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This paper is devoted to the study of mild solutions for the initial and boundary value problem of
stochastic viscous Cahn-Hilliard equation driven by white noise. Under reasonable assumptions
we first prove the existence and uniqueness result. Then, we show that the existence of a stochastic
global attractor which pullback attracts each bounded set in appropriate phase spaces.

1. Introduction

This paper is devoted to the existence of mild solutions and global asymptotic behavior for
the following stochastic viscous Cahn-Hilliard equation:

d((1 − α)u − αΔu) +
(
Δ2u −Δf(u)

)
dt = dW, (x, t) ∈ G × (t0,∞), (1.1)

subjected to homogeneous Dirichlet boundary conditions

u(x, t) = 0, (x, t) ∈ ∂G × [t0,∞), (1.2)
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in dimension n = 1, 2 or 3, where G =
∏n

i=1(0, Li) in Rn, and α ∈ [0, 1] is a parameter, f is a
polynomial of odd degree with a positive leading coefficient

f(x) =
2p−1∑
k=1

akx
k, a2p−1 > 0. (1.3)

In deterministic case, the model was first introduced by Novick-Cohen [1] to describe
the dynamics of viscous first order phase transitions, which has been extensively studied in
the past decades. The existence of global solutions and attractors are well known; moreover,
the global attractor Aα of the system has the same finite Hausdorff dimension for different
parameter values α. One can also show that Aα is continuous as α varies in [0, 1]. See [2] for
details and [1] for recent development.

While the deterministic model captures more intrinsic nature of phase transitions in
binary, it ignores some random effects such as thermal fluctuations which are present in any
material. In recent years, there appeared many interesting works on stochastic Cahn-Hilliard
equations. Cardon-Weber [3] proved the existence of solution as well as its density for a class
of stochastic Cahn-Hilliard equations with additive noise using an appropriate convolution
semigroup (in the sense of that in [4]) posed on cubic domains. The authors in [5] derived the
existence for a generalized stochastic Cahn-Hilliard equation in general convex or Lipschitz
domains. The main novelty was the derivation of space-time Hölder estimates for the Greens
kernel of the stochastic problem, by using the domains geometry, which can be very useful
in many other circumstances. In [6], the asymptotic behavior for a generalized Cahn-Hilliard
equation was studied, which can also act as a very good toy model for treating the stochastic
case.

Instead of deterministic viscous Cahn-hilliard equation, here, we consider the general
stochastic equation (1.1) which is affected by a space-time white noise. In such a case,
new difficulties appear, and the resulting stochastic model must be treated in a different
way. Fortunately, the rapidly growing theory of random dynamical systems provides an
appropriate tool. Crauel and Flandoli [7] (see also Schmalfuss [8]) introduced the concept
of a random attractor as a proper generalization of the corresponding deterministic global
attractor which turns out to be very helpful in the understanding of the long-time dynamics
for stochastic differential equations. In this present work, we first establish some existence
results on mild solutions. Then, by applying the abstract theory on stochastic attractors
mentioned above, we show that the system has global attractors in appropriate phase spaces.

In case α = 0, (1.1) reduces to the stochastic Cahn-Hilliard equation which was studied
in [9], where the authors obtain the existence and uniqueness of the weak solutions to the
initial and Neumann boundary value problem in some phase spaces under appropriate
assumptions on noise. Here, we make slightly stronger assumptions on noise and prove
existence and uniqueness of mild solutions with higher regularity. Furthermore, we show
the existence of random attractors in appropriate phase spaces.

This paper is organized as follows. In Section 2, we first make some preliminary works,
then we state our main results. In Section 3, we consider the solutions of the the linear part
of the system (1.1)-(1.2) and stochastic convolution. Regularities of solutions will also be
addressed in this part. Section 4 consists of some investigations on the Stochastic Lyapunov
functional of the system. The proofs on the existence results for mild solutions and global
attractors will be given in Sections 5 and 6, respectively. Finally, the last section stands as an
appendix for some basic knowledge of random dynamical system(RDS).
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2. Preliminaries and Main Results

In this section, we first make some preliminary works, then we state explicitly our main
results.

2.1. Functional Spaces

Let (·, ·) and | · | denote respectively the inner product and norm ofH = L2(G). We define the
linear operator A = −Δ with domain D(A) = H2(G)

⋂
H1

0(G). A is positive and selfadjoint.
By spectral theory, we can define the powers As and spaces Hs = D(As/2) with norms |u|s =
|As/2u| for real s. Note that H0 = L2(G). It is well known that Hs is a subspace of Hs(G)
and | · |s is on Hs(G) a norm equivalent to the usual one. Moreover, we have the following
Poincare inequality and interpolation inequality:

|u|s1 ≤ λ
−(s2−s1)/2
1 |u|s2 , ∀s1, s2 ∈ R, s1 < s2, ∀u ∈ Hs2 , (2.1)

|u|σs1+(1−σ)s2 ≤ |u|σs1 |u|1−σs2
, σ ∈ [0, 1], (2.2)

where λ1 is the first eigenvalue of A.
We can define A−1 : H → D(A) to be the Green’s operator for A. Thus,

v = A−1w ⇐⇒ Av = w. (2.3)

By Rellich’s Theorem, we know that A−1 is compact, and A : D(A) → H is a linear and
bounded operator. Finally, we introduce the invertible operator Bα : Hs → Hs, s ∈ R defined
by

Bα := αI + (1 − α)A−1. (2.4)

For each α ∈ (0, 1] and β ≥ 0, we know that Bβ
α : Hs → Hs is bounded and has a bounded

inverse (see [10, 11]). We also define the operator Aα := B−1
α A with domain

D(Aα) =

⎧
⎨
⎩
D(A) if α > 0,

D(A0) = H4.
(2.5)

By definition, it is clear that D(As/2
α ) = Hs in case α > 0.

Lemma 2.1. For α > 0, there existM1, M2, and M3 such that

α1/2|v| ≤ |v|Bα
≤ M1/2

1 |v|, v ∈ H, (2.6)

α1/2|v|1 ≤ |v|1,Bα
≤ M1/2

2 |v|1, v ∈ H1, (2.7)

(
λ1

αλ1 + 1 − α

)1/2

|v| ≤ |v|B−1
α
≤ M1/2

3 |v|, v ∈ H, (2.8)



4 Abstract and Applied Analysis

where

|v|Bα
:= (v, Bαv)1/2,

|v|1,Bα
:=
(
A1/2v, BαA

1/2v
)1/2

,

|v|B−1
α
:=
(
v, B−1

α v
)1/2

.

(2.9)

Proof. Here, we only verify (2.8) is valid; the proofs of (2.6) and (2.7) can be found in [11].

Since B−1/2
α is bounded, there exists M3 ≥ 0, such that |B−1/2

α |2 ≤ M3. Then, for any v ∈ H, we
have

(
v, B−1

α v
)
=
(
B−1/2
α v, B−1/2

α v
)
=
∣∣∣B−1/2

α u
∣∣∣
2 ≤ M3|v|2, (2.10)

which completes the right part of (2.8).
Now, we proof the left part of (2.8) let

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · (2.11)

denote the eigenvalues ofA, repeated with the respective multiplicity, and the corresponding
unit eigenvector is denoted by {wk}∞k=1, which forms an orthonormal basis for H. We have

(
wk, B

−1
α wk

)
=

λk
αλk + 1 − α

≥ λ1
αλ1 + 1 − α

, k ∈ (Z+). (2.12)

Since v ∈ H, there exist {bk}∞k=1 ⊂ R, such that v =
∑+∞

k=1 bkwk. Consequently,

(
v, B−1

α v
)
=

(
+∞∑
k=1

bkwk, B
−1
α

+∞∑
k=1

bkwk

)
=

+∞∑
k=1

(
bkwk, B

−1
α bkwk

)

=
+∞∑
k=1

λk
αλk + 1 − α

b2k ≥ λ1
αλ1 + 1 − α

+∞∑
k=1

b2k

=
λ1

αλ1 + 1 − α
|v|2,

(2.13)

which finishes the proof.

2.2. Assumptions on the Noise

The stochastic process W(t), defined on a probability space (Ω,F,P), is a two-side in time
Wiener process on H which is given by the expansions

W(t) =
∞∑
k=0

√
αkβk(t)wk, (2.14)
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where {wk}∞k=1 is a basis of H consisting of unit eigenvectors of A, {αk}∞k=1 is a bounded
sequence of nonnegative numbers, and

βk(t) =
1√
αk

(W(t), wk), k ∈ N (2.15)

is a sequence of mutually independent real valued standard Brownian motions in a fixed
probability space (Ω,F,P) adapted to a filtration {Ft}t≥0.

For convenience, we will define the covariance operator Q on H as follows:

Qwk = αkwk, k ∈ N. (2.16)

The process W(t) will be called as the Q-Wiener process. We need to impose on Q one of the
following assumptions:

(Q1) Tr[B−1−δ
α A−2+δQ] < ∞ (for some 0 < δ ≤ 1),

(Q1∗) Tr[B−2
α A−1Q] < ∞, and Tr[B−2

α A−2Q] ≤ 2D,

(Q2) Tr[B−1−δ
α A−1+δQ] < ∞ (for some 0 < δ ≤ 1), Tr[B−2

α Q] < ∞, and Tr[B−2
α A−2Q] ≤ 2D,

(Q2∗) Tr[B−1−δ
α A−1+δQ] < ∞, Tr[B−2

α AσQ] < ∞ (for some 0 < δ ≤ 1 and σ > 0), and
Tr[B−2

α A−2Q] ≤ 2D,

where D is given in Section 4. It is obvious that

(Q2∗) =⇒ (Q2), (Q1∗) =⇒ (Q1). (2.17)

2.3. Main Results

We will assume throughout the paper that the space dimension n and the integer p in (1.3)
satisfy the following growth condition:

p =

⎧
⎨
⎩
any positive integer, if n = 1 or 2,

2, if n = 3.
(2.18)

Under the above assumptions on the noise, we can now put the original problem (1.1)-
(1.2) in an abstract form

du +
(
Aαu + B−1

α f(u)
)
dt = B−1

α A−1 dW, (2.19)

with which we will also associate the following initial condition:

u(t0) = u0. (2.20)

Note that since B−1
α is bounded from Hs into itself for each α > 0, (2.19) is qualitatively of

second order in space for α > 0 although it also has a nonlocal character. In contrast, for α = 0
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the equation is of fourth-order in space and local in character. Thus, α = 0 is a singular limit
for the equation.

Definition 2.2. Let I := [t0, t0 + τ) be an interval in R. We say that a stochastic process
u(t, ω; t0, u0) is a mild solution of the system (2.19)-(2.20) inHs, if

u(·, ω; t0, u0) ∈ C(I; Hs), P-a.s. ω ∈ Ω, (2.21)

moreover, it satisfies inHs the following integral equation:

u(t, ω; t0, u0) = e−Aα(t−t0)v0 −
∫ t

t0

e−Aα(t−s)
(
B−1
α f(u) − βWA(s)

)
ds +WA(t), P-a.s. ω ∈ Ω,

(2.22)

whereWA(t) is called stochastic convolution (see Section 3 for details), β is a positive constant
chosen in Section 3 and v0 = u0 −WA(t0).

The main results of the paper are contained in the following two theorems.

Theorem 2.3. (i) Let α = 0, and, the hypothesis (Q2) be satisfied. Then for every u0 ∈ H2, there is a
unique maximally defined mild solution u(t, ω; t0, u0) of (2.19)-(2.20) inH2 for all t ∈ [t0,∞).

(ii) Let α ∈ (0, 1], and, the hypothesis (Q1) be satisfied. Then for every u0 ∈ H1, there is a
unique maximally defined mild solution u(t, ω; t0, u0) of (2.19)-(2.20) inH1 for all t ∈ [t0,∞).

Theorem 2.4. (i) Let α = 0, and, the hypothesis (Q2∗) be satisfied. Then the stochastic flow associated
with (2.19)-(2.20) has a compact stochastic attractor A0(ω) ⊂ H2 at time 0, which pullback attracts
every bounded deterministic set B ⊂ H2.

(ii) Let α ∈ (0, 1], and, the hypothesis (Q1∗) be satisfied. Then the stochastic flow associated
with (2.19)-(2.20) has a compact stochastic attractor Aα(ω) ⊂ H1 at time 0, which pullback attracts
every bounded deterministic set B ⊂ H1.

3. Stochastic Convolution

Let WA(t) be the unique solution of linear equation

du +
(
Aα + β

)
udt = B−1

α A−1 dW, (3.1)

where β is a positive constant to be further determined. Then, WA(t) is an ergodic and
stationary process [9, 12] called the stochastic convolution. Moreover,

WA(t) =
∫ t

−∞
e−(t−s)(Aα+β)B−1

α A−1dW(s). (3.2)

Some regularity properties satisfied by WA(t) are given below.

Lemma 3.1. Assume that (Q1) holds. Then, ∇WA(t) has a version which is γ-Hölder continuous
with respect to (t, x) ∈ R ×G for any γ ∈ [0, δ/2).
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Proof. We only consider the case n = 3. For the sake of simplicity, we also assume that G =∏3
i=1(0, π). The eigenvectors of A can be given explicitly as follows:

wk(x) =
(
2
π

)3/2

cos k1x1 cos k2x2 cos k3x3, x = (x1, x2, x3) ∈ R
3, (3.3)

with corresponding eigenvalues

μk = k2
1 + k2

2 + k2
3 = |k|2, k ∈ (Z+)3, (3.4)

where k = (k1, k2, k3) varies in (Z+)3. Using (2.14), we find that

WA(t, x) =
∑

k∈(Z+)3

(
√
αk

∫ t

−∞
e−(t−s)(ηk+β)

1
αμk + 1 − α

dβk(s)

)
wk(x), (3.5)

where ηk = μ2
k/(αμk + 1 − α), and hence,

∇WA(t, x) − ∇WA

(
t, y
)

=
∑

k∈(Z+)3

(
√
αk

∫ t

−∞
e−(t−s)(ηk+β)(1/(αμk+1−α))dβk(s)

)(∇wk(x) − ∇wk

(
y
))
,

E
(∣∣∇WA(t, x) − ∇WA

(
t, y
)∣∣2)

≤
∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
∫ t

−∞
e−2(t−s)(ηk+β)ds

∣∣∇wk(x) − ∇wk

(
y
)∣∣2.

(3.6)

For any γ ∈ [0, 1], one trivially verifies that there is a constant cγ > 0 independent of k
such that for any k ∈ (Z+)3 and x, y ∈ G

∣∣∇wk(x) − ∇wk

(
y
)∣∣ ≤ cγμ

(1+γ)/2
k

∣∣x − y
∣∣γ . (3.7)

Thus, we have

E
(∣∣∇WA(t, x) − ∇WA

(
t, y
)∣∣2) ≤

c2γ

2
∣∣x − y

∣∣2γ ∑

k∈(Z+)3

αk(
αμk + 1 − α

)2 η−1
k μ

1+γ
k

=
c2γ

2
∣∣x − y

∣∣2γ ∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
αμk + 1 − α

μ2
k

μ
1+γ
k

=
c2γ

2
∣∣x − y

∣∣2γ ∑

k∈(Z+)3
αk

μk

αμk + 1 − α
μ
−2+γ
k

.

(3.8)
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Now, let t, s ∈ R. We may assume that t ≥ s. Then,

E
(
|∇WA(t, x) − ∇WA(s, x)|2

)

=
∑

k∈(Z+)3

αk(
αμk + 1 − α

)2

×
(∫ t

s

e−2(ηk+β)(t−σ)dσ +
∫s

−∞

[
e−(ηk+β)(t−σ) − e−(ηk+β)(s−σ)

]2
dσ

)
|∇wk(x)|2

=
∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
1

2
(
ηk + β

)
(
1 − e−2(ηk+β)(t−s)

)
· |∇wk(x)|2.

(3.9)

Let 0 ≤ γ ≤ 1/2, and let

c′γ = sup
r1,r2≥0

|e−r1 − e−r2 |
|r1 − r2|2γ

. (3.10)

Since the function g(r) = e−r is a Lipschitzoneon [0,∞), we always have c′γ < ∞. Observe that

E
(
|∇WA(t, x) − ∇WA(s, x)|2

)

≤ 4γ

π3
c′γ |t − s|2γ

∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
(
ηk + β

)2γ−1
μk.

≤ 4γ

π3
c′γ |t − s|2γ

∑

k∈(Z+)3

αk(
αμk + 1 − α

)2 η
2γ−1
k μk

=
4γ

π3
c′γ |t − s|2γ

∑

k∈(Z+)3
αk

(
μk

αμk + 1 − α

)2γ+1

μ
−2+2γ
k .

(3.11)

By (Q1), we know that Tr[B−1−δ
α A−2+δQ] < ∞ for some 0 < δ ≤ 1. Therefore, by (3.8) and

(3.11), one deduces that there exists a constant c′′γ > 0 such that

E
(∣∣∇WA(t, x) − ∇WA

(
s, y
)∣∣2) ≤ c′′γ

(∣∣x − y
∣∣2 + |t − s|2

)γ
, ∀(t, x), (s, y) ∈ R ×G. (3.12)

AsWA(t, x)−WA(s, y) is a Gaussian process, we find that for eachm ∈ Z
+, there is a constant

cmγ > 0 such that

E
(∣∣∇WA(t, x) − ∇WA

(
s, y
)∣∣2m) ≤ cmγ

(∣∣x − y
∣∣2 + |t − s|2

)mγ
. (3.13)

Now, thanks to the well-known Kolmogorov test, one concludes that WA(t, x) is (γ − 2/m)-
Hölder continuous in (t, x). Because γ ∈ [0, 1/2] and m ∈ Z

+ are arbitrary, we see that the
conclusion of the lemma holds true. The proof is complete.
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Lemma 3.2. Assume (Q2) holds. Then, for any M > 0, there exists a β0 such that for all β ≥ β0,

E
(
|WA(t)|22

)
≤ M. (3.14)

Proof.

E
(
|ΔWA(t)|2

)
= E

⎛
⎝ ∑

k∈(Z+)3

√
αk

∫ t

−∞
e−(ηk+β)(t−s)

1
αμk + 1 − α

dβk(s)Δwk(x)

⎞
⎠

2

=
∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
∫ t

−∞
e−2(ηk+β)(t−s)ds|Δwk(x)|2

≤
∑

k∈(Z+)3

αk(
αμk + 1 − α

)2
1

2
(
ηk + β

) |Δwk(x)|2

≤ 1
2
(
η1 + β

)
∑

k∈(Z+)3
αk

(
μk

αμk + 1 − α

)2

.

(3.15)

Since Tr[B−2
α Q] < ∞, one can now easily choose a β large enough so that E(|ΔWA(t)|2) ≤ M,

and the proof is complete.

Similarly, we can verify the following basic fact.

Lemma 3.3. Assume (Q2) holds. Then, ΔWA has a version which is γ-Hölder continuous with
respect to (t, x) ∈ R ×G for any γ ∈ [0, δ/2).

Lemma 3.4. Assume that (Q2∗) holds. Then, for any M > 0, there exists β0 such that for all β ≥ β0,

E
(
|WA(t)|22+σ

)
≤ M. (3.16)

4. Stochastic dissipativeness in H1

It is well known that in the deterministic case without forcing terms,

J(u) =
1
2
|∇u|2 +

∫

G

F(u)dx (4.1)

is a Lyapunov functional of the system (i.e. (d/dt)J(u) ≤ 0), where F(u) is the primitive
function of f(u) which vanishes at zero. In this section, we will prove a similar property for
the stochastic equation by adapting some argument in [9].
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Assume that u satisfies (2.19)-(2.20). As usual, we may assume in advance that u is
sufficiently regular so that all the computations can be performed rigorously. Applying the
Itô formula to J(u), we obtain

dJ(u) = (Ju(u), du) +
1
2
Tr
[
Juu(u)B−2

α A−2Q
]
dt

=
(
Ju(u), B−1

α A−1 dW
)
−
(
Ju(u), B−1

α Au + B−1
α f(u)

)
dt +

1
2
Tr
[
Juu(u)B−2

α A−2Q
]
dt,

(4.2)

where Ju, Juu denote, respectively, the first and second derivative of J . Since

Ju(u) = Au + f(u), (4.3)

there exists C1 > 0 such that for α = 0,

(
Ju(u), B−1

α Au + B−1
α f(u)

)
=
∣∣Au + f(u)

∣∣2
1 ≥ λ21

∣∣Au + f(u)
∣∣2
−1

= λ21

(
Au + f(u), u +A−1f(u)

)

= λ21

(
|u|21 +

∣∣f(u)∣∣2−1 + 2
(
f(u), u

))

≥ dλ21

(
|u|21 +

∫

G

F(u)dx
)
− C1 = dλ21J(u) − C1,

(4.4)

where d = min{1, 4pa2p−1}. And for 0 < α ≤ 1,

(
Ju(u), B−1

α Au + B−1
α f(u)

)
=
(
Au + f(u), B−1

α Au + B−1
α f(u)

)

=
∣∣Au + f(u)

∣∣2
B−1
α

≥ λ21
αλ1 + 1 − α

∣∣Au + f(u)
∣∣2
−1

≥ dλ21
αλ1 + 1 − α

J(u) − C1,

(4.5)

where we have used (2.8). Simple computations show that

Juu(u) = A + f ′(u), (4.6)
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and hence,

Tr
[
Juu(u)B−2

α A−2Q
]
= Tr
[
AB−2

α A−2Q
]
+

∞∑
i=1

(
Di

∫

G

f ′(u)w2
i dx

)

= Tr
[
B−2
α A−1Q

]
+

∞∑
i=1

(
Di

∫

G

f ′(u)w 2
i dx

)
,

(4.7)

where {wi}∞i=1 is the orthonormal basis of H as in (2.14), and Di = αi/(αλi + 1 − α)2.
We infer from (3.3) that

|wi|L∞ ≤ C2, (4.8)

where C2 > 0 depends only on G. Therefore,

∣∣∣∣
∫

G

f ′(u)w2
i dx

∣∣∣∣ ≤ C2
2

∫

G

∣∣f ′(u)
∣∣dx. (4.9)

Set C3 such that

∣∣f ′(s)
∣∣ ≤ 2

(
2p − 1

)
a2p−1s2p−2 + C3, s ∈ R, (4.10)

then

∣∣∣∣
∫

G

f ′(u)w2
i dx

∣∣∣∣ ≤ C2
2

(
2
(
2p − 1

)
a2p−1

∫

G

u2p−2 dx + C3|G|
)

≤ 1
4p

a2p−1

∫

G

u2p dx + C4,

(4.11)

where C4 depends on f , p, and G. Let C5 satisfy

F(s) ≥ 1
4p

a2p−1s2p − C5

|G| , s ∈ R, (4.12)

then

∣∣∣∣
∫

G

f ′(u)w2
i dx

∣∣∣∣ ≤ J(u) + C4 + C5. (4.13)

Finally,

Tr
[
Juu(u)B−2

α A−2Q
]
≤ Tr
[
B−2
α A−1Q

]
+ Tr
[
B−2
α A−2Q

]
(J(u) + C4 + C5). (4.14)
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Since

E
(
Ju(u), B−1

α A−1 dW
)
= 0, (4.15)

we have from (4.2) that

d

dt
E(J(u)) = E

(
Ju(u),−B−1

α A(u) − B−1
α (u)

)
+
1
2
E
(
Tr
[
Juu(u)B−2

α A−2Q
])

. (4.16)

Further, by (4.4), (4.5) and (4.14), it holds that

(
d

dt

)
E(J(u))

≤ −
(
D − 1

2
Tr
[
B−2
α A−2Q

])
E(J(u)) + Tr

[
B−2
α A−1Q

]
+ Tr
[
B−2
α A−2Q

]
(C4 + C5) + C1,

(4.17)

where D = min {dλ21, dλ21/(αλ1 + 1 − α)}. This is precisely what we promised.
Now, by directly applying the classical Gronwall Lemma, we have the following

lemma.

Lemma 4.1. LetW be a H-valued Q-Wiener process with

Tr
[
B−2
α A−1Q

]
< +∞, Tr

[
B−2
α A−2Q

]
≤ 2D, (4.18)

and let u(t) be the mild solution to (2.19)-(2.20). Then,

E(J(u(t))) ≤ E(J(u0)) + CQ, t ∈ [t0,∞), (4.19)

where

CQ =
Tr
[
B−2
α A−1Q

]
+ Tr
[
B−2
α A−2Q

]
(C4 + C5) + C1

D − (1/2)Tr
[
B−2
α A−2Q

] . (4.20)

As a consequence, we immediately obtain the following basic result.

Corollary 4.2. LetW be a H-valued Q-Wiener process with

Tr
[
B−2
α A−1Q

]
< +∞, Tr

[
B−2
α A−2Q

]
≤ 2D. (4.21)

Then, there exists a continuous nonnegative function Ψ(r) such that for any solution u(t) of
(2.19)-(2.20), one has

E
(
|u(t)|21

)
≤ Ψ
(
E
(
|u0|21

))
, ∀t ∈ [t0,∞). (4.22)
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5. The Existence and Unique of Global Mild Solutions

In this section, we study the existence and unique of global mild solutions of the problem
(2.19)-(2.20). The basic idea is to transform the original problem into a nonautonomous one
by using the simple variable change below:

v(t) = u(t) −WA(t). (5.1)

We observe that v(t) satisfies the following system:

dv

dt
+
(
Aα − β

)
v + B−1

α f(v +WA) = 0,

v(t0) = u0 −WA(t0).
(5.2)

Let

G(v, t) = −B−1
α f(v +WA) + βWA, v0 = u0 −WA(t0). (5.3)

Then, (5.2) reads

dv

dt
+Aαv = G(v, t),

v(t0) = v0.

(5.4)

To prove Theorem 2.3, it suffices to establish some corresponding existence results for the
nonautonomous system (5.4).

Definition 5.1. Let I := [t0, t0 + τ) be an interval in R. We say that a stochastic process
v(t, ω; t0, v0) is a mild solution of the system (5.4) inHs, if

v(·, ω; t0, v0) ∈ C(I; Hs), P-a.s. ω ∈ Ω, (5.5)

and satisfies in Hs the following integral equation:

v(t, ω; t0, v0) = e−Aα(t−t0)v0 −
∫ t

t0

e−Aα(t−s)
(
B−1
α f(u) − βWA(s)

)
ds, P-a.s. ω ∈ Ω. (5.6)

Theorem 5.2. Let α = 0. Suppose that the Hypothesis (Q2) is satisfied.
Then, for every u0 ∈ H2, there is a unique globally defined mild solution v(t, ω; t0, v0) of (5.4)

inH2 with

v(t, ω; t0, v0) ∈ C([t0,∞); H2) ∩ C0,1−r
loc ((t0, );H4r) ∩ C((t0,∞);H4), (5.7)

for all 0 ≤ r < 1.
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Proof. We only consider the case where n = 3. First, it is easy to verify that P-a.s.

G(v, t) ∈ CLip; γ(H2 × [t0,∞),H). (5.8)

Indeed, by Lemma 3.3, we see that WA(t) ∈ H2 is γ-Hölder continuous with respect to t ∈ R

P-a.s. Recall that f is a polynomial of degree 2p − 1 with p = 2 (in case n = 3). One deduces
that there exist C1, C2(ω) > 0 such that

|(G(v1, t1) −G(v2, t2))| ≤ C1(|v1 − v2|2 + |WA(t1) −WA(t2)|2)
≤ C2(ω)

(|v1 − v2|2 + |t1 − t2|γ
)
, P-a.s.

(5.9)

It then follows from [11, Lemma 47.4] that there is a unique maximally defined mild solution
v of (5.4) inH2 on [t0, T) satisfying P-a.s.

v(t, ω; t0, v0) = e−A
2(t−t0)v0 −

∫ t

t0

e−A
2(t−s)(Af(u(s)) − βWA(s)

)
ds,

v(t, ω; t0, v0) ∈ C([t0, T); H2) ∩ C0,1−r
loc ((t0, T);H4r) ∩ C((t0, T);H4),

(5.10)

for all 0 ≤ r < 1. Furthermore, we also know that v is a strong solution in H2. Hence, it
satisfies in the strong sense that

dv

dt
+A2v +Af(u) − βWA = 0, v(t0) = v0. (5.11)

In what follows, we show T = ∞, thus proving the theorem.
Simple computations yields

∣∣Δf(u)
∣∣ ≤ ∣∣f ′(u)

∣∣
L∞|Δu| + ∣∣f ′′(u)

∣∣
L∞|∇u|2L4 . (5.12)

Since f is a polynomial of degree 3, there exist κ1 and κ2 such that

∣∣f ′(s)
∣∣ ≤ κ1

(
1 + |s|2

)
,
∣∣f ′′(s)

∣∣ ≤ κ2(1 + |s|), ∀s ∈ R. (5.13)

Therefore,

∣∣f ′(u)
∣∣
L∞|Δu| ≤ κ1

(
1 + |u|2L∞

)
|Δu|

≤ 2κ1

(
1 + |v|2L∞ + |WA|2L∞

)
(|Δv| + |ΔWA|).

(5.14)
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By the Nirenberg-Gagiardo inequality, there exist C3, C4, C5 > 0 such that

|u|2L∞ ≤ C3|Δu|2, u ∈ H2,

|u|2L∞ ≤ C4

∣∣∣Δ2u
∣∣∣
1/3

|u|5/3
L6 , u ∈ H4,

|Δu| ≤ C5

∣∣∣Δ2u
∣∣∣
1/2

|∇u|1/2, u ∈ H4.

(5.15)

Hence,

∣∣f ′(u)
∣∣
L∞|Δu| ≤ 2κ1

(
1 + |v|2L∞ + |WA|2L∞

)
(|Δv| + |ΔWA|)

≤ 2κ1

(
1 + C4

∣∣∣Δ2v
∣∣∣
1/3

|v|5/3
L6 + C3|ΔWA|2

)(
C5|∇v|1/2

∣∣∣Δ2v
∣∣∣
1/2

+ |ΔWA|
)
.

(5.16)

By (Q2) and Lemma 3.2, we know that for P-a.s. ω ∈ Ω, there exists an R1(ω) > 0 such that
|ΔWA(t)| ≤ R1(ω) (for all t ∈ R). On the other hand, by Lemma 3.2 and Corollary 4.2, we find
that P-a.s. v is bounded inH1. Thus, for P-a.s. ω ∈ Ω, there exist C6(ω), C7(ω) > 0 such that

|v|5/3
L6 ≤ C6(ω), |∇v|1/2 ≤ C7(ω), (5.17)

where the continuous imbedding H1 ↪→ L6 is used. Consequently, we have

∣∣f ′(u)
∣∣
L∞|Δu| ≤ C8(ω)

(
1 +
∣∣∣Δ2v

∣∣∣
1/3

+ R1(ω)
)(∣∣∣Δ2v

∣∣∣
1/2

+ R1(ω)
)
, P-a.s. ω ∈ Ω. (5.18)

Similarly for P-a.s. ω ∈ Ω, one easily deduces that there exists C9(ω) > 0 such that

∣∣f ′′(u)
∣∣
L∞|Δu| ≤ C9(ω)

(
1 +
∣∣∣Δ2v

∣∣∣
1/6

+ R1(ω)
)(∣∣∣Δ2v

∣∣∣
1/4

+ R1(ω)
)
. (5.19)

It then follows from (5.12) that for P-a.s. ω ∈ Ω,

∣∣Δf(u)
∣∣ ≤ C8(ω)

(
1 +
∣∣∣Δ2v

∣∣∣
1/3

+ R1(ω)
)(∣∣∣Δ2v

∣∣∣
1/2

+ R1(ω)
)

+ C9(ω)
(
1 + L3

∣∣∣Δ2v
∣∣∣
1/6

+ R1(ω)
)(∣∣∣Δ2v

∣∣∣
1/4

+ R1(ω)
)

≤ C10(ω)
(
1 +
∣∣∣Δ2v

∣∣∣
5/6
)
.

(5.20)
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Now, taking the L2 inner-product of equation (5.11)with Δ2v, one obtains

1
2
d

dt
|Δv|2 +

∣∣∣Δ2v
∣∣∣
2 ≤
∣∣∣∣
∫

G

Δf(u)Δ2vdx

∣∣∣∣ + β

∣∣∣∣
∫

G

WAΔ2vdx

∣∣∣∣

≤ 1
4

∣∣∣Δ2v
∣∣∣
2
+
∣∣Δf(u)

∣∣2 + 1
4

∣∣∣Δ2v
∣∣∣
2
+ β2|WA|2

≤ 1
2

∣∣∣Δ2v
∣∣∣
2
+
∣∣Δf(u)

∣∣2 + β2λ−21 |ΔWA|2.

(5.21)

By (5.20), we deduce that P-a.s.

d

dt
|Δv|2 +

∣∣∣Δ2v
∣∣∣
2 ≤ C11(ω)

(
1 +
∣∣∣Δ2v

∣∣∣
5/3
)
. (5.22)

Furthermore, by Young’s inequality and |Δ2v|2 ≥ λ21|Δv|2, we know that there exists C12(ω) >
0 such that P-a.s.

d

dt
|Δv|2 ≤ −λ

2
1

2
|Δv|2 + C12(ω). (5.23)

Applying the gronwall lemma on (5.23), one gets

|Δv|2 ≤ 2C12(ω)
λ21

, P-a.s. ω ∈ Ω. (5.24)

This implies that the weak solution solution v does not blow up in finite time in the spaceH2.
Hence, T(v0) = ∞, for all u0 ∈ H2.

Theorem 5.3. Let α ∈ (0, 1], and let Hypothesis (Q1) be satisfied. Then, for every u0 ∈ H1, there is
a unique maximally defined mild solution v(t, ω; t0, v0) of (5.4) inH1 for all t ∈ [t0,∞) with

v(t, ω; t0, v0) ∈ C([t0,∞);H1) ∩ C0,1−r
loc ((t0,∞);H2r) ∩ C((t0,∞);H2), (5.25)

for 0 ≤ r < 1.

Proof. As noted above, −Aα is a positive selfadjoint linear operator on H with compact
resolvent. The negative operator −Aα generate an analytic semigroup e−Aαt. It is easy to verify
by Lemma 3.1 that P-a.s.

G(v, t) ∈ CLip; γ(H1 × [t0,∞),H). (5.26)

It then follows from [11, Lemma 47.4] that there is a unique maximally defined mild solution
v of (5.4) inH1 on [t0, T)with

v(t, ω; t0, v0) ∈ C([t0, T);H1) ∩ C0,1−r
loc ((t0, T);H2r) ∩ C((t0, T);H2), (5.27)
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where t0 < T = T(v0) ≤ ∞, and 0 ≤ r < 1. Furthermore, v is a strong solution in H1 and hence
solves (5.4) in the strong sense. To complete the proof of the theorem, there remains to check
that T(v0) = ∞.

Equation (5.4) is equivalent to

Bα
dv

dt
+Av = −f(v +WA) + βBαWA, v(t0) = v0. (5.28)

Multiplying (5.28) by Av, one gets

1
2
d

dt
|v|21,Bα

+ |v|22 +
(
f(v +WA), Av

)
+ β(BαWA,Av) = 0. (5.29)

We observe that

(
f(v +WA), Av

)
=
∫

G

∇f(v +WA)∇v dx

=
∫

G

f ′(v +WA)|∇v|2 dx +
∫

G

f ′(v +WA)∇WA∇v dx.

(5.30)

We take C′
1 and C′

2 such that

f ′(x) ≥ 2p − 1
2

a2p−1x2p−2 − C′
1,

∣∣f ′(x)
∣∣ ≤ 2

(
2p − 1

)
a2p−1 x2p−2 + C′

2,

(5.31)

for all x ∈ R. Then,

(
f(v +WA), Av

) ≥ 2p − 1
2

a2p−1

∫

G

|v +WA|2p−2|∇v|2dx − C′
1

∫

G

|∇v|2dx

− 2
(
2p − 1

)
a2p−1

∫

G

|v +WA|2p−2|∇v||∇WA|dx − C′
2

∫

G

|∇v||∇WA|dx

≥ 1
4
(
2p − 1

)
a2p−1

∫

G

|v +WA|2p−2|∇v|2dx − 2C′
1

∫

G

|∇v|2dx

− C′
3

(∫

G

|∇WA|2pdx +
∫

G

|∇WA|2dx
)
,

(5.32)

where we have usedHölder’s inequality, Young’s inequality, and the appropriate imbeddings
H1(G) ↪→ Lr(G) in dimension n = 1 or 2 and 3. We also know by (2.6) that there exists
α ≤ Cα ≤ M1 such that

(BαWA,Av) ≤ Cα

(∫

G

|∇WA|2 dx +
∫

G

|∇v|2dx
)
. (5.33)
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Combining the last two inequalities together, we deduce that there exists constantsC′
4, C

′
5 > 0

such that

1
2
d

dt
|v|21,Bα

+ |v|22 +
1
4
(
2p − 1

)
a2p−1

∫

G

|v +WA|2p−2|∇v|2dx

≤ 2C′
4

∫

G

|∇v|2dx + C′
5

(∫

G

|∇WA|2p dx +
∫

G

|∇WA|2dx
)
.

(5.34)

In view of (2.7), there exists α ≤ C′
α ≤ M1 such that

1
2
C′

α

d

dt
|v|21 + |v|22 +

1
4
(
2p − 1

)
a2p−1

∫

G

|v +WA|2p−2|∇v|2dx

≤ 2C′
4|v|21 + C′

5

(∫

G

|∇WA|2p dx +
∫

G

|∇WA|2dx
)
.

(5.35)

Using the gronwall lemma on (5.35), the following inequality holds:

|v|21 ≤ 2e4C
′
4/C

′
αC′

4|v0|21 + 2e4C
′
4/C

′
α

∫ t

t0

C′
5

(∫

G

|∇WA(s)|2pdx +
∫

G

|∇WA(s)|2dx
)
ds.

(5.36)

Lemma 3.1 guarantees that P-a.s.

∫ t

t0

∫

G

|∇WA(s)|2p dxds < +∞,

∫ t

t0

∫

G

|∇WA(s)|2 dxds < +∞. (5.37)

This and (5.36) implies that the mild solution v does not blow up in finite time in the space
H1. It follows that T(v0) = ∞. The proof is complete.

Remark 5.4. The conclusions in Theorem 2.3 are readily implied in the above two theorems.

6. Attractors for Stochastic Viscous Cahn-Hilliard Equation

For convenience of the reader, some basic knowledge of RDS are summarized in the
Appendix at the end of this paper.

6.1. Stochastic Flows

Thanks to Theorem 2.3, the mapping u0 �→ u(t, ω; t0, u0) defines a stochastic flow Sα(t, s;ω),

Sα(t, s;ω)u0 = u(t, ω; s, u0), α ∈ [0, 1]. (6.1)

Notice that P-a.s.
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(i) Sα(t, s;ω) = Sα(t, r;ω) ◦ Sα(r, s;ω), for all s ≤ r ≤ t,

(ii) S0(t, s;ω) is continuous inH2, and Sα(t, s;ω) is continuous in H1 for 0 < α ≤ 1.

6.2. Compactness Properties of Stochastic Flow Sα(t, s;ω)

Lemma 6.1. (i) Under Assumption (Q2∗), the stochastic flow S0(t, s;ω) is uniformly compact at
time 0. More precisely, for all B ⊂ H2 bounded and each t0 < 0, S0(0, t0;ω)B is v relatively compact
inH2.

(ii) Under Assumption (Q1∗), the flow Sα(t, s;ω), 0 < α ≤ 1, is uniformly compact at time 0.
More precisely, for all B ⊂ H1 bounded and each t0 < 0, Sα(0, t0;ω)B is P-a.s. relatively compact in
H1.

Proof. (i) Let B ⊂ H2 be a given bounded deterministic set. By Lemma 3.4, we know that
for P-a.s. ω ∈ Ω, there exists R2(ω) > 0, such that |WA(t)|2+σ ≤ R2(ω), t ∈ R. Define B̂ =
B∪B2+σ(0, R2(ω)), where B2+σ(0, R2(ω)) denotes the open ball centered at 0 with radiusR2(ω)
in H2+σ . Then, B̂ ⊂ H2 is P-a.s. bounded, and

S0(0, t0;ω)B ⊂
{
eA

2t0v0 −
∫0

t0

eA
2sG(v(s), s)ds +WA(0), v0 ∈ B̂

}
⊂ N1 +N2 +N3 +N4,

(6.2)

P-a.s., where

N1 = eA
2t0 B̂,

N2 =

{∫0

−δ
eA

2sG(v(s), s)ds, v0 ∈ B̂

}
,

N3 = e−A
2δ

{∫−δ

t0

eA
2(s+δ)G(v(s), s)ds, v0 ∈ B̂

}
,

N4 = B2+σ(0, R2(ω)),

(6.3)

and δ is an arbitrary constant satisfying 0 < δ < −t0.

Since for t > 0 fixed the operator e−A
2t is compact, we see that N1, N3, and N4 are

relatively compact sets inH2. Now, we show that P-a.s. S0(0, t0;ω)B is relatively compact. To
this end, we first give an estimate on the Kuratowski measure of N2 ⊂ H2.

For v0 ∈ B̂, one has

∣∣∣∣∣
∫0

−δ
eA

2(s−t0)G(v(s), s)ds

∣∣∣∣∣
2

=

∣∣∣∣∣
∫0

−δ
AeA

2(s−t0)G(v(s), s)ds

∣∣∣∣∣. (6.4)
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Since A2 is a positive sectorial operator on H, there exists a constant MA > 0 such that

∣∣∣Ae−A
2t
∣∣∣
L(H2)

≤ MAt
−1/2, ∀t ≥ 0. (6.5)

Recall that G(v, t) ∈ CLip; γ(H2 × [t0,+),H). So there is a K0(ω) > 0 such that P-a.s.

|G(v, t)| ≤ K0(ω), ∀(v, t) ∈ B̂ × [−δ, 0]. (6.6)

Therefore

∣∣∣∣∣
∫0

−δ
eA

2sG(v(s), s)ds

∣∣∣∣∣
2

≤ K0(ω)MA

∫0

−δ
(−s)1/2 ds =

1
2
K0(ω)MAδ

1/2. (6.7)

It follows that

κ(N2) ≤ diamH2(N2) ≤ K0MAδ
1/2, (6.8)

where κ(·) denotes the Kuratowski measure of noncompactness on H2. Now since N1, N3,
and N4 are relatively compact sets in H2 P-a.s., we have

κ
(
S0(0, t0;ω)B̂

)
≤ κ(N1) + κ(N2) + κ(N3) + κ(N4) ≤ κ(N2) ≤ K0MAδ

1/2. (6.9)

Letting δ → 0, one immediately concludes that P-a.s. κ(S0(0, t0;ω)B̂) = 0, hence S0(0, t0;ω)B̂
is relatively compact.

(ii) The proof of the compactness result for Sα(t, s;ω) (0 < α ≤ 1) is fully analogous,
and is thus omitted.

6.3. The Random Attractors

Now, we show that the system Sα(t, s;ω) possesses a random attractor Aα(ω) for every α ∈
[0, 1].

Proof of Theorem 2.4. We infer from the proofs of Theorem 5.2 and Lemma 6.1 that there exists
t(ω) < 0 such that for any t0 ≤ t(ω), we can define an absorbing set for S0(t, t0;ω) at time 0 by

B0 =

{
v : |Δv|2 ≤ 2C12(ω)

λ21

}
∪ B2+σ(0, R2(ω)), (6.10)

and for Sα(t, s;ω) (0 < α ≤ 1), for any t0 < 0 we can define an absorbing set for Sα(t, t0;ω) at
time 0 by

Bα = B1(0,Ψ), (6.11)
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where B1(0,Ψ) denotes the open ball centered at 0 with radius Ψ inH1. Now the conclusions
of the theorem immediately follows from Proposition A.6

Appendix

Basic knowledge of RDS

In the Appendix, we present some notations of RDS, which are also introduced in [7, 13, 14].
Let (X, d) be a complete metric space, and let (Ω,F,P) be a probability space. We

consider a family of mappings

{S(t, s;ω)}t≥s,ω∈Ω : X −→ X, (A.1)

satisfying P-a.s.

(i) S(t, s;ω) = S(t, r;ω) ◦ S(r, s;ω), for all s ≤ r ≤ t,

(ii) S(t, s;ω) is continuous in X, for all s ≤ t.

Definition A.1. We say that B(t, ω) ⊂ X is an absorbing set at time t, if P-a.s.

(i) B(t, ω) is bounded,

(ii) for all B ⊂ X there exists sB such that S(t, s;ω)B ⊂ B(t, ω), for all s ≤ sB.

Definition A.2. Given t ∈ R and ω ∈ Ω, we say that {S(t, s;ω)}t≥s,ω∈Ω is uniformly compact at
time t if for all bounded set B ⊂ X, there exist sB, such that P-a.s.

⋃
s≤sB

S(t, s;ω)B (A.2)

is relatively compact in X.

Definition A.3. Given t ∈ R and ω ∈ Ω, for any set B ⊂ X, we define the random omega limit
set of a bounded set B ⊂ X at time t as

ΩB(t, ω) =
⋂
T≤t

⋃
s≤T

S(t, s;ω)B. (A.3)

Definition A.4. Let (X, d) be a metric space, and let {S(t, s;ω)}t≥s,ω∈Ω a family of operators that
maps X into itself. We say that A(t, ω) is a stochastic attractor if P-a.s.

(i) A(t, ω) is not empty and compact,

(ii) S(τ, s;ω)A(s,ω) = A(τ,ω) for all τ ≥ s,

(iii) for every bounded set B ⊂ X, limt→−∞d(S(t, s;ω)B,A(t, ω)) = 0.

Remark A.5. (i) In the stochastic case, it is not possible to construct the random attractor as
theΩ-limit of the absorbing set (as done in the deterministic case). This is due to the fact that
the Ω-limit set is taken from −∞ and that the absorbing set is random.

(ii) Global attractor is connected.
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Proposition A.6 (see [15]). If there exists a random set absorbing every bounded deterministic set
B ⊂ X and {S(t, s;w)}t≥s,ω∈Ω is uniformly compact at time t, then the RDS possesses a random
attractor defined by

A(t, ω) =
⋃
B⊂X

ΩB(t, ω). (A.4)

Remark A.7. In this paper, we write A(ω) instead of A(0, ω) for short.
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