
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2011, Article ID 735825, 11 pages
doi:10.1155/2011/735825

Research Article
Periodicity in a Class of Systems of
Delay Difference Equations

Zhijian Wei

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China

Correspondence should be addressed to Zhijian Wei, zhijwei@yahoo.com

Received 5 July 2011; Accepted 23 August 2011

Academic Editor: J. Biazar

Copyright q 2011 Zhijian Wei. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study a system of delay difference equations modeling four-dimensional discrete-time delayed
neural networks with no internal decay. Such a discrete-time system can be regarded as the discrete
analog of a differential equation with piecewise constant argument. By using semicycle analysis
method, it is shown that every bounded solution of this discrete-time system is eventually periodic.
The obtained results are new, and they complement previously known results.

1. Introduction

Over the past decades, there has been increasing interest in the potential applications of
the dynamics of artificial neural networks in signal and image processing. Among the most
popular models in the literature of artificial neural networks is the following well-known
Hopfield’s model [1, 2]:

dui(t)
dt

= μiui(t) +
∑

j /= i

Tijfj
(
uj

(
t − τij

))
, 1 ≤ i ≤ n, (1.1)

where μi ≥ 0 is the internal decay rate, τij ≥ 0 is the delay incorporated by Marcus and
Westervelt [3] to account for the finite switching speed of amplifiers (neurons), fj : R → R
(the set of all real numbers) is the signal functions, and Tij represents the connection strengths
between neurons and if the output from neuron j excites (resp., inhibits) neuron i, then Tij > 0
(resp., < 0), 1 ≤ i, j ≤ n.

Much work on Hopfield-type neural networks with constant time delays has been
carried out. However, from the point of view of electronic implementation of neural networks
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and control, the time-varying delay case is more suitable for practical neural networks, and
we can achieve this by using piecewise constant arguments. Because of the wide application
of differential equations with piecewise constant argument in certain biomedical models (see,
e.g., [4]), much progress has been made in the study of differential equations with piecewise
constant arguments since the pioneering work of Cooke andWiener [5] and Shah andWiener
[6]. For more details and references on this subject, interested readers may refer to a survey
of Cooke and Wiener [7]. Motivated by these discussions, we propose

dui(t)
dt

= μiui(t) +
∑

j /= i

Tijfj
(
uj

([
t − τij

]))
, 1 ≤ i ≤ n, (1.2)

as a new neural network model, where [·] denotes the greatest integer function and fj (1 ≤
j ≤ n) are the McCulloch-Pitts nonlinear function given by

f(u) =

⎧
⎨

⎩
1 if u > σ,

−1 if u ≤ σ.
(1.3)

Here, σ ∈ R is referred as the threshold. The McCulloch-Pitts nonlinearity reflects the fact
that the signal transmission is of digital nature: a neuron is either fully active or completely
inactive.

Neural networks are complex and large-scale nonlinear dynamical systems, while the
dynamics of the delayed neural networks is even richer andmore complicated [8]. In order to
obtain a deep and clear understanding of the dynamics of neural networks, the dynamics of
delayed neural networks consisting of a few neurons has received increasing attention over
the past years [9–14]. The studies on these neural networks of a few neurons are potentially
useful because the complexities found in such models often provide promising information
for the studies on more complicated neural networks with a large number of neurons [15].
So, we are inspired to consider a special case of (1.2),

x′
1(t) = f(x2([t − k])),

x′
2(t) = f(x3([t − k])),

x′
3(t) = −f(x4([t − k])),

x′
4(t) = −f(x1([t − k])),

(1.4)

where f is the activation function with McCulloch-Pitts nonlinearity (1.3), k is a nonnegative
integer and the negative (resp., positive) sign on the right indicates negative (resp., positive)
feedback. (1.4) describes the dynamics of four interacting neurons with no internal decays.
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To study (1.4), it is convenient to consider the following difference system:

x1(n + 1) = x1(n) + f(x2(n − k)),

x2(n + 1) = x2(n) + f(x3(n − k)),

x3(n + 1) = x3(n) − f(x4(n − k)),

x4(n + 1) = x4(n) − f(x1(n − k)),

(1.5)

where k is a nonnegative integer and f satisfies (1.3). In fact, integrate (1.4) from n to t ∈
[n, n + 1) to get

x1(t) = x1(n) +
∫ t

n

f(x2([s − k]))ds = x1(n) + f(x2(n − k))(t − n),

x2(t) = x2(n) +
∫ t

n

f(x3([s − k]))ds = x2(n) + f(x3(n − k))(t − n),

x3(t) = x3(n) −
∫ t

n

f(x4([s − k]))ds = x3(n) − f(x4(n − k))(t − n),

x4(t) = x4(n) −
∫ t

n

f(x1([s − k]))ds = x4(n) − f(x1(n − k))(t − n).

(1.6)

Letting t → n+1, we get a special case of (1.5)with k = 0. Hence, system (1.5) can be regarded
as a more general neural network model of four neurons with transmission delay.

Our study is inspired by the work of Chen [16–18], who considered

x(n + 1) = x(n) − f(x(n − k)),

x(n + 1) = x(n) + f(x(n − k)),

x(n + 1) = x(n) + f
(
y(n − k)

)
,

y(n + 1) = y(n) − f(x(n − k)),

(1.7)

where f : R → R is given by (1.3).
The main objective of this paper is to study (1.5) with f satisfying (1.3). The

discontinuity of f makes it difficult to apply directly the theory of discrete dynamical systems
to system (1.5). However, by using semicycle analysis method, we obtain some interesting
results for the periodicity of (1.5). It is shown that every bounded solution of system (1.5) is
eventually periodic.

The rest of the paper is organized as follows. In Section 2, we introduce some necessary
notations and lemmas that will be used later. In Section 3, we state and prove our main result.
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2. Notations and Preliminaries

For the sake of simplicity, we introduce some notations. Let Z denote the set of all integers.
For a, b ∈ Z, define Z(a) = {a, a + 1, . . .} and Z(a, b) = {a, a + 1, . . . , b}whenever a ≤ b.

By a solution of (1.5), we mean a sequence {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k that satis-
fies (1.5). Clearly, for given (x1(−k), x2(−k), x3(−k), x4(−k)), (x1(−k + 1), x2(−k + 1), x3(−k +
1), x4(−k + 1)), . . . , (x1(0), x2(0), x3(0), x4(0)) ∈ R4, system (1.5) has a unique solution
{(x1(n), x2(n), x3(n), x4(n))}+∞n=−k satisfying the initial condition:

(x1(i), x2(i), x3(i), x4(i)) = (x1(i), x2(i), x3(i), x4(i)) for i ∈ Z(−k, 0). (2.1)

If all terms of the sequence {vn}+∞n=−k are integers, we say that it is an integer sequence. If
{xi(n)}∞n=−k for all i ∈ Z(1, 4) are integer sequences and also satisfy (1.5) and (1.3), then
{(x1(n), x2(n), x3(n), x4(n))}+∞n=−k is said to be an integer sequence solution of (1.5) and (1.3).

Let {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k be a solution of (1.5). Define

τ(x) =

⎧
⎨

⎩
x − [x] for x /= 0,

1 for x = 0.
(2.2)

Clearly, τ(x) ≥ 0. From (1.5) and (1.3), we have τ(xi(n)−σ) = τ(xi(0)−σ), i ∈ Z(1, 4). Denote
x̃i(n) = xi(n) − σ − τ(xi(0) − σ) + 1, i ∈ Z(1, 4). Then x̃i(n) ∈ Z for all n ∈ Z(−k), i ∈ Z(1, 4).
Moreover, if xi(n) > σ, then x̃i(n) = xi(n)−σ −τ(xi(0)−σ)+1 ≥ xi(n)−σ > 0, and if xi(n) ≤ σ,
then x̃i(n) = xi(n)−σ −τ(xi(0)−σ)+1 ≤ −1+1 = 0, i ∈ Z(1, 4). Hence, {(x̃1(n), . . . , x̃4(n))}+∞n=−k
is an integer sequence solution of (1.5) and (1.3) with σ = 0.

So, without loss of generality, in the paper we always assume that σ = 0, and a solution
of (1.5)means an integer sequence solution.

A solution {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k is said to be eventually periodic if there
exist n0 ∈ {−k,−k + 1,−k + 2, . . .} and ω ∈ {1, 2, 3, . . .} such that

(x1(n + n0 +ω), x2(n + n0 +ω), . . . , x4(n + n0 +ω)) = (x1(n + n0), x2(n + n0), . . . , x4(n + n0)),
(2.3)

for n = 0, 1, 2, . . . , and ω is called a period. The smallest such ω is called the minimal period
of {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k.

Definition 2.1. For a sequence {un}+∞n=−k, we say that {un1 , un1+1, . . . , un1+l−1} with l ≥ 1 is a
positive semicycle with the length l if un > 0 for n ∈ Z(n1, n1 + l − 1), and n1 and l satisfy

either n1 = −k or un1−1 ≤ 0,

either l = +∞ or un1+l ≤ 0.
(2.4)

We call l the length of the positive semicycle. A negative semicycle is defined similarly
(replace > by ≤ and vice versa).

To simplify the following arguments, for an integer sequence, we denote A+
r the

positive semicycle {vn1 , . . . , vn1+2r}with vn1+r±m = r−m+1 form ∈ Z(0, r) andA−
r the negative

semicycle {vn1 , . . . , vn1+2r} with vn1+r±m = m − r for m ∈ Z(0, r).
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Definition 2.2. An integer sequence {vn}n1+L−1
n=n1

(may be infinite terms) is said to be an r-
normal cycle if it possesses one of the representations as follows: {A+

r , A
−
r , . . . , A

+
r , A

−
r },

{A+
r , A

−
r , . . . , A

−
r , A

+
r }, {A−

r , A
+
r , . . . , A

−
r , A

+
r }, and {A−

r , A
+
r , . . . , A

+
r , A

−
r }. In addition, if L = +∞,

then it is said to be a total r-normal cycle.

Remark 2.3. For a r-normal cycle {vn}n1+L−1
n=n1

, from Definition 2.2, it is easy to see that there
must exist i ∈ Z(0) such that L = (2r + 1)i. If L = +∞, that is, {vn}n1+L−1

n=n1
is a total r-normal

cycle, then i = +∞.
Throughout this section, we tacitly assume that (S) = {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k

is a periodic solution of system (1.5) satisfying the initial values:

(x1(i), x2(i), x3(i), x4(i)) ∈ Z4 for i ∈ Z(−k, 0). (2.5)

In view of (1.5) and (1.3), it is easy to see that all terms x1(n), x2(n), x3(n), and x4(n) of (S)
are integers, that is, (S) is an integer sequence solution of (1.5).

For a periodic solution (S) of (1.5), denote

P+
xi
= sup{xi(n) : n ∈ Z(−k)} − 1, P−

xi
= − inf{xi(n) : n ∈ Z(−k)}, (2.6)

and let L+
xi
and L−

xi
be the length of the longest positive semicycle of {xi(n)}+∞n=−k and the length

of the longest negative semicycle of {xi(n)}+∞n=−k, respectively, where i = 1, 2, . . . , 4. Note that
L+
xi
, L−

xi
∈ Z(1) for i = 1, 2, . . . , 4.
The following several lemmas will be useful to the proof of the main result in this

paper.

Lemma 2.4.

(a) Either L+
xi
> L+

xj
or L−

xi
> L+

xj
or min{L+

xi
, L−

xi
} ≥ L+

xj
for i, j = 1, 2, . . . , 4 and i /= j.

(b) Either L+
xi
> L−

xj
or L−

xi
> L−

xj
or min{L+

xi
, L−

xi
} ≥ L−

xj
for i, j = 1, 2, . . . , 4 and i /= j.

Proof. We only prove the conclusion: either L+
x1

> L+
x2

or L−
x1

> L+
x2

or min{L+
x1
, L−

x1
} ≥ L+

x2
. The

other conclusions can be proved similarly. Now, we distinguish two cases to finish the proof.

Case 1. L+
x2

= 2r for some r > 0. Without loss of generality, we assume that x2(0) ≤ 0, x2(1) >
0, x2(2) > 0, . . . , x2(2r) > 0, x2(2r + 1) ≤ 0, . . .. Then, from (1.5) and (1.3), we have

x1(2r + k + 1) = x1(r + k + 1) +
2r∑

i=r+1

f(x2(i)) = x1(r + k + 1) + r, (2.7)

x1(r + k + 1) = x1(k + 1) +
r∑

i=1

f(x2(i)) = x1(k + 1) + r. (2.8)

(i) If x1(r + k + 1) ≥ 1, it follows from (2.7) that x1(2r + k + 1) ≥ r + 1. Since the distance
between consecutive elements of {x1(n)}∞n=0 is 1, we have L+

x1
≥ 2r + 1 > L+

x2
.

(ii) If x1(r + k + 1) ≤ 0, it follows from (2.8) that x1(k + 1) ≤ −r. Thus, L−
x1

≥ 2r + 1 > L+
x2
.
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Case 2. L+
x2

= 2r+1 for some r > 0.Without loss of generality, we assume that x2(0) ≤ 0, x2(1) >
0, x2(2) > 0, . . . , x2(2r + 1) > 0, and x2(2r + 2) ≤ 0, . . .. Then, from (1.5) and (1.3), we have

x1(k + 2r + 2) = x1(r + k + 1) +
2r+1∑

i=1+r

f(x2(i)) = x1(r + k + 1) + (r + 1), (2.9)

x1(r + k + 1) = x1(k + 1) +
r∑

i=1

f(x2(i)) = x1(k + 1) + r. (2.10)

(i) If x1(r +k+1) > 0, it follows from (2.9) that x1(k+2r +2) > r +1. Thus, L+
x1

> 2r +1 =
L+
x2
.

(ii) If x1(r +k+1) < 0, it follows from (2.10) that x1(k+1) < −r. Thus, L−
x1

> 2r +1 = L+
x2
.

(iii) If x1(r + k + 1) = 0, it follows from (2.9) and (2.10) that x1(k + 2r + 2) = r + 1 and
x1(k + 1) = −r. Thus, min{L+

x1
, L−

x1
} ≥ 2r + 1 = L+

x2
.

Therefore, we have either L+
x1

> L+
x2

or L−
x1

> L+
x2

or min{L+
x1
, L−

x1
} ≥ L+

x2
. This completes

the proof.

Lemma 2.5. L+
xi
= L−

xj
for i, j = 1, . . . , 4. Moreover, L+

x1
is odd.

Proof. The lemma follows immediately from Lemma 2.4 together with its proof.

Lemma 2.6. P+
xi
= P−

xj
for i, j = 1, . . . , 4.

Proof. First, we claim that P+
x2

≤ P+
x1
. Otherwise, P+

x2
> P+

x1
. Since the distance between

consecutive elements of {x2(n)}∞n=0 is 1, it follows easily from the definitions of P+
x2

and L+
x2

that L+
x2

≥ 2P+
x2

+ 1. By Lemma 2.5, there exists r ≥ 0 such that L+
x2

= 2r + 1 ≥ 2P+
x2

+ 1, which
implies that r ≥ P+

x2
. Without loss of generality, we assume that x2(0) ≤ 0, x2(1) > 0, x2(2) >

0, . . . , x2(2r + 1) > 0, and x2(2r + 2) ≤ 0, . . .. Note that r ≥ P+
x2

and P+
x2

> P+
x1
. It follows from

(2.9) and the definition of P+
x1

that

x1(k + 1 + r) = x1(k + 2r + 2) − (r + 1)

≤ x1(k + 2r + 2) − P+
x2
− 1

< x1(k + 2r + 2) − P+
x1
− 1

≤ 0.

(2.11)

Thus, x1(k + 1 + r) ≤ −1, which, together with (2.10), implies that

x1(k + 1) = x1(k + 1 + r) − r ≤ −(r + 1). (2.12)

It follows that P−
x1

≥ r + 1 and hence, L−
x1

≥ 2r + 3 > L+
x2
, a contradiction to Lemma 2.5. This

proves the claim. Repeating the same argument as that in the proof of the above claim, we
have P+

xi
≤ P+

xj
, P−

xi
≤ P−

xj
, and P+

xi
≤ P−

xj
for i, j = 1, . . . , 4 and i /= j. Thus, we get P+

xi
= P−

xj
for

i, j = 1, . . . , 4. This completes the proof.
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Lemma 2.7. L+
x1

= 2P+
x1
+ 1.

Proof. It follows from the definitions of P+
x1
and L+

x1
that L+

x1
≥ 2P+

x1
+ 1. We show L+

x1
= 2P+

x1
+ 1

by way of contradiction. Assume that L+
x1

> 2P+
x1

+ 1. By Lemma 2.5, there exists r ≥ 0 such
that L+

x1
= 2r + 1 ≥ 2P+

x1
+ 1, which implies that r ≥ P+

x1
. Without loss of generality, we assume

that x1(0) ≤ 0, x1(1) > 0, x1(2) > 0, . . . , x1(2r + 1) > 0, and x1(2r + 2) ≤ 0, . . .. Now, we
distinguish two cases to finish the proof.

Case 1. x4(r + k + 1) ≥ 1. For this case, from (1.5) and (1.3), we have

x4(k + 1) = x4(k + r + 1) +
r∑

i=1

f(x1(i))

≥ 1 + r

> 1 + P+
x1
,

(2.13)

which implies that P+
x4

> P+
x1
, a contradiction to Lemma 2.6.

Case 2. x4(r + k + 1) ≤ 0. For this case, from (1.5) and (1.3), we have

x4(k + 2r + 2) = x4(r + k + 1) −
2r+1∑

i=1+r

f(x1(i))

≤ −(1 + r),

(2.14)

which implies that P−
x4

≥ 1 + r > P+
x1
, a contradiction to Lemma 2.6. This completes the proof.

Throughout the remaining part of this paper, we denote P+
x1

= p.

Lemma 2.8.

(a) x1(n1) = p+1 for some n1 ∈ Z(−k). Moreover, x4(n1+k) = 1 and x4(n1+k+p+1) = −p.

(b) x4(n2) = p+1 for some n2 ∈ Z(−k). Moreover, x3(n2+k) = 1 and x3(n2+k+p+1) = −p.

(c) x2(n3) = p+1 for some n3 ∈ Z(−k). Moreover, x1(n3+k) = 0 and x1(n3+k+p+1) = p+1.

(d) x3(n4) = p+1 for some n4 ∈ Z(−k). Moreover, x2(n4+k) = 0 and x2(n4+k+p+1) = p+1.

Proof. We only give the proof of the conclusion (c). The other conclusions can be proved
similarly. By the definition of P+

x2
, there must exist n3 ∈ Z(−k) such that x2(n3) = P+

x2
+1 = p+1.

Since the distance between consecutive elements of {x2(n)}∞n=0 is 1, it follows that x2(n3 ± j) >
0 for all j ∈ Z(1, p). We claim that x1(n3 + k) = 0. Otherwise, x1(n3 + k) ≤ −1 or x1(n3 + k) ≥ 1.
If x1(n3 + k) ≥ 1, it follows from (1.5) and (1.3) that

x1
(
n3 + k + p + 1

)
= x1(n3 + k) +

n3+p∑

j=n3

f
(
x2
(
j
))

= x1(n3 + k) +
(
p + 1

)
. (2.15)
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Thus, x1(n3 + k + p + 1) ≥ p + 2, which implies that P+
x1

≥ p + 2 > P+
x2
, a contradiction to

Lemma 2.6. If x1(n3 + k) ≤ −1, it follows from (1.5) and (1.3) that

x1(n3 + k) = x1
(
n3 + k − p

)
+

n3−1∑

j=n3−p
f
(
x2
(
j
))

= x1
(
n3 + k − p

)
+ p. (2.16)

Thus, x1(n3+k−p) = x1(n3+k)−p ≤ −1−p, which implies that P−
x1

≥ p+1 > P+
x2
, a contradiction

to Lemma 2.6. This proves the claim. By (1.5) and (1.3), we must have

x1
(
n3 + k + p + 1

)
= x1(n3 + k) +

n3+p∑

j=n3

f
(
x2
(
j
))

= p + 1. (2.17)

This completes the proof.

Arguing as in the proof of Lemma 2.8, we can get the following result.

Lemma 2.9.

(a) x1(n1) = −p for some n1 ∈ Z(−k). Moreover, x4(n1+k) = 0 and x4(n1+k+p+1) = p+1.

(b) x4(n2) = −p for some n2 ∈ Z(−k). Moreover, x3(n2+k) = 0 and x3(n2+k+p+1) = p+1.

(c) x2(n3) = −p for some n3 ∈ Z(−k). Moreover, x1(n3 + k) = 1 and x1(n3 + k + p + 1) = −p.

(d) x3(n4) = −p for some n4 ∈ Z(−k). Moreover, x2(n4 + k) = 1 and x2(n4 + k + p + 1) = −p.

Lemma 2.10. p ≤ 2k.

Proof. Without loss of generality, we assume that x1(0) = 0, x1(1) = 1, . . . , x1(p) = p, x1(p +
1) = p + 1, x1(p + 2) = p, . . . , x1(2p) = 2, x1(2p + 1) = 1, and x1(2p + 2) = 0. It follows from
Lemma 2.8 that x4(p + k + 1) = 1. By (1.5) and (1.3), we have

x4
(
p + k + 1

)
= x4(k + 1) −

p∑

i=1

f(x1(i)). (2.18)

Thus, x4(k + 1) = p + 1. It follows from Lemma 2.8 that x3(p + 2k + 2) = −p, and hence, by
Lemma 2.9, we have x2(p + 3k + 2) = 1. From (1.5) and (1.3), we get

x2
(
p + 3k + 2

)
= x2(3k + 2) +

p+2k+1∑

i=2k+2

f(x3(i)) = x2(3k + 2) − p. (2.19)

Thus, x2(3k+2) = p+1. Therefore, by Lemma 2.8, we have x1(4k+2) = 0. Since x1(2p+2) = 0,
it follows that 4k + 2 ≥ 2p + 2, and hence 2k ≥ p. This completes the proof.

We hereafter use Mxi to denote the length of the longest normal cycle of {xi(n)}+∞n=−k,
where i = 1, . . . , 4.
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Lemma 2.11. Mxi = +∞, i = 1, . . . , 4.

Proof. We show that Mxi = +∞ for i ∈ Z(1, 4) by way of contradiction. Without loss of
generality, we assume thatMx1 < +∞. We will distinguish several cases to finish the proof.

Case 1. Mxi = +∞, i = 2, 3, 4. Without loss of generality, we assume that {x2(i)}+∞n=1 is a total
p-normal cycle and x2(1) = 1. Then, x2(2i(2p + 1) + p + 1) = p + 1 for i ∈ Z(0), and x2(2i(2p +
1) + 3p + 2) = −p for i ∈ Z(0). By Lemmas 2.8 and 2.9, we have

x1
(
2i
(
2p + 1

)
+
(
p + 1

)
+
(
k + p + 1

))
= p+1, x1

(
2i
(
2p + 1

)
+
(
3p + 2

)
+
(
k + p + 1

))
= −p,
(2.20)

for i ∈ Z(0). Therefore, {x1(n)}+∞n=p+k+2 is a total p-normal cycle, which is a contradiction to
Mx1 < +∞.

Case 2. Mxi < +∞, i = 2, 3, 4. Without loss of generality, we assume that Mx2 ≥ max{Mx1 ,
Mx3 ,Mx4}. Then, by the definition of Mx2 , there exists L ≥ 1 such that Mx2 = (2p + 1)L is the
length of the longest normal cycle of {x2(n)}+∞n=−k. Without loss of generality, we assume that
{x2(n)}Mx2

n=1 is a p-normal cycle and xMx2−p = p + 1, xMx2−p+1 = p, . . . , xMx2−1 = 2, xMx2
= 1. To

finish the proof of Case 2, we will distinguish two subcases.

Subcase 1. x2(1) = 1. Then there exists q ≥ 0 such that L = 2q + 1. Thus,

x2
(
2i
(
2p + 1

)
+ p + 1

)
= p + 1 for i ∈ Z

(
0, q

)
,

x2
(
2i
(
2p + 1

)
+ 3p + 2

)
= −p for i ∈ Z

(
0, q − 1

)
.

(2.21)

By Lemmas 2.8 and 2.9, we have x1(2i(2p + 1) + (p + 1) + (k + p + 1)) = p + 1 for i ∈ Z(0, q) and
x1(2i(2p + 1) + (3p + 2) + (k + p + 1)) = −p for i ∈ Z(0, q − 1). It follows from x2(p + 1) = p + 1
that x1(p + k + 1) = 0. This, combined with

x1
(
p + k + 1

)
= x1(k + 1) +

p∑

i=1

f(x2(i)) = x1(k + 1) + p, (2.22)

gives x1(k + 1) = −p. By Lemma 2.10, we have k − p + 1 ≥ k − 2k + 1 > −k. Therefore, the total
number of p + 1 and −p contained in {x1(i)}(2q+1)(2p+1)+k+1+pi=k+1−p is 2q + 2. Since

(
2q + 1

)(
2p + 1

)
+ k + 1 + p − (

k − p + 1
)
+ 1 =

(
2q + 1

)(
2p + 1

)
+ 2p + 1, (2.23)

it follows that {x1(i)}(2q+1)(2p+1)+k+1+pi=k+1−p is a normal cycle with the length of Mx2 + 2p + 1, and
hence Mx1 > Mx2 , which leads to a contradiction.

Subcase 2. x2(1) = 0. Then, using a similar argument to that in the proof of Subcase 1, we can
show that this is also a contradiction.

If Mx2 < +∞, Mx3 = +∞, Mx4 = +∞ or Mx2 < +∞, Mx3 < +∞, Mx4 = +∞, then we
have the same contradiction by similar arguments. This completes the proof.
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3. Main Result and Proof

Theorem 3.1. For k ∈ Z(0), every bounded solution of (1.5) is eventually periodic with the minimal
period 4r + 2 for some r ∈ Ω(k), where Ω(k) = {r ∈ Z(0) : (2k + 1)/(2r + 1) ∈ Z(0)}.

Proof. Let {(x1(n), x2(n), x3(n), x4(n))}+∞n=−k be a bounded solution of (1.5). Then there exists
a positive integer M0 > 0 such that |x1(n)| + · · · + |x4(n)| < M0 for all n ∈ Z(−k). Denote
xn
j (i) = xj(n − i) for i ∈ Z(0, k) and j ∈ Z(1, . . . , 4), and

Xn =
(
xn
1 (0), x

n
1 (1), . . . , x

n
1 (k), x

n
2 (0), x

n
2 (1), . . . , x

n
2 (k), . . . , x

n
4 (0), . . . , x

n
4 (k)

)
. (3.1)

Define Pi : Z4k+4 → Z by setting Pi(v1, v2, . . . , v4k+4) = vi for vi ∈ Z and i ∈ Z(1, 4k + 4), and
define F = (F1, F2, . . . , F4k+4) as

Fi(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1X + f(P2k+2X) for i = 1,

Pi−1X for 2 ≤ i ≤ k + 1,

Pk+2X + f(P3k+3X) for i = k + 2,

Pi−1X for k + 3 ≤ i ≤ 2k + 2,

P2k+3X − f(P4k+4X) for i = 2k + 3,

Pi−1X for 2k + 4 ≤ i ≤ 3k + 3,

P3k+4X − f(Pk+1X) for i = 3k + 4,

Pi−1X for 3k + 5 ≤ i ≤ 4k + 4.

(3.2)

Then, Xn+1 = F(Xn). Since |x1(n)| + · · · + |x4(n)| < M0 for all n ∈ Z(−k) and xj(n) ∈ Z for
all n ∈ Z(−k) and j ∈ Z(1, . . . , 4), it follows that {Xn}+∞n=−k is a finite set. Therefore, there
exist n1 > n2 ≥ 1 such that Xn2 = Xn1 = Xn2+n1−n2 . This, combined with Xn+1 = F(Xn),
gives Xn = Xn+n1−n2 for n ≥ n2 + 1. Hence, {Xn}+∞n=−k is eventually periodic with the period
(n1 − n2). It follows that {PjXn}+∞n=−k are also eventually periodic, j = 1, k + 2, 2k + 3, 3k + 4.
Therefore, {(x1(n), . . . , x4(n))}+∞n=−k is eventually periodic with the minimal period T ∈ Z(1).
By Lemma 2.11, there exists some r ∈ Z(0) such that T = 4r + 2. Without loss of generality,
we assume that {x1(n)}+∞n=1 is a total r-normal cycle, and x1(1) = 1. Then, x1(r + 1) = r + 1. By
Lemma 2.8, we can get that x4(r +k+1) = 1 and x4(2r +2+k) = −r. It follows from Lemma 2.9
that x3(2r+2k+2) = 0 and x3(3r+2k+3) = r+1, and so, again by Lemma 2.8, x2(3r+3k+3) = 0
and x2(4r+3k+4) = r+1. By Lemma 2.8, we have x1(4r+4k+4) = 0 and x1(5r+4k+5) = r+1.
From (1.5) and (1.3), we can get x1(4r + 4k + 5) = x1(4r + 4k + 4) + f(x2(4r + 3k + 4)). Thus,
x1(4r+4k+5) = 0+1 = 1. Therefore, {x1(i)}4r+4k+4i=1 consists ofA+

r , A
−
r , . . . , A

+
r , A

−
r , consecutively,

in total of N semicycles, in which N is a positive even integer. Consequently, there exists an
integerM ≥ 0 such that 4r + 4k + 4 = (2r + 1) · (2M + 2), that is, (2k + 1)/(2r + 1) = M, which
implies that r ∈ Ω(k). This completes the proof.
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