∣
∣
∣
∣
∣

≤
n∑

i=1

[Mi −mi + 2(Ni − ni) + 2(Ri − ri)](ti − ti−1)

= U
(

γΔ1 , P
)

− L
(

γΔ1 , P
)

+ 2
[

U
(

γΔ2 , P
)

− L
(

γΔ2 , P
)]

+ 2
[

U
(

γΔ3 , P
)

− L
(

γΔ3 , P
)]

,

(3.20)

whereU and L denote the upper and lower DarbouxΔ-sums, respectively. Since the functions
√

[γΔ1 ]
2 + [γΔ2 ]

2 + [γΔ3 ]
2
, γΔ1 , γ

Δ
2 and γΔ3 are Δ-integrable over [a, b), for arbitrary ε > 0, there

exists δ > 0 such that

|S − I| < ε

12
, U

(

γΔj , P
)

− L
(

γΔj , P
)

<
ε

12
, j = 1, 2, 3 (3.21)

for all P ∈ Pδ([a, b]) (see [6, Theorem 5.9]) and the Riemann definition of Δ-integrability
therein), where I is defined by (3.14). Therefore, we get

|l(Γ, P) − I| ≤ |l(Γ, P) − S| + |S − I| < ε

12
+ 2

ε

12
+ 2

ε

12
+

ε

12
=

ε

2
, (3.22)

and so the validity of (3.13) is proved. On the other hand, among the partitions P for which
(3.13) is satisfied, there is a partition P such that

∣
∣l
(

γ, P
) − l
(

γ
)∣
∣ <

ε

2
. (3.23)
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Indeed, there is a partition P ∗ of [a, b] such that

0 ≤ l
(

γ
) − l
(

γ, P ∗) <
ε

2
. (3.24)

Next, we refine the partition P ∗ adding to it new partition points so that we get a partition P
that belongs to Pδ([a, b]). Then by l(Γ, P) ≥ l(Γ, P ∗), (3.24) yields

0 ≤ l
(

γ
) − l
(

γ, P
)

<
ε

2
, (3.25)

so that (3.23) is shown. By (3.13) and (3.23), we get

|l(Γ) − I| < ε. (3.26)

Since ε > 0 is arbitrary, we have l(Γ) = I, and the proof is complete.

Definition 3.3. The curve γ : [a, b] ⊂ T → R
3 is given in the parametric form γ(t) =

(γ1(t), γ2(t), γ3(t)). Let P0 := γ(t0), Pσ
0 := γ(σ(t0)), for t0 ∈ [a, b]κ

2
and P := γ(t) for t ∈ [a, b].

We denote the angle between the forward tangent lines drawn to the curve at P0 and P by θP
and the arc length of the segment PP0 of the curve by |P̂P0|. The forward curvature of γ at P0

is defined as

κ = lim
P →Pσ

0

θP
∣
∣
∣P̂P0

∣
∣
∣

. (3.27)

Theorem 3.4. Let γ : [a, b] ⊂ T → R
3 be a natural Δ-parametrized Δ-regular curve, there exists

γΔΔ(t0) for t0 ∈ [a, b]κ
2
. If t0 is a right-dense point, then

κ =
∥
∥
∥γΔΔ(t0)

∥
∥
∥. (3.28)

If t0 is a right-scattered point, then

κ =
2

μ(t0)
arcsin

(

μ(t0)
∥
∥γΔΔ(t0)

∥
∥

2

)

. (3.29)

Proof. Let P0 := γ(t0), Pσ
0 := γ(σ(t0)), for a fix point t0 ∈ [a, b]κ

2
and P := γ(t) for t ∈ [a, b]. Let

the unit vectors on the forward tangent lines to the curve at points P and P0 be τ(t) and τ(t0),
respectively, and assume that θ(t) is the angle between them. We denote l(t) = |P̂P0|. Then we
have

l(t) =
∫ t

t0

∥
∥
∥γΔ(s)

∥
∥
∥Δs =

∫ t

t0

Δs = t − t0, (3.30)

‖τ(t) − τ(t0)‖ = 2 sin
θ(t)
2

. (3.31)
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Assume that t0 is a right-dense point. Then P → P0 = Pσ
0 and θ(t) → 0 as t → t0. Since

lim
t→ t0

θ(t)/(t − t0)
θ(t)/l(t)

= lim
t→ t0

l(t)
t − t0

= 1, (3.32)

we obtain

lim
t→ t0

θ(t)
t − t0

= lim
t→ t0

θ(t)
l(t)

. (3.33)

By using (3.31)we can write

∥
∥
∥
∥

τ(t) − τ(t0)
t − t0

∥
∥
∥
∥
=

2
t − t0

sin
θ(t)
2

=
sin(θ(t)/2)

θ(t)/2
θ(t)
t − t0

. (3.34)

Thus, we find

κ = lim
t→ t0

θ(t)
l(t)

=
∥
∥
∥γΔΔ(t0)

∥
∥
∥ (3.35)

as t → t0.
Assume that t0 is a right-scattered point. Then P → Pσ

0 and θ(t) → θ(σ(t0)) as t →
σ(t0). If the equality (3.31) is divided by t − t0, taking the limit as t → σ(t0), we have

∥
∥
∥γΔΔ(t0)

∥
∥
∥ =
∥
∥
∥
∥

τ(σ(t0)) − τ(t0)
σ(t0) − t0

∥
∥
∥
∥

=
2

σ(t0) − t0
sin

θ(σ(t0))
2

=
2

μ(t0)
sin

θ(σ(t0))
2

.

(3.36)

(3.16) On the other hand, we find

κ = lim
t→σ(t0)

θ(t)
l(t)

=
θ(σ(t0))
σ(t0) − t0

=
θ(σ(t0))
μ(t0)

. (3.37)

It follows from (3.16) and (3.37) that

κ =
2

μ(t0)
arcsin

(

μ(t0)
∥
∥γΔΔ(t0)

∥
∥

2

)

. (3.38)

This completes the proof.
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Theorem 3.5. Let γ : [a, b] ⊂ T → R
3 be a curve with arbitrary parameters that is second Δ-

differentiable on [a, b]κ
2
and ‖γΔ(t)‖/= 0 for all t ∈ [a, b]κ

2
. Moreover assume that the function h :

[a, b]κ
2 → R defined by h(t) := 〈γΔ(t), γΔ(t)〉 is strictly increasing. The forward curvature of γ at

the right-dense point t ∈ [a, b]κ
2
is

κ =

∥
∥γΔ(t) × γΔΔ(t)

∥
∥

∥
∥γΔ(t)

∥
∥
3

. (3.39)

Proof. The function p : [a, b] → p([a, b]) = T̃ defined by s = p(t) =
∫ t

a ‖γΔ(v)‖Δv is
continuous and strictly increasing. Therefore T̃ will be a time scale (see [1, pages 560-561]).
The forward jump operator and the derivative operator on this time scale, will be denoted by
σ̃ and Δ̃ respectively. Since the curve γ ◦p−1 is a naturalΔ-parametrized, to find the curvature
to the γ at the point t, it is sufficient to find that the curvature to the γ ◦ p−1 at the point s.

(

p−1
)Δ̃

(s) =
1

pΔ(t)
=

1
∥
∥γΔ(t)

∥
∥
,

(

p−1
)Δ̃

(σ̃(s)) =
1

pΔ
(

p−1(σ̃(s))
) =

1
pΔ(σ(t))

=
1

∥
∥γΔ(σ(t))

∥
∥
=

1
∥
∥γΔ(t)

∥
∥
,

(

p−1
)Δ̃Δ̃

(s) = − pΔΔ(t)
[

pΔ(t)
]2
pΔ(σ(t))

= −
∥
∥γΔ(t)

∥
∥
Δ

∥
∥γΔ(t)

∥
∥
3
.

(3.40)

By using (3.40), one can easily find that

∥
∥
∥
∥
∥

(

γ ◦ p−1
)Δ̃Δ̃

(s)

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
γΔ(t)

(

p−1
)Δ̃Δ̃

(s) + γΔΔ(t)
(

p−1
)Δ̃

(s)
(

p−1
)Δ̃

(σ̃(s))

∥
∥
∥
∥
∥

=

∥
∥
∥

∥
∥γΔ(t)

∥
∥γΔΔ(t) − ∥∥γΔ(t)∥∥ΔγΔ(t)

∥
∥
∥

∥
∥γΔ(t)

∥
∥
3

.

(3.41)

As t ∈ [a, b]κ
2
is a right-dense point and the function h(t) := 〈γΔ(t), γΔ(t)〉 is strictly

increasing, we have

∥
∥
∥γΔ(t)

∥
∥
∥

Δ
=

〈

γΔ(t), γΔΔ(t)
〉

∥
∥γΔ(t)

∥
∥

. (3.42)
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Substituting (3.42) into (3.41), we obtain

κ =

∥
∥
(

γΔ(t) × γΔΔ(t)
) × γΔ(t)

∥
∥

∥
∥γΔ(t)

∥
∥
4

=

∥
∥
(

γΔ(t) × γΔΔ(t)
)∥
∥
∥
∥γΔ(t)

∥
∥ sin(π/2)

∥
∥γΔ(t)

∥
∥
4

=

∥
∥
(

γΔ(t) × γΔΔ(t)
)∥
∥

∥
∥γΔ(t)

∥
∥
3

.

(3.43)

The proof is complete.

Remark 3.6. It is easy to see that, for the case T = R, the results (3.28) and (3.39) generalize
the following formulas stated in classical differential geometry:

κ =
∥
∥γ ′′(t0)

∥
∥, κ =

∥
∥γ ′(t) × γ ′′(t)

∥
∥

∥
∥γ ′(t)

∥
∥
3

. (3.44)

Theorem 3.7. Let γ : [a, b] ⊂ T → R
3 be a curve with arbitrary parameters that is second Δ

differentiable on [a, b]κ
2
and has continuousΔ derivative on [a, b]κ and ‖γΔ(t)‖/= 0 for all t ∈ [a, b]κ.

Moreover assume that the function h : [a, b]κ → R defined by h(t) := 〈γΔ(t), γΔ(t)〉 is strictly
increasing. The forward curvature of γ at the right-scattered point t ∈ [a, b]κ

2
is

κ =
2

μ(t)
∥
∥γΔ(t)

∥
∥
arcsin

(
μ(t)q1
2q2

)

, (3.45)

where

q1 =
∥
∥
∥
∥γΔ(t)

∥
∥
(∥
∥γΔ(t)

∥
∥ +
∥
∥γΔ(σ(t))

∥
∥
)

γΔΔ(t) − 〈γΔΔ(t), γΔ(t) + γΔ(σ(t))
〉

γΔ(t)
∥
∥,

q2 =
∥
∥γΔ(t)

∥
∥
∥
∥γΔ(σ(t))

∥
∥
(∥
∥γΔ(t)

∥
∥ +
∥
∥γΔ(σ(t))

∥
∥
)

.
(3.46)

Proof. Let t ∈ [a, b]κ
2
be a right-scattered point. In this case we have

μ̃(s) = σ̃(s) − s

= p(σ(t)) − p(t)

= μ(t)
∥
∥
∥γΔ(t)

∥
∥
∥,

(3.47)

∥
∥
∥γΔ(t)

∥
∥
∥

Δ
=

〈

γΔΔ(t), γΔ(t) + γΔ(σ(t))
〉

∥
∥γΔ(t)

∥
∥ +
∥
∥γΔ(σ(t))

∥
∥

. (3.48)
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By using (3.41) and (3.48), we find

∥
∥
∥
∥
∥

(

γ ◦ p−1
)Δ̃Δ̃

(s)

∥
∥
∥
∥
∥
=

q1
∥
∥γΔ(t)

∥
∥
2∥
∥γΔ(σ(t))

∥
∥
(∥
∥γΔ(t)

∥
∥ +
∥
∥γΔ(σ(t))

∥
∥
) . (3.49)

Substituting (3.49) into (3.29), we obtain

κ =
2

μ(t)
∥
∥γΔ(t)

∥
∥
arcsin

(
μ(t)q1
2q2

)

. (3.50)

Example 3.8. Let T = Z and γ : T → R
3, γ(t) = β(cos t, sin t, t).The curve γ satisfies the

conditions of Theorem 3.4 for the case β = 1/
√
3 − 2 cos 1. In this case we have σ(t) = t +

1, μ(t) = 1, and

γΔ(t) = β(cos(t + 1) − cos t, sin(t + 1) − sin t, 1),

γΔΔ(t) = β(cos(t + 2) − 2 cos(t + 1) + cos t, sin(t + 2) − 2 sin(t + 1) + sin t, 0).
(3.51)

Since every point of T is right-scattered point, the curvature of γ at any point t is

κ =
2

μ(t)
arcsin

(

μ(t)
∥
∥γΔΔ(t)

∥
∥

2

)

= 2 arcsin
(

2β sin2
(
1
2

))

.

(3.52)

This value is the angle between the line through γ(t), γ(t + 1) and the line through γ(t + 1),
γ(t + 2).

Example 3.9. Assume that γ : T = {1, 1/2, 1/3, . . .} ∪ {0} → R
3, γ(t) = (t, t2, 0), is a non-

Δ-natural parametrized curve. The only right-dense point of the time scale T is t = 0, and
the other points of the time scale are right-scattered. The forward jump operator and the
graininess function are

σ(t) =

⎧

⎪⎨

⎪⎩

t

1 − t
, t /= 1,

1, t = 1,

μ(t) =

⎧

⎪
⎨

⎪
⎩

t2

1 − t
, t /= 1,

0, t = 1.

(3.53)
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Furthermore we have

γΔ(t) =

(

1,
t2 − 2t
t − 1

, 0

)

, for t /= 1

γΔΔ(t) =
(

0,
2t − 2
2t − 1

, 0
)

, for t /= 1, t /=
1
2
,

(3.54)

and, from Theorem 3.5, the forward curvature of the curve γ at the point t = 0 is

κ(0) =

∥
∥γΔ(0) × γΔΔ(0)

∥
∥

∥
∥γΔ(0)

∥
∥
3

= 2. (3.55)

For the right-scattered point t = 1/3, by using Theorem 3.7, we find

κ

(
1
3

)

=
72√
61

arcsin

⎛

⎜
⎝

2
√

2
√
793 − 6

4
√
793
(

3
√
13 +

√
61
)

⎞

⎟
⎠. (3.56)

This value is the ratio of the angle between the line through the points γ(1/3), γ(1/2) and the
line through the points γ(1/2), γ(1) and the distance between the points γ(1/3) and γ(1/2).
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