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The purpose of this paper is to study the existence of fixed point for a nonlinear integral operator in
the framework of Banach spaceX := C([a, b],Rn). Later on, we give some examples of applications
of this type of results.

1. Introduction

In this paper, we intend to prove the existence and uniqueness of the solutions of the follow-
ing nonhomogeneous nonlinear Volterra integral equation:

u(x) = f(x) + ϕ

(∫x

a

F(x, t, u(t))dt
)

≡ Tu, u ∈ X, (1.1)

where x, t ∈ [a, b], −∞ < a < b < ∞, f : [a, b] → R
n is a mapping, and F is a continuous

function on the domain D := {(x, t, u) : x ∈ [a, b], t ∈ [a, x), u ∈ X}.
The solutions of integral equations have a major role in the fields of science and

engineering [1, 2]. A physical event can be modeled by the differential equation, an integral
equation, an integrodifferential equation, or a system of these [3, 4]. Investigation on ex-
istence theorems for diverse nonlinear functional-integral equations has been presented in
other references such as [5–10].
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In this study, we will use an iterative method to prove that (1.1) has the mentioned
cases under some appropriate conditions. Finally, we offer some examples that verify the
application of this kind of nonlinear functional-integral equations.

2. Basic Concepts

In this section, we recall basic result which we will need in this paper.
Consider the nonhomogeneous nonlinear Volterra integral equation (1.1). Through

this article, we consider the complete metric space (X, d), which d(f, g) = maxx∈[a,b]|f(x) −
g(x)|, for all f, g ∈ X and assume that ϕ is a bounded linear transformation on X.

Note that the linear mapping ϕ : X → X is called bounded, if there exists M > 0 such
that ‖ϕx‖ ≤ M‖x‖; for all x ∈ X. In this case, we define ‖ϕ‖ = sup{‖ϕx‖/‖x‖;x /= 0, x ∈ X}.
Thus, ϕ is bounded if and only if ‖ϕ‖ < ∞, [11].

Note 1. As ϕ is a bounded linear mapping on X, then ϕ(x) = λx, where λ does not depend on
x ∈ X.

Definition 2.1. Let S denote the class of those functions α : [0,∞) → [0, 1) satisfying the
condition

lim sup
s→ t+

α(s) < 1, ∀t ∈ [0,∞). (2.1)

Definition 2.2. Let B denoted the class of those functions φ : [0,∞) → [0,∞) which satisfies
the following conditions:

(i) φ is increasing,

(ii) for each x > 0, φ(x) < x,

(iii) α(x) = φ(x)/x ∈ S, x /= 0.

For example, φ(t) = μt, where 0 ≤ μ < 1, φ(t) = t/(t + 1) and φ(t) = ln(1 + t) are in B.

3. Existence and Uniqueness of the Solution of
Nonlinear Integral Equations

In this section, wewill study the existence and uniqueness of the nonlinear functional-integral
equation (1.1) on X.

Theorem 3.1. Consider the integral equation (1.1) such that

(i) ϕ : X → X is a bounded linear transformation,

(ii) F : D → R
n and f : [a, b] → R

n are continuous,
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(iii) there exists a integrable function p : [a, b] × [a, b] → R such that

|F(x, t, u) − F(x, t, v)| ≤ p(x, t)φ(|u − v|), (3.1)

for each x, t ∈ [a, b] and u, v ∈ R
n.

(iv) supx∈[a,b]
∫b
a p

2(x, t)dt ≤ 1/‖ϕ‖2(b − a).

Then, the integral equation (1.1) has a unique fixed point u in X.

Proof. Consider the iterative scheme

un+1(x) = f(x) + ϕ

(∫x

a

F(x, t, un(t))dt
)

≡ Tun, n = 0, 1, . . . . (3.2)

|Tun(x) − Tun−1(x)| =
∣∣∣∣ϕ

(∫x

a

F(x, t, un(t))dt
)
− ϕ

(∫x

a

F(x, t, un−1(t))dt
)∣∣∣∣

≤
∣∣∣∣ϕ

(∫x

a

F(x, t, un(t)) − F(x, t, un−1(t))dt
)∣∣∣∣

≤ ∥∥ϕ∥∥
∣∣∣∣
∫x

a

F(x, t, un(t)) − F(x, t, un−1(t))dt
∣∣∣∣

≤ ∥∥ϕ∥∥
∫x

a

|F(x, t, un(t)) − F(x, t, un−1(t))|dt

≤ ∥∥ϕ∥∥
∫b

a

p(x, t)φ(|un(t) − un−1(t)|)dt

≤ ∥∥ϕ∥∥
(∫b

a

p2(x, t)dt

)1/2(∫b

a

φ2(|un(t) − un−1(t)|)dt
)1/2

.

(3.3)

As the function φ is increasing then

φ(|un(t) − un−1(t)|) ≤ φ(d(un, un−1)), (3.4)

so, we obtain

d2(un+1, un) ≤
∥∥ϕ∥∥2

(
sup

x∈[a,b]

∫b

a

p2(x, t)dt

)(∫b

a

φ2(d(un, un−1))dt

)

≤ φ2(d(un, un−1)).

(3.5)

Therefore,

d(un+1, un) ≤ φ(d(un, un−1)) =
φ(d(un, un−1))
d(un, un−1)

d(un, un−1)

= α(d(un, un−1))d(un, un−1),

(3.6)
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and so the sequence {d(un+1, un)} is nonincreasing and bounded below. Thus, there exists
τ ≥ 0 such that limn→∞d(un+1, un) = τ . Since lim sups→ τ+α(s) < 1 and α(τ) < 1, then there
exist r ∈ [0, 1) and ε > 0 such that α(s) < r for all s ∈ [τ, τ + ε]. We can take ν ∈ N such that
τ ≤ d(un+1, un) ≤ τ + ε for all n ∈ N with n ≥ ν. On the other hand, we have

d(un+2, un+1) ≤ α(d(un+1, un))d(un+1, un) ≤ rd(un+1, un), (3.7)

for all n ∈ N with n ≥ ν. It follows that

∞∑
n=1

d(un+1, un) ≤
ν∑

n=1

d(un+1, un) +
∞∑
n=1

rnd(uν+1, uν) < ∞, (3.8)

and hence, {un} is a Cauchy sequence. Since (X, d) is a complete metric space, then there
exists a u ∈ X such that limn→∞un = u. Now, by taking the limit of both sides of (3.2), we
have

u = lim
n→∞

un+1(x) = lim
n→∞

(
f(x) + ϕ

(∫x

a

F(x, t, un(t))dt
))

= f(x) + ϕ

(∫x

a

F

(
x, t, lim

n→∞
un(t)

)
dt

)

= f(x) + ϕ

(∫x

a

F(x, t, u(t))dt
)
.

(3.9)

So, there exists a solution u ∈ X such that Tu = u. It is clear that the fixed point of T is
unique.

Note 2. Theorem 3.1 was proved with the condition (i), but there exist some nonlinear
examples ϕ, such that by the analogue method mentioned in this theorem, the existence,
and uniqueness can be proved for those. For example ϕ(x) = sin(x).

4. Applications

In this section, for efficiency of our theorem, some examples are introduced. For Examples
4.1 and 4.2, [5] is used. Maleknejad et al. presented some examples that the existence of
their solutions can be established using their theorem. Generally, Examples 4.1 and 4.2 are
introduced for the first time in this work. On the other hand, for Example 4.3, [12] is applied.
In Chapter 6 of this reference, the existence theorems for Volterra integral equations with
weakly singular kernels is discussed. Example 4.1 is extracted from this chapter.

Example 4.1. Consider the following linear Volterra integral equation:

u(x) = ln
(
x2
)
+
∫x

0
txu(t)dt, (x, t ∈ [0, 1]). (4.1)
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We have

|F(x, t, u) − F(x, t, v)| = |(tx)u − (tx)v| = |(tx)(u − v)|

≤ |tx||u − v| =
∣∣∣∣
( |tx|

μ

)(
μ|u − v|)

∣∣∣∣,
(4.2)

where
√
3/3 ≤ μ < 1. Now, we put p(x, t) = (tx)/μ and φ(t) = μt. Because

supx∈[0,1]
∫1
0 p

2(x, t)dt = 1/3μ2 ≤ 1, then by applying the result obtained in Theorem 3.1, we
deduce that (4.1) has a unique solution in Banach space C([0, 1],R).

Example 4.2. Consider the following nonlinear Volterra integral equation:

u(x) = sin
(

1
1 + x

)
+
x

9

∫x

0

cos
(
x2t

)
(1 + xt)2

arctan(u(t))dt, (x, t ∈ [0, 1]). (4.3)

We write

|F(x, t, u) − F(x, t, v)| =
∣∣∣∣∣
x cos

(
x2t

)
9(1 + xt)2

(arctan(u) − arctan(v))

∣∣∣∣∣

≤
∣∣∣∣∣
x cos

(
x2t

)
(1 + xt)2

‖u − v

9

∣∣∣∣∣.
(4.4)

Take p(x, t) = x cos(x2t)/(1 + xt)2 and φ(t) = t/9. Since supx∈[0,1]
∫1
0 p

2(x, t)dt ≤ 1, then (4.3)
has a unique solution in C([0, 1],R).

Example 4.3 (see [12]). Consider the following singular Volterra integral equation

u(x) = f(x) + λ

∫x

0
(x − t)−αu(t)dt, (x, t ∈ [0, T]), (4.5)

where 0 ≤ λ < 1 and 0 < α < 1/2. Then,

|F(x, t, u) − F(x, t, v)| =
∣∣λ(u − v)(x − t)−α

∣∣ ≤ |λ||u − v||(x − t)|−α. (4.6)

Put p(x, t) = (x − t)−α and φ(t) = λt. We have

sup
x∈[0,T]

∫T

0
p2(x, t)dt = sup

x∈[0,T]

∫T

0
|(x − t)|−2αdt = T1−2α

1 − 2α
. (4.7)

It follows that if T1−α ≤ (1 − 2α)1/2, then (4.5) has a unique solution in complete metric
space C([0, T],R).
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Remark 4.4. The unique solution u ∈ C([0, 1],R) of the Volterra integral (4.5) is given by

u(x) = E1−α
(
λΓ(1 − α)x1−α)u0, (x ∈ [0, 1]), (4.8)

where f(x) = u0 and

Eβ(z) :=
∞∑
k=0

zk

Γ
(
1 + kβ

) , (
β > 0

)
(4.9)

denotes the Mittag-Leffler function. The Mittag-Leffler function was introduced early in the
20th century by the Swedish mathematician whose name it bears. Additional properties and
applications can be found, for example, in Erdélyi [13] and, especially, in the survey paper by
Mainardi and Gorenflo [14].
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