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A class of two-neuron networks with resonant bilinear terms is considered. The stability of the
zero equilibrium and existence of Hopf bifurcation is studied. It is shown that the zero equilibrium
is locally asymptotically stable when the time delay is small enough, while change of stability of
the zero equilibrium will cause a bifurcating periodic solution as the time delay passes through a
sequence of critical values. Some explicit formulae for determining the stability and the direction
of the Hopf bifurcation periodic solutions bifurcating fromHopf bifurcations are obtained by using
the normal form theory and center manifold theory. Finally, numerical simulations supporting the
theoretical analysis are carried out.

1. Introduction

Based on the assumption that the elements in the network can respond to and communicate
with each other instantaneously without time delays, Hopfield proposed Hopfield neural
networks (HNNs) model in 1980s [1, 2]. During the past several years, the dynamical
phenomena of neural networks have been extensively studied because of the widely
application in various information processing, optimization problems, and so forth. In
particular, the appearance of a cycle bifurcating from an equilibrium of an ordinary or a
delayed neural network with a single parameter, which is known as a Hopf bifurcation, has
attracted much attention (see [3–13]).

In 2008, Yang et al. [14] investigated the Bautin bifurcation of the two-neuron networks
with resonant bilinear terms and without delay:

ẋ1(t) = (α1 + a)f(x1) + (α2 + b)f(x2) + cx1x2,

ẋ2(t) = (α2 − b)f(x1) + (α1 − a)f(x2) + dx1x2,
(1.1)
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where xi(t) (i = 1, 2) represents the state of the ith neuron at time t, f(xi) (i = 1, 2) is
the connection function between two neurons, and α1, α2, a, b, c, d are real parameters, and
obtained a sufficient condition for a Bautin bifurcation to occur for system (1.1) by using
the standard normal form theory and with Maple software. It is well known that in the
implementation of networks, time delays are inevitably encountered because of the finite
switching speed of signal transmission. Motivated by the viewpoint, in the following, we
assume that the time delay from the first neuron to the second neuron is τ2 and back to the
first neuron is τ1, then we have the following neural networks whose delays are introduced:

ẋ1(t) = (α1 + a)f(x1) + (α2 + b)f(x2(t − τ1)) + cx1x2,
ẋ2(t) = (α2 − b)f(x1(t − τ2)) + (α1 − a)f(x2) + dx1x2,

(1.2)

where xi(t) (i = 1, 2) represents the state of the i-th neuron at time t, f(xi) (i = 1, 2) is the
connection function between two neurons, α1, α2, a, b, c, d are real parameters, and τ1, τ2 are
positive constants. We all know that time delays that occurred in the interaction between
neurons will affect the stability of a network by creating instability, oscillation, and chaos
phenomena.

The purpose of this paper is to discuss the stability and the properties of Hopf
bifurcation of model (1.2). To the best of our knowledge, it is the first to deal with the stability
and Hopf bifurcation of the system (1.2).

This paper is organized as follows. In Section 2, the stability of the equilibrium and
the existence of Hopf bifurcation at the equilibrium are studied. In Section 3, the direction of
Hopf bifurcation and the stability and periods of bifurcating periodic solutions on the center
manifold are determined. In Section 4, numerical simulations are carried out to illustrate the
validity of the main results. Some main conclusions are drawn in Section 5.

2. Stability of the Equilibrium and Local Hopf Bifurcations

Throughout this paper, we assume that the function f satisfies the following conditions:
(H1) f ∈ C3(R), f(0) = 0, and uf(u) > 0, for u/= 0.
Hypothesis (H1) implies that E∗(0, 0) is an equilibrium of the system (1.2) and

linearized system of (1.2) takes the form

ẋ1(t) = (α1 + a)f ′(0)x1 + (α2 + b)f ′(0)x2(t − τ1),
ẋ2(t) = (α2 − b)f ′(0)x1(t − τ2) + (α1 − a)f ′(0)x2.

(2.1)

The associated characteristic equation of (2.1) is

λ2 − 2α1f ′(0)λ +
(
α21 − a2

)
f

′2(0) −
(
α22 − b2

)
f

′2(0)e−λτ = 0, (2.2)

where τ = τ1 + τ2.
In the section, we consider the sum of two delays as the parameter to give some

conditions that separate the first quadrant of the (τ1, τ2) plane into two parts, one is the stable
region another is the unstable region, and the boundary is the Hopf bifurcation curve.
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In order to investigate the distribution of roots of the transcendental equation (2.2),
the following Lemma that is stated in [15] is useful.

Lemma 2.1 (see [15]). For the transcendental equation

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n

+
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm = 0,

(2.3)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm) in the open right
half plane can change and only a zero appears on or crosses the imaginary axis.

Now we make the following assumptions:
(H2) α1f ′(0) < 0 and α21 − α22 − a2 + b2 > 0;
(H3) |α21 − a2| < |α22 − b2|.

Lemma 2.2. If (H1)–(H3) hold, then one has the following.

(i) When

τ = τj def=
1
ω0

[
arccos

2α1ω0(
α22 − b2

)
f ′2(0)

+ 2jπ

]
, j = 0, 1, 2, . . .. (2.4)

Equation (2.2) has a simple pair of imaginary roots ±iω0, where

ω0 =

√√(
α21 + a

2
)2 −

[(
α21 − a2

)2 − (
α22 − b2

)2]
f ′4(0) − (

α21 + a
2
)
. (2.5)

(ii) For τ ∈ [0, τ0), all roots of (2.2) have strictly negative real parts.

(iii) When τ = τ0, (2.2) has a pair of imaginary roots ±iω0 and all other roots have strictly
negative real parts.

Proof. Obviously, by assumption (H2), λ = 0 is not the root of (2.2). When τ = 0, then (2.2)
becomes

λ2 − 2α1f ′(0)λ +
[
α21 − α22 − a2 + b2

]
f

′2(0) = 0. (2.6)

It is easy to see that all roots of (2.6) have negative real parts.
±iω(ω > 0) is a pair of purely imaginary roots of (2.2) if and only if ω satisfies

−ω2 − 2α1f ′(0)ωi +
(
α21 − a2

)
f

′2(0) −
(
α2 − b2

)
f

′2(0)(cosωτ − i sinωτ) = 0. (2.7)
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Separating the real and imaginary parts, we get

(
α22 − b2

)
f

′2(0) cosωτ =
(
α21 − a2

)
f

′2(0) −ω2,

(
α22 − b2

)
f

′2(0) sinωτ = 2α1f ′(0)ω.
(2.8)

It follows from (2.8) that

ω4 + 2
(
α21 + a

2
)
f

′2(0)ω2 +
[(
α21 − a2

)2 −
(
α22 − b2

)2
]
f

′4(0) = 0. (2.9)

Thus, we obtain

ω =

√√(
α21 + a

2
)2 −

[(
α21 − a2

)2 − (
α22 − b2

)2]
f ′4(0) − (

α21 + a
2
)
. (2.10)

It is clear that ω is well defined if condition (H3) holds.
Denote

ω0 =

√√(
α21 + a

2
)2 −

[(
α21 − a2

)2 − (
α22 − b2

)2]
f ′4(0) − (

α21 + a
2
)
. (2.11)

Let

τj =
1
ω0

[
arccos

2α1ω0(
α22 − b2

)
f ′2(0)

+ 2jπ

]
, j = 0, 1, 2, . . .. (2.12)

From (2.8), we know that (2.2) with τ = τj(j = 0, 1, 2, . . .) has a pair of imaginary roots ±iω0,
which are simple.

According, the discussion and applying the Lemma 2.1 and Cooke andGrossman [16],
we obtain the conclusion (ii) and (iii). This completes the proof.

Let λj(τ) = αj(τ) + iωj(τ) be a root of (2.2) near τ = τj , and αj(τj) = 0, ωj(τj) =
ω0, (j = 0, 1, 2 . . .). Due to functional differential equation theory, for every τj , k = 0, 1, 2 . . .,
there exists ε > 0 such that λj(τ) is continuously differentiable in τ for |τ−τj | < ε. Substituting
λ(τ) into the left-hand side of (2.2) and taking derivative with respect to τ , we have

[
dλ

dσ

]−1
= − 2λ − 2α1f ′(0)(

α22 − b2
)
f ′2(0)e−λτλ

− τ

λ
, (2.13)
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which leads to

Re
[
dλ

dσ

]−1
τ=τj

=
2α1f ′(0)

(
α22 − b2

)
f

′2(0)ω0 sinω0τ
j − 2ω2

0

(
α22 − b2

)
f

′2(0) cosω0τ
j

[(
α22 − b2

)
f ′2(0)ω0 sinω0τj

]2 + [
ω0

(
α22 − b2

)
f ′2(0) cosω0τj

]2 . (2.14)

By (2.8), we get

Re
[
dλ

dσ

]−1
τ=τj

=
2ω2

0 +
(
3α21 + a

2)f ′2(0)
[
2ω0α1f ′(0)

]2 + [(
α21 − a2

)
f ′2(0) −ω2

0

]2 > 0. (2.15)

So we have

signRe
[
dλ

dτ

]

τ=τj
= signRe

[
dλ

dτ

]−1
τ=τj

> 0. (2.16)

From the above analysis, we have the following results.

Lemma 2.3. Let τ = τj , then the following transversality condition:

d

dτ
Re

[
λj(τ)

]∣∣∣∣
τ=τj

> 0 (2.17)

is satisfied.

From Lemma 2.3, we can obtain the following lemma.

Lemma 2.4. Assume that (H3) holds. If τ > τ0, then (2.2) has at least one root with strictly positive
real part.

Remark 2.5. In fact, Applying the lemma in Cooke and Grossman [16] and Lemma 2.3, we can
easily see that if τ ∈ (τj , τj+1), (2.2) has 2(j + 1) (j = 0, 1, 2, . . .) roots with positive real parts.

From Lemma 2.2–2.4, we have the following results on the local stability and Hopf
bifurcation for system (1.2).

Theorem 2.6. For system (1.2), let τ0 be defined by (2.4) and assume that (H1)–(H3) hold.

(i) If τ ∈ [0, τ0), then the equilibrium point of system (1.2) is asymptotically stable.

(ii) If τ > τ0, then the equilibrium point of system (1.2) is unstable.

(iii) τ = τj (j = 0, 1, 2, . . .) are Hopf bifurcation values for system (1.2).

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained some conditions which guarantee that the two-neuron
networks with resonant bilinear terms undergo the Hopf bifurcation at some values of
τ = τ1 + τ2. In this section, we shall derived the explicit formulae determining the direction,
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stability, and period of these periodic solutions bifurcating from the equilibrium E∗(0, 0) at
this critical value of τ , by using techniques from normal form and centermanifold theory [17],
Throughout this section, we always assume that system (2.1) undergoes Hopf bifurcation at
the equilibrium E∗(0, 0) for τ = τ0 and then ±iω0 is corresponding purely imaginary roots of
the characteristic equation at the equilibrium E∗(0, 0).

For convenience, let τ = τ0 +μ, μ ∈ R. Then μ = 0 is the Hopf bifurcation value of (1.2).
Thus, we shall study Hopf bifurcation of small amplitude periodic solutions of (1.2) from the
equilibrium point for μ close to 0. Without loss of generality, we assume that τ01 > τ02 and let
|μ| ≤ τ01 − τ02 . Since our analysis is local, where τ0 = τ01 + τ02 and τ = τ01 + (τ02 + μ). We can
consider the fixed phase space C = C([−τ01 , 0], R2).

For (φ1, φ2) ∈ C, define

Lμφ = A1φ(0) + Bφ(−τ2) + Cφ(−τ1), (3.1)

where

A1 =

(
(α1+a)f ′(0) 0

0 (α1−a)f ′(0)

)
, B =

(
0 0

(α2−b)f ′(0) 0

)
, C=

(
0 (α2+b)f ′(0)

0 0

)
.

(3.2)

We expand the nonlinear part of the system (1.2) and derive the following expression:

f
(
μ, φ

)
=

(
f1
(
μ, φ

)

f2
(
μ, φ

)
)
, (3.3)

where

f1
(
μ, φ

)
= (α1 + a)

[
f ′′(0)
2

φ2
1(0) +

f ′′′(0)
3!

φ3
1(0)

]

+ (α2 + b)
[
f ′′(0)
2

φ2
2(−τ1) +

f ′′′(0)
3!

φ3
2(−τ1)

]
+ cφ1(0)φ2(0) + h.o.t.,

f2
(
μ, φ

)
= (α2 − b)

[
f ′′(0)
2

φ2
1(−τ2) +

f ′′′(0)
3!

φ3
1(−τ2)

]

+ (α1 − a)
[
f ′′(0)
2

φ2
2(0) +

f ′′′(0)
3!

φ3
2(0)

]
+ dφ1(0)φ2(0) + h.o.t..

(3.4)

By the representation theorem, there is a matrix function with bounded variation components
η(θ, μ), θ ∈ [−τ01 , 0] such that

Lμφ =
∫0

−τ01
dη

(
θ, μ

)
φ(θ), for φ ∈ C. (3.5)
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In fact, we can choose

η
(
θ, μ

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A1, θ = 0,

Bδ(θ + τ2), θ ∈ [−τ2, 0),
−Cδ(θ + τ01

)
, θ ∈ [−τ01 ,−τ2

)
,

(3.6)

where δ is the Dirac delta function.
For φ ∈ C([−τ01 , 0], R2), define

A
(
μ
)
φ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, −τ01 ≤ θ < 0,
∫0

−τ01
dη

(
s, μ

)
φ(s), θ = 0,

R
(
μ
)
φ =

⎧
⎨
⎩
0, −τ01 ≤ θ < 0,

f
(
μ, φ

)
, θ = 0.

(3.7)

Then (1.2) is equivalent to the abstract differential equation

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (3.8)

where x = (x1, x2)
T , xt(θ) = x(t + θ), θ ∈ [−τ01 , 0].

For ψ ∈ C([0, τ01 ], (R2)∗), define

A∗ψ(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (
0, τ01

]
,

∫0

−τ01
dηT (t, 0)ψ(−t), s = 0.

(3.9)

For φ ∈ C([−τ01 , 0], R2) and ψ ∈ C([0, τ01 ], (R2)∗), define the bilinear form

〈
ψ, φ

〉
= ψ(0)φ(0) −

∫0

−τ01

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0). We have the following result on the relation between the operators
A = A(0) and A∗.

Lemma 3.1. A = A(0) and A∗ are adjoint operators.
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Proof. Let φ ∈ C1([−τ01 , 0], R2) and ψ ∈ C1([0, τ01 ], (R
2)∗). It follows from (3.10) and the

definitions of A = A(0) and A∗ that

〈
ψ(s), A(0)φ(θ)

〉
= ψ(0)A(0)φ(0) −

∫0

−τ01

∫θ

ξ=0
ψ(ξ − θ)dη(θ)A(0)φ(ξ)dξ

= ψ(0)
∫0

−τ01
dη(θ)φ(θ) −

∫0

−τ01

∫θ

ξ=0
ψ(ξ − θ)dη(θ)A(0)φ(ξ)dξ

= ψ(0)
∫0

−τ01
dη(θ)φ(θ) −

∫0

−τ01

[
ψ(ξ − θ)dη(θ)φ(ξ)]θξ=0

+
∫0

−τ01

∫θ

ξ=0

dψ(ξ − θ)
dξ

dη(θ)φ(ξ)dξ

=
∫0

−τ01
ψ(−θ)dη(θ)φ(0) −

∫0

−τ01

∫θ

ξ=0

[
−dψ(ξ − θ)

dξ

]
dη(θ)φ(ξ)dξ

= A ∗ ψ(0)φ(0) −
∫0

−τ01

∫θ

ξ=0
A∗ψ(ξ − θ)dη(θ)φ(ξ)dξ

=
〈
A∗ψ(s), φ(θ)

〉
.

(3.11)

This shows that A = A(0) and A∗ are adjoint operators and the proof is complete.

By the discussions in the Section 2, we know that ±iω0 are eigenvalues of A(0) and
they are also eigenvalues of A∗ corresponding to iω0 and −iω0, respectively. We have the
following result.

Lemma 3.2. The vector

q(θ) =
(
1, γ

)T
eiω0θ, θ ∈

[
−τ01 , 0

]
, (3.12)

where

γ =
iω0 − (α1 + a)f ′(0)

(α2 + b)f ′(0)e−iω0τ
0
1
, (3.13)

is the eigenvector of A(0) corresponding to the eigenvalue iω0, and

q∗(s) = D
(
1, γ∗

)
eiωs, s ∈

[
0, τ01

]
, (3.14)

where

γ∗ = − iω0 + (α1 + a)f ′(0)

(α2 − b)f ′(0)e−iωτ
0
2
, (3.15)
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is the eigenvector of A∗ corresponding to the eigenvalue −iω0, moreover, 〈q∗(s), q(θ)〉 = 1, where

D = 1 + γγ∗ + γ∗τ02 (α2 − b)f ′(0)e−iω0τ
0
2 + γτ01 (α2 + b)f

′(0)eiω0τ
0
1 . (3.16)

Proof. Let q(θ) be the eigenvector of A(0) corresponding to the eigenvalue iω0 and q∗(s) be
the eigenvector of A∗ corresponding to the eigenvalue −iω0, namely, A(0)q(θ) = iω0q(θ) and
A∗q∗T (s) = −iω0q

∗T (s). From the definitions of A(0) and A∗, we have A(0)q(θ) = dq(θ)/dθ
and A∗q∗T (s) = −dq∗T (s)/ds. Thus, q(θ) = q(0)eiω0θ and q∗(s) = q∗(0)eiω0s. In addition,

∫0

−τ01
dη(θ)q(θ) = A1q(0) + Bq(−τ2) + Cq(−τ1) = A(0)q(0) = iω0q(0). (3.17)

That is,

⎛
⎝ iω0 − (α1 + a)f ′(0) −(α2 + b)f ′(0)e−iω0τ

0
1

−(α2 − b)f ′(0)e−iω0τ
0
2 iω0 − (α1 − a)f ′(0)

⎞
⎠q(0) =

(
0

0

)
. (3.18)

Therefore, we can easily obtain

γ =
iω0 − (α1 + a)f ′(0)

(α2 + b)f ′(0)e−iω0τ
0
1

(3.19)

and so

q(0) =

(
1,
iω0 − (α1 + a)f ′(0)

(α2 + b)f ′(0)e−iω0τ
0
1

)T

(3.20)

hence

q(θ) =

(
1,
iω0 − (α1 + a)f ′(0)

(α2 + b)f ′(0)e−iω0τ
0
1

)T

eiω0θ. (3.21)

On the other hand,

∫0

−τ01
q∗(−t)dη(t) = AT

1 q
∗T (0) + BTq∗T

(
−τ02

)
+ CTq∗T

(
−τ01

)
= A∗q∗T (0) = −iω0q

∗T (0). (3.22)

Namely,

⎛
⎝iω0 + (α1 + a)f ′(0) (α2 − b)f ′(0)e−iω0τ

0
2

(α2 + b)f ′(0)e−iω0τ
0
1 iω0 + (α1 − a)f ′(0)

⎞
⎠q∗(0) =

(
0

0

)
. (3.23)



10 Abstract and Applied Analysis

Therefore, we can easily obtain

γ∗ = − iω0 + (α1 + a)f ′(0)

(α2 − b)f ′(0)e−iω0τ
0
2

(3.24)

and so

q∗(0) =

(
1,− iω0 + (α1 + a)f ′(0)

(α2 − b)f ′(0)e−iω0τ
0
2

)
(3.25)

hence

q∗(s) =

(
1,− iω0 + (α1 + a)f ′(0)

(α2 − b)f ′(0)e−iω0τ
0
2

)
eiω0s. (3.26)

In the sequel, we will verify that 〈q∗(s), q(θ)〉 = 1. In fact, from (3.10), we have

〈
q∗(s), q(θ)

〉
= D

(
1, γ∗

)(
1, γ

)T

−
∫0

−τ01

∫θ

ξ=0
D
(
1γ∗

)
e−iω0(ξ−θ)dη(θ)

(
1, γ

)T
eiω0ξdξ

= D

[
1 + γγ∗ −

∫0

−τ01

(
1, γ∗

)
θeiω0θdη(θ)

(
1, γ

)T
]

= D
{
1 + γγ∗ −

(
1, γ∗

)[
B
(
−τ02

)
e−iω0τ

0
2 + C

(
−τ01

)
e−iω0τ

0
1

](
1, γ

)T}

= D
[
1 + γγ∗ + γ∗τ02 (α2 − b)f ′(0)eiω0τ

0
2 + γτ01 (α2 + b)f

′(0)e−iω0τ
0
1

]

= 1.

(3.27)

Next, we use the same notations as those in Hassard et al. [17] and we first compute
the coordinates to describe the center manifold C0 at μ = 0. Let xt be the solution of (1.2)
when μ = 0.

Define

z(t) =
〈
q∗, xt

〉
, W(t, θ) = xt(θ) − 2Re

{
z(t)q(θ)

}
(3.28)

on the center manifold C0, and we have

W(t, θ) =W(z(t), z(t), θ), (3.29)

where

W(z(t), z(t), θ) =W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ · · · (3.30)
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and z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Noting
thatW is also real if xt is real, we consider only real solutions. For solutions xt ∈ C0 of (1.2),

ż(t) =
〈
q∗(s), ẋt

〉
=
〈
q∗(s), A(0)xt + R(0)xt

〉

=
〈
q∗(s), A(0)xt

〉
+
〈
q∗(s), R(0)xt

〉

=
〈
A∗q∗(s), xt

〉
+ q∗(0)R(0)xt −

∫0

−τ01

∫θ

ξ=0
q∗(ξ − θ)dη(θ)A(0)R(0)xt(ξ)dξ

=
〈
iω0q

∗(s), xt
〉
+ q∗(0)f(0, xt(θ))

def= iω0z(t) + q∗(0)f0(z(t), z(t)).

(3.31)

That is,

ż(t) = iω0z + g(z, z), (3.32)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.33)

Hence, we have

g(z, z) = q∗(0)f0(z, z) = f(0, xt) = D
(
1, γ∗

)(
f1(0, xt), f2(0, xt)

)T
, (3.34)

where

f1(0, xt) = (α1 + a)
[
f ′′(0)
2

x2
1t(0) +

f ′′′(0)
3!

x3
1t(0)

]

+ (α2 + b)
[
f ′′(0)
2

x2
2t

(
−τ01

)
+
f ′′′(0)
3!

x3
2t

(
−τ01

)]
+ cx1t(0)x2t(0) + h.o.t.,

f2(0, xt) = (α2 − b)
[
f ′′(0)
2

x2
1t

(
−τ02

)
+
f ′′′(0)
3!

x3
1t

(
−τ02

)]

+ (α1 − a)
[
f ′′(0)
2

x2
2t(0) +

f ′′′(0)
3!

x3
2t(0)

]
+ dx1t(0)x2t(0) + h.o.t..

(3.35)
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Noticing xt(θ) = (x1t(θ), x2t(θ))
T =W(t, θ) + zq(θ) + zq(θ) and q(θ) = (1, γ)Teiω0θ, we have

x1t(0) = z + z +W
(1)
20 (0)

z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+ · · · ,

x2t(0) = γz + γz +W
(2)
20 (0)

z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+ · · · ,

x1t
(
−τ02

)
= e−iω0τ

0
2 z + eiω0τ

0
2 z +W (1)

20

(
−τ02

)z2
2

+W (1)
11

(
−τ02

)
zz +W (1)

02

(
−τ02

)z2
2

+ · · · ,

x2t
(
−τ01

)
= γe−iω0τ

0
1 z + γeiω0τ

0
1 z +W (2)

20

(
−τ01

)z2
2

+W (2)
11

(
−τ01

)
zz +W (2)

02

(
−τ01

)z2
2

+ · · · .

(3.36)

From (3.33) and (3.34), we have

g(z, z) = q∗(0)f0(z, z) = D
[
f1(0, xt) + γ∗f2(0, xt)

]

=
{
D

[
(α1 + a)

f ′′(0)
2

+ (α2 + b)
f ′′(0)
2

γ2 + cγ
]

+Dγ∗
[
(α2 − b)

f ′′(0)
2

e−2iω0τ
0
2 + (α1 − a)

f ′′(0)
2

γ2 + dγ
]}

z2

+
{
D
[
(α1 + a)f ′′(0) + (α2 + b)f ′′(0)2γγ + 2cRe

{
γ
}]

+Dγ∗
[
(α2 − b)f ′′(0) + (α1 − a)f ′′(0)γγ + 2dRe

{
γ
}]}

zz

+
{
D

[
(α1 + a)

f ′′(0)
2

+ (α2 + b)
f ′′(0)
2

γ2 + cγ
]

+Dγ∗
[
(α2 − b)

f ′′(0)
2

e2iω0τ
0
2 + (α1 − a)

f ′′(0)
2

γ2 + dγ
]}

z2

+
{
D

[
(α1 + a)

f ′′(0)
2

(
2W (1)

11 (0) +W
(1)
20 (0)

)
+ (α1 + a)

f ′′′(0)
2

+ (α2 + b)f ′′(0)γe−iω0τ
0
1W

(2)
11

(
−τ01

)
+ (α2 + b)

f ′′′(0)
2

γ2γe−iω0τ
0
1

+
1
2
c
(
W

(2)
20 (0) + γW

(1)
20 (0)

)]

+Dγ∗
[
(α2 − b)

f ′′(0)
2

(
W

(1)
20

(
−τ02

))
eiω0τ

0
2

+2e−iω0τ
0
2W

(1)
11

(
−τ02

)
+(α2 − b)

f ′′′(0)
2

e−iω0τ
0
2 +(α1−a)

f ′′(0)
2

(
2γW (2)

11 (0)
)

+W (2)
20 (0)γ+(α1−a)

f ′′(0)
2

γ2γ+
1
2
d
(
W

(2)
20 (0)+γW

(1)
20 (0)

)]}
z2z + h.o.t.

(3.37)
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and we obtain

g20 = D
[
(α1 + a)f ′′(0) + (α2 + b)f ′′(0)γ2 + cγ

]

+Dγ∗
[
(α2 − b)f ′′(0)e−2iω0τ

0
2 + (α1 − a)f ′′(0)γ2 + dγ

]
,

g11 = D
[
(α1 + a)f ′′(0) + (α2 + b)f ′′(0)aa + 2cRe

{
γ
}]

+Dγ∗
[
(α2 − b)f ′′(0) + (α1 − a)f ′′(0)γγ + 2dRe

{
γ
}]
,

g02 = D
[
(α1 + a)f ′′(0) + (α2 + b)f ′′(0)γ2 + 2cγ

]

+Dγ∗
[
(α2 − b)f ′′(0)e2iω0τ

0
2 + (α1 − a)f ′′(0)γ2 + 2dγ

]
,

g21 = D
[
(α1 + a)f ′′(0)

(
2W (1)

11 (0) +W
(1)
20 (0)

)
+ (α1 + a)f ′′′(0)

+2(α2 + b)f ′′γe−iω0τ
0
1W

(2)
11

(
−τ01

)
+ (α2 + b)f ′′′(0)γ2γe−iω0τ

0
1

]

+ c
(
W

(2)
20 (0) + γW

(1)
20 (0)

)

+Dγ∗
[
(α2 − b)f ′′(0)

(
W

(1)
20

(
−τ02

))
eiω0τ

0
2

+ 2e−iω0τ
0
2W

(1)
11

(
−τ02

)
+(α2 − b)f ′′′(0)e−iω0τ

0
2 +(α1 − a)f ′′(0)

(
2γW (2)

11 (0)
)

+W (2)
20 (0)γ + (α1 − a)f ′′(0)γ2γ + d

(
W

(2)
20 (0) + γW

(1)
20 (0)

)]
.

(3.38)

For unknown

W
(1)
20 (0), W

(1)
20

(
−τ02

)
, W

(1)
11 (0), W

(2)
11 (0), W

(2)
11

(
−τ01

)
, W

(2)
11

(
−τ02

)
(3.39)

in g21, we still need to compute them.
Form (3.8), (3.32), we have

W ′ =

⎧
⎨
⎩
AW − 2Re

{
q∗(0)fq(θ)

}
, −τ01 ≤ θ < 0,

AW − 2Re
{
q∗(0)fq(θ)

}
+ f, θ = 0

def= AW +H(z, z, θ),

(3.40)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.41)
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Comparing the coefficients, we obtain

(A − 2iω0)W20 = −H20(θ), (3.42)

AW11(θ) = −H11(θ),

· · · .
(3.43)

And we know that, for θ ∈ [−τ01 , 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −g(z, z)q(θ) − g(z, z)q(θ). (3.44)

Comparing the coefficients of (3.41) with (3.44) gives that

H20(θ) = −g20q(θ) − g02q(θ), (3.45)

H11(θ) = −g11q(θ) − g11q(θ). (3.46)

From (3.42), (3.45), and the definition of A, we get

Ẇ20(θ) = 2iω0W20(θ) + g20q(θ) + g02q(θ). (3.47)

Noting that q(θ) = q(0)eiω0θ, we have

W20(θ) =
ig20
ω0

q(0)eiω0θ +
ig02

3ω0
q(0)e−iω0θ + E1e

2iω0θ, (3.48)

where E1 = (E(1)
1 , E

(2)
1 )

T
is a constant vector.

Similarly, from (3.43), (3.46), and the definition of A, we have

Ẇ11(θ) = g11q(θ) + g11q(θ), (3.49)

W11(θ) = − ig11
ω0

q(0)eiω0θ +
ig11

ω0
q(0)e−iω0θ + E2, (3.50)

where E2 = (E(1)
2 , E

(2)
2 )T is a constant vector.

In what follows, wewill seek appropriate E1,E2 in (3.48), (3.50), respectively. It follows
from the definition of A and (3.45), (3.46) that

∫0

−τ01
dη(θ)W20(θ) = 2iω0W20(0) −H20(0) (3.51)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.52)

where η(θ) = η(0, θ).
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From (3.42), we have

H20(0) = −g20q(0) − g02q(0) + (H1,H2)T , (3.53)

where

H1 = (α1 + a)
f ′′(0)
2

+ (α2 + b)
f ′′(0)
2

γ2,

H2 = (α2 − b)
f ′′(0)
2

e−2iω0τ
0
2 + (α1 − a)

f ′′(0)
2

γ2.

(3.54)

From (3.43), we have

H11(0) = −g11q(0) − g11(0)q(0) + (P1, P2)T , (3.55)

where

P1 = (α1 + a)f ′′(0) + (α2 + b)f ′′(0)γγ,

P2 = (α2 − b)f ′′(0) + (α1 − a)f ′′(0)γγ.
(3.56)

Noting that

(
iω0I −

∫0

−τ01
eiω0θdη(θ)

)
q(0) = 0,

(
−iω0I −

∫0

−τ01
e−iω0θdη(θ)

)
q(0) = 0

(3.57)

and substituting (3.48) and (3.53) into (3.51), we have

(
2iω0I −

∫0

−τ01
e2iω0θdη(θ)

)
E1 = (H1,H2)T . (3.58)

That is,

(
2iω0I −A1 − Be−2iω0τ

0
2 − Ce−2iω0τ

0
1

)
E1 = (H1,H2)T , (3.59)

then

⎛
⎝2iω0 − (α1 + a)f ′(0) −(α2 + b)f ′(0)e−iω0τ

0
1

−(α2 − b)f ′(0)e−iω0τ
0
2 2iω0 − (α1 − a)f ′(0)

⎞
⎠

⎛
⎝E

(1)
1

E
(2)
1

⎞
⎠ =

(
H1

H2

)
. (3.60)
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Hence,

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, (3.61)

where

Δ1 = det

⎛
⎝2iω0 − (α1 + a)f ′(0) −(α2 + b)f ′(0)e−iω0τ

0
1

−(α2 − b)f ′(0)e−iω0τ
0
2 2iω0 − (α1 − a)f ′(0)

⎞
⎠,

Δ11 = det

(
H1 −(α2 + b)f ′(0)e−iω0τ

0
1

H2 2iω0 − (α1 − a)f ′(0)

)
,

Δ12 = det

(
2iω0 − (α1 + a)f ′(0) H1

−(α2 − b)f ′(0)e−iω0τ
0
2 H2

)
.

(3.62)

Similarly, substituting (3.49) and (3.55) into (3.52), we have

(∫0

−τ01
dη(θ)

)
E2 = (P1, P2)T . (3.63)

Then,

(A1 + B + C)E2 = (−P1,−P2)T . (3.64)

That is,

(
(α1 + a)f ′(0) (α2 + b)f ′(0)

(α2 − b)f ′(0) (α1 − a)f ′(0)

)⎛
⎝E

(1)
2

E
(2)
2

⎞
⎠ =

(−P1
−P2

)
. (3.65)

Hence,

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, (3.66)

where

Δ2 = det

(
(α1 + a)f ′(0) (α2 + b)f ′(0)

(α2 − b)f ′(0) (α1 − a)f ′(0)

)
,

Δ21 = det

(−P1 (α2 + b)f ′(0)

−P2 (α1 − a)f ′(0)

)
,

Δ22 = det

(
(α1 + a)f ′(0) −P1
(α2 − b)f ′(0) −P2

)
.

(3.67)
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Figure 1: Trajectories graphs of the system (4.1) with τ1 = 0.003, τ2 = 0.004, and τ1 + τ2 = 0.007 < τ0 ≈ 0.01.
The equilibrium E∗(0, 0) is asymptotically stable. The initial value is (0.05, 0.01).

From (3.48), (3.50), we can calculate g21 and derive the following values:

c1(0) =
i

2ω0τ0

(
g20g11 − 2

∣∣g11
∣∣2 −

∣∣g02
∣∣2

3

)
+
g21
2
,

μ2 = − Re{c1(0)}
Re{λ′(τ0)} ,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)} + μ2 Im
{
λ′
(
τ0
)}

ω0τ0
.

(3.68)

These formulae give a description of the Hopf bifurcation periodic solutions of (1.2) at τ = τ0

on the center manifold. From the discussion above, we have the following result.

Theorem 3.3. The periodic solution is supercritical (subcritical) if μ2 > 0 (μ2 < 0); The bifurcating
periodic solutions are orbitally asymptotically stable with asymptotical phase (unstable) if β2 < 0 (β2 >
0); the periods of bifurcating periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

4. Numerical Examples

In this section, we present some numerical results to verify the analytical predictions obtained
in the previous section. As an example, we consider the following special case of the system
(1.2) with the parameters α1 = −0.03, α2 = −0.1, a = 1.5, b = 2, c = 0, d = −4, and f(x) =
tanh(x). Then, the system (1.2) becomes

ẋ1(t) = 1.47 tanh(x1(t)) + 1.9 tanh(x2(t − τ1)),
ẋ2(t) = −2.1 tanh(x1(t − τ2)) − 1.53 tanh(x2(t)) − 4x1(t)x2(t).

(4.1)
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Figure 2: Trajectories graphs of the system (4.1) with τ1 = 0.003, τ2 = 0.004, and τ1 + τ2 = 0.007 < τ0 ≈ 0.01.
The equilibrium E∗(0, 0) is asymptotically stable. The initial value is (0.05, 0.01).

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x
2(
t)

x1(t)

Figure 3: Trajectories graphs of the system (4.1) with τ1 = 0.003, τ2 = 0.004, and τ1 + τ2 = 0.007 < τ0 ≈ 0.01.
The equilibrium E∗(0, 0) is asymptotically stable. The initial value is (0.05, 0.01).

By some complicated computation by means of Matlab 7.0, we get ω0 ≈ 1.3211, τ0 ≈
0.01, λ′(τ0) ≈ 0.0140 − 1.4926i. We can easily obtain g20 = −0.2501 + 2.3128i, g11 = 1.2377 +
0.3484i, g02 = 0.4533 − 0.5693i, g21 = −2.3022 + 4.3015i. Thus, we can calculate the following
values: c1(0) = −1.0617 − 1.7138i, μ2 = 75.8357, β2 = −2.1234, T2 = 86.9780. We obtain that
the conditions indicated in Theorem 2.6 are satisfied. Furthermore, it follows that μ2 > 0
and β2 < 0. Thus, the equilibrium E∗(0, 0) is stable when τ < τ0 as illustrated by the
computer simulations (see Figures 1, 2, and 3). When τ passes through the critical value
τ0, the equilibrium E∗(0, 0) loses its stability and a Hopf bifurcation occurs, that is, a family
of periodic solutions bifurcations from the equilibrium E∗(0, 0). Since μ2 > 0 and β2 < 0,
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Figure 4: Trajectories graphs of thesystem (4.1) with τ1 = 0.01, τ2 = 0.04, and τ1 + τ2 = 0.05 > τ0 ≈ 0.01.
Hopf bifurcation occurs from the equilibrium E∗(0, 0). The initial value is (0.05, 0.01).
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Figure 5: Trajectories graphs of the system (4.1) with τ1 = 0.01, τ2 = 0.04, and τ1 + τ2 = 0.05 > τ0 ≈ 0.01.
Hopf bifurcation occurs from the equilibrium E∗(0, 0). The initial value is (0.05, 0.01).

the direction of the Hopf bifurcation is τ > τ0 and these bifurcating periodic solutions from
E∗(0, 0) at τ0 are stable, which are depicted in Figures 4, 5, and 6.

5. Conclusions

In this paper, we have analyzed a two-neuron networks with resonant bilinear terms. Firstly,
we obtained the sufficient conditions to ensure local stability of the equilibrium E∗(0, 0)
and the existence of local Hopf bifurcation. Moreover, we note also that, if the two-neuron
networks with resonant bilinear terms begin with a stable equilibrium, but then become
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Figure 6: Trajectories graphs of the system (4.1) with τ1 = 0.01, τ2 = 0.04, and τ1 + τ2 = 0.05 > τ0 ≈ 0.01.
Hopf bifurcation occurs from the equilibrium E∗(0, 0). The initial value is (0.05, 0.01).

unstable due to delay, then it will likely be destabilized by means of a Hopf bifurcation which
leads to periodic solutions with small amplitudes. Finally, the direction of Hopf bifurcation
and the stability of the bifurcating periodic orbits are discussed by applying normal form
theory and center manifold theorem.
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