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We are motivated to model PE-CVD (plasma enhanced chemical vapor deposition) processes for
metallic bipolar plates, and their optimization for depositing a heterogeneous layer on the metallic
plate. Moreover a constraint to the deposition process is a very low pressure (nearly a vacuum)
and a low temperature (about 400K). The contribution of this paper is to derive a multiphysics
system of multiple physics problems that includes some assumptions to simplify the complicate
process and allows of deriving a computable mathematical model without neglecting the real-life
processes. To model the gaseous transport in the apparatus we employ mobile gas phase streams,
immobile and mobile phases in a chamber that is filled with porous medium (plasma layers).
Numerical methods are discussed to solve such multi-scale and multi phase models and to obtain
qualitative results for the delicate multiphysical processes in the chamber. We discuss a splitting
analysis to couple such multiphysical problems. The verification of such a complicated model is
done with real-life experiments for single species. Such numerical simulations help to economize
on expensive physical experiments and obtain control mechanisms for the delicate deposition
process.

1. Introduction
We motivate our research on producing high-temperature films by low-pressure deposition
processes. Such deposition can only be achieved with plasma-enhanced processes; see [1]. In
standard applications based on depositing binary systems such as TiN and TiC, newmaterial
classes arose. More delicate to deposit are nanolayered ternary metal-carbide or metal-nitride
materials, including MAX-phase materials, while we have to control three species in the
deposition process see [2].

To understand the growth of a thin film done by PE-CVD (plasma-enhanced chemical
vapor deposition) processes, we have to model a complicated multiphysical process; see
[3, 4].

Based on the process constraints, which are very low-pressure (nearly vacuum) and a
low temperature (about 400K), we can simplify the complicated model.
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The delicate modeling part is to model the plasma, in which the deposition species,
given as precursor gases, are transported; see [5]. We concentrate on plasma as an ionized
medium, known as “cold” plasma or glow discharges; see [6, 7]. To model the gaseous
transport of our deposition process in the cold plasma, a porous medium model with
different permeable layers is an attractive simulation model; see [4]. In the chamber filled
with an ionized plasma that is given as a porous medium, the gaseous transport involves
several phases: mobile gas phase streams, and both immobile and adsorbed phases. For
such processes, we present a multiphase and multispecies model; see [3, 8]. The species of
the gaseous transport are MAX-phase materials; see [9–11], and we concentrate on Ti3 Si C2

molecules, so we have Ti, Si, and C in the gas phases.
Further a porous medium model with permeable layers is an attractive simulation

model also for the electric field in the chamber that is used to control the gaseous transport
to the deposition area. Here the expertise of similar simulation models are used; see [12].

So the transport, chemical and sorption processes in a heterogeneous medium can
be used to simulate species transport in a plasma-enhanced environment, controlled by
pressure, temperature and by additional electric fields. Such modeling methods have been
developed in recent years and are focused on producing high-temperature films; see [4].

Fundamental models of CVD processes employ detailed descriptions of fluid flow,
mass transfer, heat transfer and chemical kinetics; see [13, 14].

While having a powerful deposition process in low-temperature and low-pressure
regimes, we have also taken into account some drawbacks of such a process, which is driven
with ionized plasma. Here, we deal with multicomponent problems with heavier and lighter
species. Such conditions have consequences in slower (strongly adsorbed) or faster traveling
(weakly adsorbed) species.

The contributions of this paper are to couple numerical methods that are developed to
solve such multiscale and multiphase models and to obtain qualitative results on the delicate
multiphysical processes in the chamber. Here splitting schemes are applied as an attractive
tool to decouple delicate processes; see [15]. We apply and analyze splitting schemes, in a
way that combines discretization methods for partial differential and ordinary differential
equations; see [12, 15].

The immobile, adsorbed and reaction terms can be treated with fast Runge-Kutta
solvers, whereas the mobile terms are convection-diffusion equations and are solved with
splitting semi-implicit finite volume methods and characteristic methods, [16].

Such a sequential treatment of the partial differential equations and ordinary
differential equations allow of saving computational time, while expensive implicit Runge-
Kutta methods are reduced to the partial operators and fast explicit Runge-Kutta methods
are for the ordinary operators of the multiphase model.

With various source termswe control the required concentration at the final deposition
area.

Different kinetic parameters allow of simulating the different time scales of the heavier
and lighter gaseous species.

The numerical results are verified with physical experiments and we discuss the
applications to the production of so-called metallic bipolar plates.

This paper is outlined as follows. In Section 2, we present our mathematical model
based on the multiphases. In Section 3, we present the underlying physical experiments
for the model equations. In Section 4, we discuss discretization and solver methods with
respect to their efficiency and accuracy. The numerical experiments are given in Section 5.
In Section 6, we briefly summarize our results.
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2. Mathematical Modeling

In the model we have included the following multiple physical processes, related to the
deposition process:

(i) flow field of the ionized plasma: Navier-Stokes equation; see [17],

(ii) transport system of the species: mobile and immobile gaseous phases with
Kinetically controlled adsorption (heavier and lighter species); see [4],

(iii) electric field: Poisson equation; see [13, 18].

In the following we discuss the three models separately and combine all the models into
a multiple physical model. We assume a two-dimensional domain of the apparatus with
isotropic flow fields; see [17].

2.1. Flow Field

The conservation of momentum is given by (flow field: Navier-Stokes equation)

∂

∂t
v + v · ∇v = −∇p, in Ω × [0, t],

v(x, t) = v0(x), on Ω,

v(x, t) = v1(x, t), on ∂Ω × [0, t],

(2.1)

where v is the velocity field, p the pressure, v0 the initial velocity field and the position vector
x = (x1, x2)

t ∈ Ω ⊂ R
2,+. Furthermore, we assume that the flow is divergence free and the

pressure is predefined.

2.2. Transport Systems (Multiphase Equations)

We model the ionized plasma as an underlying medium in the chamber with mobile and
immobile phases. Here transport in the plasma with gaseous species contain of mobile and
immobile concentrations, [3]. For such a heterogenous plasma, we applied our expertise in
modeling multiphase transport through a porous medium; see [2].

To amplify the modeling of the gaseous flow to the chamber which is filled with
ionized plasma, we deal with the so-called far-field model based on a porous medium. Here
the plasma can be modeled as a continuous flow [17], that has mobile and immobile phases;
see [8].

We assume nearly a vacuum and a diffusion-dominated process, derived from the
Knudsen diffusion, [19]. In such viscous flow regimes, we deal with small Knudsen numbers
and a pressure of nearly zero. We discuss a modified model, including new system parameter
spaces such as porosity and permeability, which describe the plasma flow through the
reactor.
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Figure 1: Chamber of the CVD apparatus.

In Figure 1, the chamber of the CVD apparatus is shown. It is modeled as a porous
medium, where the porosity is given as the ratio between the void space and the total volume
of the ceramic or bulk material:

φ =
Vv
Vb
, (2.2)

where Vv is the void space and Vb is the volume of the ceramic or bulk material.
For the one-phase model, the velocity v of the underlying fluid is calculated by Darcy’s

law and given by:

v =
−κ
μ

∇p
φ
, (2.3)

where κ is the permeability, ∇p is the pressure gradient, φ is the porosity and μ the dynamic
viscosity.

To model a retarded gas concentration in the porous medium, we have to consider
multiphases of the underlying fluid. The newmodel includes immobile and adsorbed phases,
where the velocity of the fluid is zero and impermeable layers are given.

In themodel, we consider both absorption and adsorption taking place simultaneously
and with given exchange rates. Therefore we consider the effect of the gas concentrations’
being incorporated into the porous medium.

We extend the model to two more phases:

(i) immobile phase,

(ii) adsorbed phase.

In Figure 2, the mobile and immobile phases of the gas concentration are shown in the
macroscopic scale of the porous medium. Here the exchange rate between the mobile gas
concentration and the immobile gas concentration control the flux to the medium.

In Figure 3, the mobile and adsorbed phases of the gas concentration are shown in the
macroscopic scale of the porous medium. To be more detailed in the mobile and immobile
phases, where the gas concentrations can be adsorbed or absorbed, we consider a further
phase. Here the adsorption in the mobile and immobile phase is treated as a retardation and
given by a permeability in such layers.
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Figure 2: Mobile and immobile phase.
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Figure 3: Mobile-adsorbed phase and immobile-adsorbed phase.

The model equations for the multiple phase equations are

φ∂tci +∇ · Fi = g(−ci + ci,im) + kα(−ci + ci,ad) − λi,iφci +
∑

k=k(i)

λi,kφck + Q̃i, in Ω × [0, t],

(2.4)

Fi = vci −De(i)∇ci + ηEci, (2.5)

φ∂tci,im = g(ci − ci,im) + kα(ci,im,ad − ci,im) − λi,iφci,im +
∑

k=k(i)

λi,kφck,im + Q̃i,im, in Ω × [0, t],

(2.6)

φ∂tci,ad = kα(ci − ci,ad) − λi,iφci,ad +
∑

k=k(i)

λi,kφck,ad + Q̃i,ad, in Ω × [0, t], (2.7)

φ∂tci,im,ad = kα(ci,im − ci,im,ad) − λi,iφci,im,ad +
∑

k=k(i)

λi,kφck,im,ad + Q̃i,im,ad, in Ω × [0, t],

(2.8)

ci(x, t) = ci,0(x), ci,ad(x, t) = 0, ci,im(x, t) = 0, ci,im,ad(x, t) = 0, on Ω, (2.9)

ci(x, t) = ci,1(x, t), ci,ad(x, t) = 0, ci,im(x, t) = 0, ci,im,ad(x, t) = 0, on ∂Ω × [0, t],
(2.10)

where the initial value is given as ci,0 and we assume a Dirichlet boundary conditions with
the function ci,1(x, t) sufficiently smooth, all other initial and boundary conditions of the other
phases are zero.
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The parameters are given as:

φ: effective porosity [−],
ci: concentration of the ith gaseous species in the plasma chamber,

ci,im: concentration of the ith gaseous species in the immobile zones of the plasma
chamber phase [mol/cm3],

v: velocity through the chamber and porous substrate [20] [cm/nsec],

De(i): element-specific diffusions-dispersions tensor [cm2/nsec],

λi,i: decay constant of the ith species [1/nsec],

Q̃i: source term of the ith species [mol/(cm3nsec)],

g: exchange rate between the mobile and immobile concentration [1/nsec],

kα: exchange rate between the mobile and adsorbed concentration or immobile and
immobile adsorbed concentration (kinetic controlled sorption) [1/nsec],

E: stationary electricfield in the apparatus [V/cm],

η: the mobility rate in the electricfield; see [13] [cm2/nsec],

with i = 1, . . . ,M andM denotes the number of components.
The parameters in (2.4) are further described; see also [12].
The four phases are treated in the full domain, such that we have a full coupling in

time and space.
The effective porosity is denoted by φ and declares the portion of the porosities of the

aquifer that is filled with plasma, and we assume a nearly fluid phase. The transport term is
indicated by the Darcy velocity v, that presents the flow direction and the absolute value of
the plasma flux. The velocity field is divergence free. The decay constant of the ith species is
denoted by λi. Thereby, k(i) denotes the indices of the other species which react with species i.

2.3. Electric Field (Distribution)

In addition, in order to find the distribution of the electric field, it is necessary to solve the
Poisson equation which relates the divergence of the local electric fields to the charge density
[13], and is given by

∇ · E =
e

ε0

n∑

i=1

Zici, (2.11)

where e is the charge of the electron, ε0 the permittivity of the gas mixture, ci the particle
density of species i and Zi the relative charge of species i; see [21].

A general model for PECVD reactors is very complicated and we therefore simplify
the model with some assumptions to obtain tractable problems.

(i) Predefined electric field E respecting different predefined areas Ωj , we apply:

∇ · E ≈ e

ε0

n∑

i=1

Zi cconst,i|Ωj
, (2.12)
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Figure 4: Electrical sectors in the domain of the apparatus.

where we assume that ci ≈ cconst,i for Ωj is a constant particle density of species i in
domain Ωj with j ∈ 1, . . . , m andm is the number of domains.

(ii) The plasma chemistry in the reactor is neglected.

2.4. Multiphysics Model

We derive the multiphysics model based on the multiphase and electric field model.
We start by developing the multiphysics model in the following steps:

(i) transport system (multiphase model),

(ii) electrical field is approximated by a permeable layer (field model),

(iii) multiphysics model with multiphase transport and embedded electrical field.

We assume that the number of gas particles in the plasma atmosphere Ar (Argon) is low and
the density of the particles can be treated as nearly constant.

Therefore, we can derive a constant field in each sector of the apparatus

E ≈ EΩj , (2.13)

where EΩj is constant and Ωj ⊂ Ω are sectors in the domain.
Such an electric field, see Figure 4, can be assumed in near-field experiments to be

nearly homogeneous, where the field intensity is decreasing and can be assumed to be
constant in small areas; see [4].

Next the idea is to embed the electric field into a porous medium model. A simplified
model can be derived with given domain-dependent parameters and a retardation factor that
includes the influence of the electric field.
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First, the mobile phase equation (2.4) can be reformulated with retardation factor
given by:

Ri
∂

∂t
ci +∇F̃i − RiRg,i = 0, in Ω × [0, t],

F̃i = vci −De(i)∇ci,
(2.14)

ci(x, t) = ci,0(x), on Ω,

ci(x, t) = ci,1(x, t), on ∂Ω × [0, t],
(2.15)

where ci is the particle density and F̃i the flux of species i. Rg,i is the reaction term of species
i, meaning the right-hand side of (2.4), all other parameters as in (2.4)–(2.8). Ri is defined as
a specific and constant Henry isotherm, called the retardation factor; see [22]. Such factors
are known as sorption coefficients and model the rate between the mobile and immobile
concentration, they are derived from experiments; see [23].

In a second step, we calculate the retardation factor, which is based on the influence of
the electric field.

We subtract (2.4) from (2.14) and obtain

∇Fi = ∇F̃i
Ri

. (2.16)

We include the assumption of the electric field dependence of the domain parts and consider

(
1
Ri

− 1
)
∇
(
v −De(i)∇

)
ci ≈ e

ε0

n∑

k=1

Zk cconst,k|Ωj
, for j = 1, . . . , m, (2.17)

so we obtain the derivation of Ri for a specific domain Ωj ⊂ Ω and we have:

Ri =

(
e

ε0

n∑

k=1

Zk cconst,k|Ωj

1
∇(v −De(i)∇)ci

+ 1

)−1
, for Ωj . (2.18)

In the third step we add the equations (2.6)–(2.8) to the modified mobile phase equation
(2.14) and we obtain the full coupled system.

Here the novel contribution is to derive a full coupled system of a multiphase and
multiflow problem to include all the physical processes in the chamber. Such ideas have been
developed and considered in fluid dynamical models for many years [24].

Remark 2.1. For the flow through the chamber, for which we assume a homogeneous medium
and nonreactive plasma, we have considered a constant flow [1]. A further simplification is
given by the very small porous substrate, for which we can assume the underlying velocity
to a first approximation as constant [4].
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Remark 2.2. For an in-stationary medium and reactive or ionized plasma, we have to take
into account the relations of the electrons in thermal equilibrium. Such spatial variation can
be considered by modeling the electron drift. Such modeling of the ionized plasma is done
with Boltzmanns relation, [3].

3. Physical Experiments

The base of the experimental setup is the plasma reactor chamber of a NIST GEC reference cell.
The spiral antenna of a hybrid ICP/CCP-RF plasma source was replaced by a double spiral
antenna [25]. This reduces the asymmetry of the magnetic field due to the superposition
of the induced fields of both antennas. Also, the power coupling to the plasma increases
and enhances the efficiency of the source. A set of MKS mass flow controllers allows any
defined mixture of gaseous precursors. Even the flows of liquid precursors with high vapour
pressure is controlled by this system. All other liquid and all solid precursors will be directly
transported to the chamber by a controlled carrier gas flow. Besides the precursor flow, the
density can also be changed by varying the pressure inside the recipient. Controlling the
pressure is achieved with a valve between the recipient and vacuum pumps. In addition, a
heated and insulated substrate holder was mounted. Thus, a temperature up to 800◦C and a
bias voltage can be applied to the substrate. While the pressure and RF power determine the
undirected particle energy (plasma temperature), the bias voltage adds, only to the charged
particles, energy directed at the substrate. Apart from the pressure and RF power control,
the degree of ionization and number as well as the size of the molecular fractions can be
controlled.

Altogether, this setup provides as free process parameters:

(i) pressure (typically 10−1–10−2 mbar),

(ii) precursor composition (TMS, TMS + H2, TMS + O2),

(iii) precursor flow rate (ranging from SCCM to SLM),

(iv) RF Power (up to 1100W),

(v) substrate temperature (RT—800◦C),

(vi) bias voltage (DC, unipolar and bipolar pulsed, floating).

During all experiments, the process was observed by optical emission spectroscopy (OES)
and mass spectroscopy (MS). The stoichiometry of the deposited films was analyzed ex situ
in a scanning electron microscope (SEM) by energy dispersive X-ray analysis (EDX).

3.1. Realization of Physical Experiments

The following parameters were used for the physical experiments. Such a reduction allows
of concentrating on the important flow and transport processes in the gas phase. Further, we
apply the underlying mathematical model (far-field model, see Section 2.2) so that we can
switch between physical and mathematical parameters (see Table 1).

(1) Precursor: Tetramethylsilan (TMS).

(2) Substrate: VA-Steel.

(3) Film at substrate: SiCx.
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Table 1: The physical experiments with the real-life apparatus.

Test PR
(mbar) ϑS (C) Pplasma

(W)
φ (TMS)
(SCCM)

φ(H2)
(SCCM)

Ratio
(C : Si)

Mass
(growth) (g)

Time
(min)

080701-01-VA 9.7E− 2 400 900 10.23 0 0.97811 0.00012 120

080718-01-VA 1.1E− 1 400 900 10.00 0 1.00174 0.00050 130

080718-02-VA 4.5E− 2 400 900 10.00 0 1.24811 0.00070 110

080618-01-VA 4.3E− 2 400 500 10.23 0 1.32078 — 127

080716-01-VA 1.1E− 1 400 500 10.00 0 1.42544 0.00250 120

080715-02-VA 1.1E− 1 400 100 10.00 0 1.58872 0.00337 122

080804-01-VA 4.5E− 2 400 100 10.00 0 2.91545 0.00356 129

080630-01-VA 9.9E− 2 800 900 10.23 0 1.09116 0.00102 120

080807-01-VA 4.5E− 2 800 900 10.00 0 1.18078 0.00118 120

080625-01-VA 3.9E− 2 800 500 10.23 0 1.06373 — 120

080626-01-VA 9.3E− 2 800 500 10.23 0 1.12818 0.00174 130

080806-01-VA 4.8E− 2 800 100 10.00 0 1.73913 0.00219 121

080715-01-VA 1.1E− 1 800 100 10.00 0 1.62467 0.00234 120

081016-01-VA 1.0E− 1 600 300 10.00 0 1.72898 0.00321 123

081020-01-VA 1.1E− 1 600 300 10.00 50 1.49075 0.00249 114

081028-01-VA 1.1E− 1 600 300 10.00 15 1.53549 0.00273 120

081023-01-VA 1.1E− 1 600 300 10.00 10 1.54278 0.00312 127

081027-01-VA 1.1E− 1 600 300 10.00 5.5 1.55818 0.00277 126

081024-01-VA 1.1E− 1 600 300 10.00 3.5 1.64367 0.00299 120

081022-01-VA 1.0E− 1 600 300 10.00 2.5 1.69589 0.00318 127

We apply the parameters in Table 2 for interpolation of the substrate temperature.

For the substrate temperature and plasma power, we use the parameters in Table 3.

Remark 3.1. In the process, the temperature and power of the plasma is important and
experiments show that these are significant parameters. Based on these parameters, we
initialize the mathematical model and interpolate the flux and reaction parts.

4. Discretization and Solver Methods

We distinguish between the mobile and immobile phases. Here the mobile phases are
parabolic partial differential equations and the immobile phases are ordinary differen-
tial equations. So for the space-discretization of the PDE’s we apply finite volume methods
as mass-conserved discretization schemes and for the time-discretization of the PDE’s and
ODE’s we apply Runge-Kutta methods.

So first we discretize in space, while we then apply a splitting method, taking into
account the different matrices.
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Table 2

Temperature (C) Ratio (SiC : C)
400 2.4 : 1
600 1.5 : 1
700 1.211 : 1
800 1.1 : 1

Table 3

Temperature (C) Power (W) Ratio (SiC : C)
400 900 1 : 0.97
400 500 1.3 : 1
800 900 1.18 : 1

4.1. Spatial Discretization

We deal with the transport part of the mobile phase, see (2.14):

Ri
∂

∂t
ci +∇F̃i = 0, in Ω × [0, t],

F̃i = vci −De(i)∇ci,
(4.1)

ci(x, t) = ci,0(x), on Ω,

ci(x, t) = ci,1(x, t), on ∂Ω × [0, t],
(4.2)

For the convection part, we use a piecewise constant finite volume method with upwind
discretization; see [26]. For the diffusion-dispersion part, we also apply a finite volume
method and we assume the boundary values are denoted by n · De(i) ∇ci(x, t) = 0, where
x ∈ Γ is the boundary Γ = ∂Ω; compare with [27]. The initial conditions are given by
ci(x, 0) = ci,0(x).

We integrate (4.1) over space and obtain

∫

Ωj

Ri
∂

∂t
ci dx =

∫

Ωj

∇ ·
(
−vci +De(i)∇ci

)
dx. (4.3)

The time integration is done later in the decomposition method with implicit-explicit
Runge-Kutta methods. Further the diffusion-dispersion term is lumped; compare with [12].
Equation (4.3) is discretized over space using Green’s formula

VjRi
∂

∂t
ci dx =

∫

Γj
n ·
(
−vci +De(i)∇ci

)
dγ, (4.4)

where Γj is the boundary of the finite volume cell Ωj and Vuj is the volume of the cell j. We
use the approximation in space; see [12].
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The spatial integration for the diffusion part (4.4) is done by the mid-point rule over
its finite boundaries and the convection part is done with a flux limiter and we obtain:

VjRi
∂

∂t
ci,j =

∑

e∈Λj

ne∇vcei dγ +
∑

e∈Λj

∑

k∈Λe
j

∣∣∣Γejk
∣∣∣nejk ·De

jk∇cei,jk, (4.5)

where |Γejk| is the length of the boundary element Γejk. The gradients are calculated with the
piecewise finite-element function φl.

We decide to discretize the ux with an up-winding scheme and obtain the following
discretization for the convection part:

Fj,e =

⎧
⎨

⎩
vj,eci,j , if vj,e ≥ 0,

vj,eci,k, if vj,e < 0,
(4.6)

where vj,e =
∫
e v · nj,eds.

We obtain for the diffusion part:

∇cejk =
∑

l∈Λe

cl∇φl
(
xejk
)
. (4.7)

We get, using difference notation for the neighbour points j and l; compare with [28], the full
semi-discretization:

VjRi
∂

∂t
ci,j =

∑

e∈Λj

Fj,e +
∑

e∈Λj

∑

l∈Λe\{j}

⎛

⎝
∑

k∈Λe
j

∣∣∣Γejk
∣∣∣nejk ·De

jk∇φl
(
xejk
)
⎞

⎠(cj − cl
)
, (4.8)

where j = 1, . . . , m.

Remark 4.1. For higher-order discretization of the convection equation, we apply a
reconstruction which is based on Godunov’s method. We apply a limiter function that fulfills
the local min-max property. The method is explained in [26]. The linear polynomials are
reconstructed by the element-wise gradient and are given by

u
(
xj
)
= cj ,

∇u|Vj =
1
Vj

E∑

e=1

∫

Te∩Ωj

∇c dx, with j = 1, . . . , I.
(4.9)

The piecewise linear functions are denoted by

ujk = cj + ψj∇u|Vj
(
xjk − xj

)
, with j = 1, . . . , I, (4.10)

where ψj ∈ (0, 1) is the limiter function and it fulfills the discrete minimum-maximum
property, as described in [26].
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4.2. Splitting Method to Couple Mobile, Immobile,
and Adsorbed Parts

The motivation of the splitting method is the following observations.

(i) The mobile phase is semidiscretized with fast finite volume methods and can be
stored in a stiffness matrix. We achieve large time steps, if we consider implicit
Runge-Kutta methods of lower order (e.g., implicit Euler) as a time discretization
method.

(ii) The immobile, adsorpted, and immobile-adsorpted phases are pure ordinary
differential equations and each is cheap to solve with explicit Runge-Kutta schemes.

(iii) The ODEs can be seen as perturbations and are solved explicitly in the iterative
scheme.

For the full equation we use the following matrix notation:

∂tc = A1c +A2c + B1(c − cim) + B2(c − cad) +Q,

∂tcim = A2cim + B1(cim − c) + B2(cim − cim,ad) +Qim,

∂tcad = A2cad + B2(cad − c) +Qad,

∂tcim,ad = A2cim,ad + B2(cim,ad − cim) +Qim,ad,

(4.11)

where c = (c1, . . . , cm)
T is the spatial discretized concentration in the mobile phase, see (2.4),

and cim = (c1,im, . . . , cm,im)
T is the concentration in the immobile phase, and similarly for the

other phase concentrations. A1 is the stiffness matrix of (2.4), A2 is the reaction matrix of
the right-hand side of (2.4), B1 and B2 are diagonal matrices with entries the immobile and
kinetic parameters, see (2.7) and (2.8).

Furthermore Q, . . . ,Qim,ad are the spatially discretized source vectors.
Now we have the following ordinary differential equation:

∂tC =

⎛
⎜⎜⎜⎜⎜⎝

A1 +A2 + B1 + B2 −B1 −B2 0

−B1 A2 + B1 + B2 0 −B2

−B2 0 A2 + B2 0

0 −B2 0 A2 + B2

⎞
⎟⎟⎟⎟⎟⎠

C + Q̃, (4.12)

where C = (c, cim, cad, cim,ad)
T and the right-hand side is Q̃ = (Q,Qim,Qad,Qim,ad)

T .
For such an equation we apply the decomposition of the matrices

∂tC = ÃC + Q̃,

∂tC = Ã1C + Ã2C + Q̃,
(4.13)
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where

Ã1 =

⎛
⎜⎜⎜⎜⎜⎝

A1 +A2 0 0 0

0 A2 0 0

0 0 A2 0

0 0 0 A2

⎞
⎟⎟⎟⎟⎟⎠
, Ã2 =

⎛
⎜⎜⎜⎜⎜⎝

B1 + B2 −B1 −B2 0

−B1 B1 + B2 0 −B2

−B2 0 B2 0

0 −B2 0 B2

⎞
⎟⎟⎟⎟⎟⎠
. (4.14)

This system of equations is numerically solved by an iterative scheme.

Algorithm 4.2. We divide our time interval [0, T] into subintervals [tn, tn+1], where n =
0, 1, . . .N, t0 = 0 and tN = T .

We start with n = 0.
(1) The initial conditions are given by C0(tn+1) = C(tn). We start with k = 0.
(2) Compute the fixed-point iteration scheme given by

∂tCk = Ã1Ck + Ã2Ck−1 + Q̃, (4.15)

where k is the iteration index; see [29]. For the time integration, we apply Runge-Kutta
methods as ODE solvers; see [30, 31].

(3) The stop criterion for the time interval tn, tn+1 is given by

∥∥∥Ck
(
tn+1
)
− Ck−1

(
tn+1
)∥∥∥ ≤ err, (4.16)

where ‖ · ‖ is the maximum norm over all components of the solution vector. err is a given
error tolerance, for example, err = 10−4.

If (4.16) is fulfilled, we have the result

C
(
tn+1
)
= Ck

(
tn+1
)
. (4.17)

If n =N (which means we reach the maximum iterative steps), then we stop and are done.
If (4.16) is not fulfilled, we do k = k + 1 and go to (2).

The error analysis of the schemes is given in the following theorem.

Theorem 4.3. Let A,B ∈ L(X) be given linear bounded operators in a Banach space L(X). We
consider the abstract Cauchy problem

∂tC(t) = ÃC(t) + B̃C(t), tn ≤ t ≤ tn+1,
C(tn) = Cn, for n = 1, . . . ,N,

(4.18)

where t1 = 0 and the final time is tN = T ∈ R
+. Then problem (4.18) has a unique solution. For finite

steps with time size τn = tn+1 − tn, the iteration (4.15) for k = 1, 2, . . . , q is consistent with an order of
consistency O(τqn).

Proof. The outline of the proof is given in [15].
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5. Experiments for the Multiple Phase Model

In the following subsections, we present our experiments based on the mobile, immobile and
adsorbed gaseous phases.

We contribute ideas to obtain an optimal layer deposition, which is based on the PE-
CVD process, while different additional phases are considered, for example, plasma and
precursor media.

The main contributions are an optimal collection of point sources, line sources or
moving sources to cover the deposition area, with respect to the remainder concentration
in the immobile and adsorbed phases.

We simulate the deposition process with our boundary value solver algorithms and
could deal with many different conditions that might be impossible for physical experiments.
Such simulation results may benefit the physical experiment and give new ideas to optimize
such deposition problems of a complicated physical process.

5.1. Verification of the Code with Analytical Solutions

In the verification of our software code UG; see [32], we apply the multiphase model (2.4)
and (2.6) with the following parameters.

We use ascending parameters for the retardation factors. The retardation factors are
given by R1 = 16, R2 = 8, R3 = 4, R4. The reaction factors are given by λ1 = 0.4, λ2 = 0.3,
λ3 = 0.2, λ0 · 0.

The initial conditions for the mobile phase are given by

ci(x, 0) =

⎧
⎨

⎩
aix + bi, x ∈ (x1, x2),

0, otherwise ,
(5.1)

where the parameters are given by x1 = 0.0, x2 = 1.0, a1 = 1.0, b1 = 1.0, a2 = −1.0, b2 = 1.0,
a3 = 1.0, b3 = 0.0, a4 = 2.0, b4 = 1.0.

The mobile-immobile exchange rate is g = 0.5.
The initial conditions for the immobile concentrations are cim(0) = (1, 1, 1, 1)t.
For the time integration method we apply a fourth-order Runge-Kutta method and we

apply k = 1, . . . , 4 iterative steps for the solver scheme.
The errors are given by

erri,j =
N∑

k=1

∣∣ui, coupled, j−1(xk, t) − ui, coupled, j(xk, t)
∣∣, (5.2)

where xk = (k − 1)Δx, k = 0, . . . ,N, Δx = 0.01,N = 1000, and j = 2, 3, 4, 5.
The solutions of the species are given in Figures 5 and 6.

Remark 5.1. The iterative scheme reduced the amount of numerical work to couple the mobile
and immoble equations. We obtain more accurate results by using 3-4 iterative steps. Such
schemes help the flexibility in coupling model equations by reducing the amount of recoding
needed. More accuracy can be simply achieved with more iterative steps.
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Figure 5: Experiment with the coupled model for the mobile solutions cim, with j = 2 and j = 4 iteration
steps at time point t = 8.

Table 4: Physical and mathematical parameters.

Physical parameter Mathematical parameter
Temperature, pressure, power Velocity, diffusion, reaction
T , p,W V , D, λ

5.2. Verification of the Model with Physical Experiments

For the next experiments, we have the following parameters of the model, discretization, and
solver methods.

We apply interpolation and regression methods to couple the physical parameters that
were discussed in Section 3, to the mathematical parameters, see Figure 7 and Table 4.
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Figure 6: Experiment with the coupled model for the immobile solutions cim, with j = 2 and j = 4 iteration
steps at time point t = 8.
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Mathematical parameters

Figure 7: Coupling of physical and mathematical parameter space.

Parameters of (2.4)–(2.8)

In Table 8, we list the parameters for our simulation tool UG; see [32]. The software
toolbox has a flexible user interface to allow a large number of numerical experiments and
approximations using the known physical parameters.

Discretization Method

Finite-volume method of 2nd order is shown in Table 9.

Time Discretization Method

Crank-Nicolson method (2nd order).

Solver Method

In Tables 10 and 11, we deal with test examples which are approximations of physical
experiments.
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Table 5: Computed and experimental fitted parameters from UG simulations.

T λ (fitted) λ (interpolated) Ratio (SiC :C) (computed with UG)
400 1/2 · 10−8 — 2.4 : 1
500 — 0.35 · 10−8 1.85 : 1
600 1/4 · 10−8 — 1.5 : 1
700 — 0.171 · 10−8 1.211 : 1
800 1/8 · 10−8 — 1.1 : 1

Table 6: Parameters of source concentration.

Point source at position (x, y) = (50, 20)
Starting point of source concentration tstart = 0.0
End point of source concentration tend = 1108

Amount of permanent source concentration csource = 1.0
Number of time steps 25

Table 7: Rate of concentration.

Rate
SiCsource,max : SiCtarget,max 9 · 106 : 6.5 · 106 = 1.38

Numerical Experiment

In the test example, we deal with the following reaction:

2SiC + 4H−→λSiC + CH4 + Si. (5.3)

Here, we have physical experiments and approximate temperature parameters T =
400, 600, 800.

We compute the SiC :C ratio at a given temperature T = 400, 600, 800 with the UG
program and fit to the parameter λ.

We use a Lagrangian formula to compute λ for the new temperatures T = 500, 700 and
apply the ratio of the simulated new parameters (Table 5). These numerical results are used
to initialise the physical experiments in Table 12.

One Source

See Table 6.
In Figure 8, we present the concentration of one point source at (50, 20) with number

of time steps equal to 25.
In Figure 9, we show the deposition rates of one point source at (50, 20), with number

of time steps equal to 25.

Remark 5.2. In the numerical experiments, we could approximate the physical experiments
and obtain the same deposition rates for the Si: C deposition. Therefore, the model allows of
making predictions about future deposition rates with various parameters. Such numerical
experiments can replace expensive physical experiments and allow of restricting them to
more special cases.
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Table 8: Model parameters.

Density ρ = 1.0
Mobile porosity φ = 0.333
Immobile porosity 0.333
Diffusion D = 0.0
Longitudinal dispersion αL = 0.0
Transversal dispersion αT = 0.00
Retardation factor R = 100e − 4 (Henry rate)
Velocity field v = (0.0,−4.0 · 10−8)t
Decay rate of species of 1st EX λAB = 1 · 10−68
Decay rate of species of 2nd EX λAB = 2 · 10−8, λBNN = 1 · ¡10−68
Decay rate of species of 3rd EX λAB = 0.25 · 10−8, λCB = 0.5 · 10−8
Geometry (2D domain) Ω = [0, 100] × [0, 100]

Boundary Neumann boundary at top, left, and right boundaries
Outflow boundary at bottom boundary

Table 9: Spatial discretization parameters.

Spatial step size Δxmin = 1.56, Δxmax = 2.21
Refined levels 6
Limiter Slope limiter
Test functions Linear test function reconstructed with neighbour gradients

Table 10: Spatial discretization parameters.

Initial time step Δtinit = 5 · 107
Controlled time step Δtmax = 1.298 · 107,Δtmin = 1.158 · 107
Number of time steps
time step control 100, 80, 30, 25 time steps are controlled with the Courant number CFLmax = 1

Table 11: Solver methods and their parameters.

Solver BiCGstab (Bi conjugate gradient method)
Preconditioner Geometric multigrid method
Smoother Gauss-Seidel method as smoothers for the multigrid method
Basic level 0
Initial grid Uniform grid with 2 elements
Maximum level 6
Finest grid Uniform grid with 8192 elements

Table 12: L2-norm of the solution with refinements and CPU time.

Max ·level L2 · norm Max ·norm Elements CPU · time Time steps
6 1.6232 + 09 7.5026 + 07 8192 1.1 min 19
7 1.6222 + 09 7.7068 + 07 32768 3.55 min 19
8 1.6155 + 09 7.6753 + 07 131072 15.7 min 19
9 1.6137 + 09 7.6267 + 07 524288 59.55 min 19
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(a) (b)

Figure 8: One point source at (50, 20) with 25 time steps, full concentration is given in red and zero
concentration with blue.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08

Point 50 18
Point 50 2

5e+07

Figure 9: Deposition rates for one point source at (50, 20), with 25 time steps (x-axis: time scale in (nsec),
y-axis: deposition rate in (mol/nsec)).

5.3. Experiments with Full Model (α = 4 · 10−14 and Immobile Rate g = 8 · 10−14)
In this experiment, we have taken into account the full model and verify with the previous
simpler model equations that are verified by physial experiments.

Such novel experiments allow of giving prognoses of which direction of model
modification can be important for future diagnostics of physical experiments.

We have the following outline of the experiment.
The exchange in the following experiments of the carbon (C) species between the

mobile and immobile concentrations is very low, it is about g = 8 · 10−14, we assume less
activities in the plasma environment. Further the exchange between the mobile and adsorbed
mobile concentrations is also very low, it is about α = 4·10−14, also the exchange rates between
the immobile and adsorbed immobile concentration is the same as in themobile and adsorbed
mobile phases.
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In previous experiments; see [33], we obtained optimal deposition results by
combining multiple point sources which can be moved in the spatial directions (moving
sources). Further we could approximate the physical results, while using mobile and
immobile phase models.

In this experiment we increase the model to four phases in order to predict the delicate
adsorped regions. Physicists called such regions lost deposition areas, where the deposition
material vanishes into the apparatus; see [25].

We taken into account 11 point sources at the positions Y = 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, and these sources are moving in the X direction in equal spatial steps with 15.

The concentration of each source in each step is equal to 1. The starting movement of
X is given with 50 → 35 → 20 → 35 → 50 → 65 → 80 → 65 → 50.

In Figure 10, we present the experiment with 11 moving sources at the positions in
four phases. We obtain high depositions in the mobile phase, while we have only marginal
depositions in the immobile and adsorbed phases.

Here the important observations to give a measurement of the deposition are the
various deposition rates in the different phases.

In Figure 11, we present the deposition rate of mobile concentration of 11 moving
sources moving in the X-direction in steps of 15: X moves from 50 → 35 → 20 → 35 →
50 → 65 → 80 → 65 → 50, with the number of time steps equal to 25.

In see Table 12, we discuss the CPU time for the spatial refinements. We consider the
L2-norm of the solution and obtain convergent results of the solutions.

Remark 5.3. With moving sources we gain improved deposition rates, this was also observed
in [33]. Nevertheless the remaining concentration in the immobile and adsorbed phases are
important for seeing the lost areas. In Figure 11, the maximum deposition rate of carbon in
the mobile phase is 1.2 ·108 [mol], while the maximum lost deposition rate in the other phases
are at least 18000 [mol]. So in the immobile and adsorbed phases we lost only 0.00018 percent
concentration of the deposition material. This may seem to be neglectable, but we have
considered only 1 [sec] deposition time, while a full cycle of deposition could be 1000 [sec].
Therefore we lost about 10% of the concentration in the apparatus, which is immense. Due to
this fact, suchmodels are important for foreseeing the percentage of lost concentration. One of
the simulation results is the usage of higher amount of depositon material, that is, the higher
amount of the underlying precursor gases are used to overcome the lost of concentrations in
the apparatus. The second result is to consider more detailed models to predict the influence
of the multiphases of the underlying gaseous species.

6. Conclusions and Discussions

We have presented a continuous model for the multiple phases, we assumed gaseous
behaviour with exchange rates to adsorbed and immobile phases at very low-pressure and
low temperature while dealing with catalyst processes, for example, plasma environment
and precursor gases. We have to take into acount the remaining gas concentrations in each
processes. Such detailed modelling allows of seeing the delicate retardation and sorption
processes of the underlying plasma medium. From the methodology side of the numerical
simulations, the contributions were to decouple the multiphase problem into single-phase
problems, where each single problem can be solved with more accuracy. The iterative
schemes allows of coupling the simpler equations and for each additional iterative step,
we could reduce the splitting error. Such iterative methods allow of accelerating the solver
process of multiphase problems.
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Time (ns): 650000000 Time (ns): 1150000000

C (immobile concentration) C (immobile concentration)

C (mobile concentration) C (mobile concentration)

C (mobile-adsorbed concentration)C (mobile-adsorbed concentration)

C (immobile-adsorbed concentration) C (immobile-adsorbed concentration)

Figure 10: mobile (lowermost), immobile (lower-middle), mobile-adsorbed (upper-middle) and immo-
bile-adsorbed (uppermost) case of 11 moving sources moving with number of time step equal to 15 (left
figures) and 25 (right figures), where full concentration is given in red and zero concentration in blue.
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Figure 11: Deposition rates in four phases: mobile (a), immobile (b), mobile-adsorbed (c), immobile-
adsorbed (d) concentration of 11 moving sources moving, (x-axis: time scale in (nsec), y-axis: deposition
rate in (mol/nsec)).
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We can see in the numerical experiments a loss of the deposition concentration,
which means that we have to consider a higher inflow rate of the species. Further, we
could verify the underlying model with physical experiments. In the numerical experiments,
we presented various ideas to control an optimal deposition process. While numerical
experiments are cheap and all possible parameter variations of the model can be done in
less than a few weeks, the help in reducing the need for expensive physical experiments
is enormous. Such simulations reduce the need for physical experiments and allow of
foreseeing new directions of helpful optimizations.

In the future we are interested on analysing such fast processes due to very small time
scales, for example, in a nanoscaled models (molecular dynamics model).
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