
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 631412, 19 pages
doi:10.1155/2011/631412

Research Article
Boundary-Value Problems for Weakly Nonlinear
Delay Differential Systems

A. Boichuk,1, 2 J. Diblı́k,3, 4 D. Khusainov,5 and M. Růžičková2
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Conditions are derived of the existence of solutions of nonlinear boundary-value problems for
systems of n ordinary differential equations with constant coefficients and single delay (in the
linear part) and with a finite number of measurable delays of argument in nonlinearity: ż(t) =
Az(t − τ) + g(t) + εZ(z(hi(t), t, ε), t ∈ [a, b], assuming that these solutions satisfy the initial and
boundary conditions z(s) := ψ(s) if s /∈ [a, b], �z(·) = α ∈ �

m . The use of a delayed matrix
exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and
analytical form of sufficient conditions for the existence of solutions in a given space and, moreover,
to the construction of an iterative process for finding the solutions of such problems in a general
case when the number of boundary conditions (defined by a linear vector functional �) does not
coincide with the number of unknowns in the differential system with a single delay.

1. Introduction

First, we derive some auxiliary results concerning the theory of differential equations with
delay. Consider a system of linear differential equations with concentrated delay

ż(t) −A(t)z(h0(t)) = g(t) if t ∈ [a, b], (1.1)
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assuming that

z(s) := ψ(s) if s /∈ [a, b], (1.2)

whereA is an n×n realmatrix and g is an n-dimensional real column-vector with components
in the space Lp[a, b] (where p ∈ [1,∞)) of functions summable on [a, b]; the delay h0(t) ≤ t is
a function h0 : [a, b] → � measurable on [a, b]; ψ : � \ [a, b] → �

n is a given function. Using
the denotations

(Sh0z)(t) :=

⎧
⎨

⎩

z(h0(t)) if h0(t) ∈ [a, b],

θ if h0(t) /∈ [a, b],
(1.3)

ψh0(t) :=

⎧
⎨

⎩

θ if h0(t) ∈ [a, b],

ψ(h0(t)) if h0(t) /∈ [a, b],
(1.4)

where θ is an n-dimensional zero column-vector and assuming t ∈ [a, b], it is possible to
rewrite (1.1), (1.2) as

(Lz)(t) := ż(t) −A(t)(Sh0z)(t) = ϕ(t), t ∈ [a, b], (1.5)

where ϕ is an n-dimensional column-vector defined by the formula

ϕ(t) := g(t) +A(t)ψh0(t) ∈ Lp[a, b]. (1.6)

We will investigate (1.5) assuming that the operator L maps a Banach space Dp[a, b] of
absolutely continuous functions z : [a, b] → �

n into a Banach space Lp[a, b] (1 ≤ p < ∞)
of functions ϕ : [a, b] → �

n summable on [a, b]; the operator Sh0 maps the space Dp[a, b]
into the space Lp[a, b]. Transformations (1.3), (1.4)make it possible to add the initial function
ψ(s), s < a to nonhomogeneity generating an additive and homogeneous operation not
depending on ψ and without the classical assumption regarding the continuous connection
of solution z(t) with the initial function ψ(t) at the point t = a.

A solution of differential system (1.5) is defined as an n-dimensional column vector-
function z ∈ Dp[a, b], absolutely continuous on [a, b], with a derivative ż ∈ Lp[a, b] satisfying
(1.5) almost everywhere on [a, b].

Such approachmakes it possible to apply well-developedmethods of linear functional
analysis to (1.5) with a linear and bounded operator L. It is well-known (see: [1, 2]) that a
nonhomogeneous operator equation (1.5) with delayed argument is solvable in the space
Dp[a, b] for an arbitrary right-hand side ϕ ∈ Lp[a, b] and has an n-dimensional family of
solutions (dim ker L = n) in the form

z(t) = X(t)c +
∫b

a

K(t, s)ϕ(s)ds ∀c ∈ �n , (1.7)
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where the kernel K(t, s) is an n × n Cauchy matrix defined in the square [a, b] × [a, b] being,
for every fixed s ≤ t , a solution of the matrix Cauchy problem

(LK(·, s))(t) := ∂K(t, s)
∂t

−A(t)(Sh0K(·, s))(t) = Θ, K(s, s) = I, (1.8)

where K(t, s) ≡ Θ if a ≤ t < s ≤ b, Θ is n × n null matrix and I is n × n identity matrix.
A fundamental n × n matrix X(t) for the homogeneous (ϕ ≡ θ) equation (1.5) has the form
X(t) = K(t, a), X(a) = I [2]. Throughout the paper, we denote by Θs an s × s null matrix
if s /=n, by Θs,p an s × p null matrix, by Is an s × s identity matrix if s /=n, and by θs an s-
dimensional zero column-vector if s /=n.

A serious disadvantage of this approach, when investigating the above-formulated
problem, is the necessity to find the Cauchy matrix K(t, s) [3, 4]. It exists but, as a rule, can
only be found numerically. Therefore, it is important to find systems of differential equations
with delay such that this problem can be solved directly. Below we consider the case of a
system with so-called single delay [5]. In this case, the problem of how to construct the
Cauchy matrix is successfully solved analytically due to a delayedmatrix exponential defined
below.

1.1. A Delayed Matrix Exponential

Consider a Cauchy problem for a linear nonhomogeneous differential system with constant
coefficients and with a single delay τ

ż(t) = Az(t − τ) + g(t), (1.9)

z(s) = ψ(s), if s ∈ [−τ, 0], (1.10)

with an n × n constant matrix A, g : [0,∞) → �
n , ψ : [−τ, 0] → �

n , τ > 0 and an unknown
vector-solution z : [−τ,∞) → �

n . Together with a nonhomogeneous problem (1.9), (1.10),
we consider a related homogeneous problem

ż(t) = Az(t − τ),
z(s) = ψ(s), if s ∈ [−τ, 0].

(1.11)
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Denote by eAtτ a matrix function called a delayed matrix exponential (see [5]) and
defined as

eAtτ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if −∞ < t < −τ,
I if − τ ≤ t < 0,

I +A
t

1!
if 0 ≤ t < τ,

I +A
t

1!
+A2 (t − τ)2

2!
if τ ≤ t < 2τ,

· · ·

I +A
t

1!
+ · · · +Ak (t − (k − 1)τ)k

k!
if (k − 1)τ ≤ t < kτ,

· · · .

(1.12)

This definition can be reduced to the following expression:

eAtτ =
[t/τ]+1∑

n=0

An (t − (n − 1)τ)n

n!
, (1.13)

where [t/τ] is the greatest integer function. The delayed matrix exponential equals the unit
matrix I on [−τ, 0] and represents a fundamentalmatrix of a homogeneous systemwith single
delay. Thus, the delayed matrix exponential solves the Cauchy problem for a homogeneous
system (1.11), satisfying the unit initial conditions

z(s) = ψ(s) ≡ eAsτ = I if − τ ≤ s ≤ 0, (1.14)

and the following statement holds (see, e.g., [5], [6, Remark 1], [7, Theorem 2.1]).

Lemma 1.1. A solution of a Cauchy problem for a nonhomogeneous system with single delay (1.9),
satisfying a constant initial condition

z(s) = ψ(s) = c ∈ �n if s ∈ [−τ, 0] (1.15)

has the form

z(t) = eA(t−τ)
τ c +

∫ t

0
e
A(t−τ−s)
τ g(s)ds. (1.16)

The delayed matrix exponential was applied, for example, in [6, 7] to investigation
of boundary value problems of diffferential systems with a single delay and in [8] to
investigation of the stability of linear perturbed systems with a single delay.
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1.2. Fredholm Boundary-Value Problem

Without loss of generality, let a = 0 and, with a view of the above, the problem (1.9), (1.10)
can be transformed (h0(t) := t − τ) to an equation of the type (1.1) (see (1.5))

ż(t) −A(Sh0z)(t) = ϕ(t), t ∈ [0, b], (1.17)

where, in accordance with (1.3),(1.4)

(Sh0z)(t) =

⎧
⎨

⎩

z(t − τ) if t − τ ∈ [0, b],

θ if t − τ /∈ [0, b],

ϕ(t) = g(t) +A ψh0(t) ∈ Lp[0, b],

ψh0(t) =

⎧
⎨

⎩

θ if t − τ ∈ [0, b],

ψ(t − τ) if t − τ /∈ [0, b].

(1.18)

A general solution of problem (1.17) for a nonhomogeneous system with single delay
and zero initial data has the form (1.7)

z(t) = X(t)c +
∫b

0
K(t, s)ϕ(s)ds ∀c ∈ �n , (1.19)

where, as can easily be verified (in view of the above-defined delayedmatrix exponential) by
substituting into (1.17),

X(t) = eA(t−τ)
τ , X(0) = e−Aττ = I (1.20)

is a normal fundamental matrix of the homogeneous system related to (1.17) (or (1.9)) with
initial data X(0) = I, and the Cauchy matrix K(t, s) has the form

K(t, s) = eA(t−τ−s)
τ if 0 ≤ s < t ≤ b,

K(t, s) ≡ Θ if 0 ≤ t < s ≤ b.
(1.21)

Obviously

K(t, 0) = eA(t−τ)
τ = X(t), K(0, 0) = eA(−τ)

τ = X(0) = I, (1.22)

and, therefore, the initial problem (1.17) for systems of ordinary differential equations with
constant coefficients and single delay has an n-parametric family of linearly independent
solutions (1.16).

Now, we will deal with a general boundary-value problem for system (1.17). Using
the results [2, 9], it is easy to derive statements for a general boundary-value problem if the
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number m of boundary conditions does not coincide with the number n of unknowns in a
differential system with single delay.

We consider a boundary-value problem

ż(t) −Az(t − τ) = g(t), t ∈ [0, b],

z(s) := ψ(s), s /∈ [0, b],
(1.23)

assuming that

�z(·) = α ∈ �m, (1.24)

or, using (1.18), its equivalent form

ż(t) −A(Sh0z)(t) = ϕ(t), t ∈ [0, b],

�z(·) = α ∈ �m,
(1.25)

where α is an m-dimensional constant vector-column � is an m-dimensional linear vector-
functional defined on the spaceDp[0, b] of an n-dimensional vector-functions

� = col (�1, . . . , �m) : Dp[0, b] −→ �
m, �i : Dp[0, b] −→ �, i = 1, . . . , m, (1.26)

absolutely continuous on [0, b]. Such problems for functional-differential equations are of
Fredholm’s type (see, e.g., [1, 2]). In order to formulate the following result, we need several
auxiliary abbreviations. We set

Q := �X(·) = �eA(·−τ)
τ . (1.27)

We define an n × n-dimensional matrix (orthogonal projection)

PQ := I −Q+Q, (1.28)

projecting space �n to ker Q of the matrix Q.
Moreover, we define anm ×m-dimensional matrix (orthogonal projection)

PQ∗ := Im −QQ+, (1.29)

projecting space �m to ker Q∗ of the transposedmatrixQ∗ = QT , where Im is anm×m identity
matrix andQ+ is an n×m-dimensional matrix pseudoinverse to them×n-dimensional matrix
Q. Denote d := rankPQ∗ and n1 := rankQ = rankQ∗. Since

rankPQ∗ = m − rankQ∗, (1.30)

we have d = m − n1.
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We will denote by PQ∗
d
an d × m-dimensional matrix constructed from d linearly

independent rows of the matrix PQ∗ . Denote r := rankPQ. Since

rankPQ = n − rankQ, (1.31)

we have r = n − n1. By PQr we will denote an n × r-dimensional matrix constructed from r
linearly independent columns of the matrix PQ. Finally, we define

Xr(t) := X(t)PQr , (1.32)

and a generalized Green operator

(
Gϕ
)
(t) :=

∫b

0
G(t, s)ϕ(s)ds, (1.33)

where

G(t, s) := K(t, s) − eA(t−τ)
τ Q+�K(·, s) (1.34)

is a generalized Green matrix corresponding to the boundary-value problem (1.25) (the
Cauchy matrixK(t, s) has the form (1.21)).

In [6, Theorem 4], the following result (formulating the necessary and sufficient
conditions of solvability and giving representations of the solutions z ∈ Dp[0, b], ż ∈ Lp[0, b]
of the boundary-value problem (1.25) in an explicit analytical form) is proved.

Theorem 1.2. If n1 ≤ min(m,n), then:

(i) the homogeneous problem

ż(t) −A(Sh0z)(t) = θ, t ∈ [0, b],

�z(·) = θm ∈ �m
(1.35)

corresponding to problem (1.25) has exactly r linearly independent solutions

z(t, cr) = Xr(t)cr = e
A(t−τ)
τ PQr cr ∈ Dp[0, b], (1.36)

(ii) nonhomogeneous problem (1.25) is solvable in the spaceDp[0, b] if and only if ϕ ∈ Lp[0, b]
and α ∈ �m satisfy d linearly independent conditions

PQ∗
d
·
(

α − �
∫b

0
K(·, s)ϕ(s)ds

)

= θd, (1.37)
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(iii) in that case the nonhomogeneous problem (1.25) has an r-dimensional family of linearly
independent solutions represented in an analytical form

z(t) = z0(t, cr) := Xr(t)cr +
(
Gϕ
)
(t) +X(t)Q+α ∀cr ∈ �r . (1.38)

2. Perturbed Weakly Nonlinear Boundary Value Problems

As an example of applying Theorem 1.2, we consider a problem of the branching of solutions
z : [0, b] → �

n , b > 0 of systems of nonlinear ordinary differential equations with a small
parameter ε and with a finite number of measurable delays hi(t), i = 1, 2, . . . , k of argument
of the form

ż(t) = Az(t − τ) + g(t) + εZ(z(hi(t)), t, ε), t ∈ [0, b], hi(t) ≤ t, (2.1)

satisfying the initial and boundary conditions

z(s) = ψ(s), if s < 0, �z(·) = α, α ∈ �m, (2.2)

and such that its solution z = z(t, ε), satisfying

z(·, ε) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

(2.3)

for a sufficiently small ε0 > 0, for ε = 0, turns into one of the generating solutions (1.38); that
is, z(t, 0) = z0(t, cr) for a cr ∈ �r . We assume that the n × 1 vector-operator Z satisfies

Z(·, t, ε) ∈ C1[‖z − z0‖ ≤ q],
Z(z(hi(t)), ·, ε) ∈ Lp[0, b],
Z(z(hi(t)), t, ·) ∈ C[0, ε0],

(2.4)

where q > 0 is sufficiently small. Using denotations (1.3), (1.4), and (1.6), it is easy to show
that the perturbed nonlinear boundary value problem (2.1), (2.2) can be rewritten in the form

ż(t) = A(Sh0z)(t) + εZ((Shz)(t), t, ε) + ϕ(t), �z(·) = α, t ∈ [0, b]. (2.5)

In (2.5),A is an n×n constant matrix, h0 : [0, b] → � is a single delay defined by h0(t) := t−τ ,
τ > 0,

(Shz)(t) = col[(Sh1z)(t), . . . , (Shkz)(t)] (2.6)
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is anN-dimensional column vector, whereN = nk, and ϕ is an n-dimensional column vector
given by

ϕ(t) = g(t) +A ψh0(t). (2.7)

The operator Sh maps the spaceDp into the space

LNp = Lp × · · · × Lp
︸ ︷︷ ︸

k-times

,
(2.8)

that is, Sh : Dp → LNp . Using denotation (1.3) for the operator Shi : Dp → Lp, i = 1, . . . , k, we
have the following representation:

(Shiz)(t) =
∫b

0
χhi(t, s)ż(s)ds + χhi(t, 0)z(0), (2.9)

where

χhi(t, s) =

⎧
⎨

⎩

1, if (t, s) ∈ Ωi,

0, if (t, s) /∈ Ωi

(2.10)

is the characteristic function of the set

Ωi := {(t, s) ∈ [0, b] × [0, b] : 0 ≤ s ≤ hi(t) ≤ b}. (2.11)

Assume that the generating boundary value problem

ż(t) = A(Sh0z)(t) + ϕ(t), lz = α, (2.12)

being a particular case of (2.5) for ε = 0, has solutions for nonhomogeneities ϕ ∈ Lp[0, b]
and α ∈ �m that satisfy conditions (1.37). In such a case, by Theorem 1.2, the problem (2.12)
possesses an r-dimensional family of solutions of the form (1.38).

Problem 1. Below, we consider the following problem: derive the necessary and sufficient
conditions indicating when solutions of (2.5) turn into solutions (1.38) of the boundary value
problem (2.12) for ε = 0.

Using the theory of generalized inverse operators [2], it is possible to find conditions
for the solutions of the boundary value problem (2.5) to be branching from the solutions of
(2.5) with ε = 0. Below, we formulate statements, solving the above problem. As compared
with an earlier result [10, page 150], the present result is derived in an explicit analytical form.
The progress was possible by using the delayed matrix exponential since, in such a case, all
the necessary calculations can be performed to the full.
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Theorem 2.1 (necessary condition). Consider the system (2.1); that is,

ż(t) = Az(t − τ) + g(t) + εZ(z(hi(t)), t, ε), t ∈ [0, b], (2.13)

where hi(t) ≤ t, i = 1, . . . , k, with the initial and boundary conditions (2.2); that is,

z(s) = ψ(s), if s < 0 < b, �z(·) = α ∈ �m, (2.14)

and assume that, for nonhomogeneities

ϕ(t) = g(t) +A ψh0(t) ∈ Lp[0, b], (2.15)

and for α ∈ �m , the generating boundary value problem

ż(t) = A(Sh0z)(t) + ϕ(t), �z(·) = α, (2.16)

corresponding to the problem (1.25), has exactly an r-dimensional family of linearly independent
solutions of the form (1.38). Moreover, assume that the boundary value problem (2.13), (2.14) has a
solution z(t, ε) which, for ε = 0, turns into one of solutions z0(t, cr) in (1.38) with a vector-constant
cr := c0r ∈ �r .

Then, the vector c0r satisfies the equation

F
(
c0r

)
:=
∫b

0
H(s)Z

(
(Shz0)

(
s, c0r

)
, s, 0

)
ds = θd, (2.17)

where

H(s) := PQ∗
d
�K(·, s) = PQ∗

d
�e

A(·−τ−s)
τ . (2.18)

Proof. We consider the nonlinearity in system (2.13), that is, the term εZ(z(hi(t)), t, ε) as an
inhomogeneity, and use Theorem 1.2 assuming that condition (1.37) is satisfied. This gives

∫b

0
H(s)Z((Shz)(s, ε), s, ε)ds = θd. (2.19)

In this integral, letting ε → 0, we arrive at the required condition (2.17).

Corollary 2.2. For periodic boundary-value problems, the vector-constant cr ∈ �
r has a physical

meaning-it is the amplitude of the oscillations generated. For this reason, (2.17) is called an equation
generating the amplitude [11]. By analogy with the investigation of periodic problems, it is natural to
say (2.17) is an equation for generating the constants of the boundary value problem (2.13), (2.14).
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If (2.17) is solvable, then the vector constant c0r ∈ �
r specifies the generating solution z0(t, c0r )

corresponding to the solution z = z(t, ε) of the original problem such that

z(·, ε) : [0, b] −→ �
n ,

z(·, ε ) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

z(t, 0) = z0
(
t, c0r

)
.

(2.20)

Also, if (2.17) is unsolvable, the problem (2.13), (2.14) has no solution in the analyzed space. Note
that, here and in what follows, all expressions are obtained in the real form and hence, we are interested
in real solutions of (2.17), which can be algebraic or transcendental.

Sufficient conditions for the existence of solutions of the boundary-value problem
(2.13), (2.14) can be derived using results in [10, page 155] and [2]. By changing the variables
in system (2.13), (2.14)

z(t, ε) = z0
(
t, c0r

)
+ y(t, ε), (2.21)

we arrive at a problem of finding sufficient conditions for the existence of solutions of the
problem

ẏ(t) = A
(
Sh0y

)
(t) + εZ

(
Sh
(
z0 + y

)
(t), t, ε

)
, �y = θm, t ∈ [0, b], (2.22)

and such that

y(·, ε) : [0, b] −→ �
n ,

y(·, ε) ∈ Dp[0, b],

ẏ(·, ε) ∈ Lp[0, b],
y(t, ·) ∈ C[0, ε0],

y(t, 0) = θ.

(2.23)

Since the vector function Z((Shz)(t), t, ε) is continuously differentiable with respect to z and
continuous in ε in the neighborhood of the point

(z, ε) =
(
z0
(
t, c0r

)
, 0
)
, (2.24)
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we can separate its linear term as a function depending on y and terms of order zero with
respect to ε

Z
(
Sh
(
z0
(
t, c0r

)
+ y
)
, t, ε
)
= f0
(
t, c0r

)
+A1(t)

(
Shy
)
(t) + R

((
Shy
)
(t), t, ε

)
, (2.25)

where

f0
(
t, c0r

)
:= Z

(
(Shz0)

(
t, c0r

)
, t, 0
)
, f0

(
·, c0r
)
∈ Lp[0, b],

A1(t) = A1

(
t, c0r

)
=
∂Z(Shx, t, 0)

∂Shx

∣
∣
∣
∣
x=z0(t,c0r )

, A1(·) ∈ Lp[0, b],

R(θ, t, 0) = θ,
∂R(θ, t, 0)

∂y
= Θ, R

(
y, ·, ε) ∈ Lp[0, b].

(2.26)

We now consider the vector function Z((Sh(z0+y))(t), t, ε) in (2.22) as an inhomogeneity and
we apply Theorem 1.2 to this system. As the result, we obtain the following representation
for the solution of (2.22):

y(t, ε) = Xr(t)c + y(1)(t, ε). (2.27)

In this expression, the unknown vector of constants c = c(ε) ∈ C[0, ε0] is determined from a
condition similar to condition (1.37) for the existence of solution of problem (2.22):

B0c =
∫b

0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds, (2.28)

where

B0 =
∫b

0
H(s)A1(s)(ShXr)(s)ds (2.29)

is a d × r matrix, and

H(s) := PQ∗
d
�K(·, s) = PQ∗

d
�e

A(·−τ−s)
τ . (2.30)

The unknown vector function y(1)(t, ε) is determined by using the generalizedGreen operator
as follows:

y(1)(t, ε) = ε
(
G
[
Z
(
Sh
(
z0
(
s, c0r

)
+ y
)
, s, ε
)])

(t). (2.31)
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Let PN(B0) be an r × r matrix orthoprojector �r → N(B0), and let PN(B∗
0) be a d × d matrix-

orthoprojector �d → N(B∗
0). Equation (2.28) is solvable with respect to c ∈ �

r if and only
if

PN(B∗
0)

∫b

0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds = θd. (2.32)

For

PN(B∗
0) = Θd, (2.33)

the last condition is always satisfied and (2.28) is solvable with respect to c ∈ �
r up to an

arbitrary vector constant PN(B0)c ∈ �r from the null space of the matrix B0

c = B+
0

∫b

0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds + PN(B0)c. (2.34)

To find a solution y = y(t, ε) of (2.28) such that

y(·, ε) : [0, b] −→ Rn,

y(·, ε) ∈ Dp[0, b],

ẏ(·, ε) ∈ Lp[0, b],
y(t, ·) ∈ C[0, ε0],

y(t, 0) = θ,

(2.35)

it is necessary to solve the following operator system:

y(t, ε) = Xr(t)c + y(1)(t, ε),

c = B+
0

∫b

0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds,

y(1)(t, ε) = εG
[
Z
(
Sh
(
z0
(
s, c0r

)
+ y
)
, s, ε
)]
(t).

(2.36)

The operator system (2.36) belongs to the class of systems solvable by the method of simple
iterations, convergent for sufficiently small ε ∈ [0, ε0] (see [10, page 188]). Indeed, system
(2.36) can be rewritten in the form

u = L(1)u + Fu, (2.37)
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where u = col (y(t, ε), c(ε), y(1)(t, ε)) is a (2n + r)-dimensional column vector, L(1) is a linear
operator

L(1) :=

⎛

⎜
⎜
⎝

Θ Xr(t) I

Θr,n Θr,r L1

Θ Θn,r Θ

⎞

⎟
⎟
⎠, (2.38)

where

L1(∗) = B+
0

∫b

0
H(s)A1(s)(∗)ds, (2.39)

and F is a nonlinear operator

Fu :=

⎛

⎜
⎜
⎜
⎝

θ

B+
0

∫b

0
H(s)R

((
Shy
)
(s, ε), s, ε

)
ds

ε
(
G
[
Z
(
(Shz0)

(
s, c0r
)
, s, 0

)
+A1(s)

(
Shy
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)])
(t)

⎞

⎟
⎟
⎟
⎠
. (2.40)

In view of the structure of the operator L(1) containing zero blocks on and below the main
diagonal, the inverse operator

(
I2n+r − L(1)

)−1
(2.41)

exists. System (2.37) can be transformed into

u = Su, (2.42)

where

S :=
(
I2n+r − L(1)

)−1
F (2.43)

is a contraction operator in a sufficiently small neighborhood of the point

(z, ε) =
(
z0
(
t, c0r

)
, 0
)
. (2.44)

Thus, the solvability of the last operator system can be established by using one of the existing
versions of the fixed-point principles [12] applicable to the system for sufficiently small ε ∈
[0, ε0]. It is easy to prove that the sufficient condition PN(B∗

0) = Θd for the existence of solutions
of the boundary value problem (2.13), (2.14) means that the constant c0r ∈ �r of the equation
for generating constant (2.17) is a simple root of equation (2.17) [2]. By using the method of
simple iterations, we can find the solution of the operator system and hence the solution of
the original boundary value problem (2.13), (2.14). Now, we arrive at the following theorem.
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Theorem 2.3 (sufficient condition). Assume that the boundary value problem (2.13), (2.14)
satisfies the conditions listed above and the corresponding linear boundary value problem (1.25) has
an r-dimensional family of linearly independent solutions of the form (1.38). Then, for any simple root
cr = c0r ∈ �r of the equation for generating the constants (2.17), there exist at least one solution of the
boundary value problem (2.13), (2.14). The indicated solution z(t, ε) is such that

z(·, ε) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

(2.45)

and, for ε = 0, turns into one of the generating solutions (1.38) with a constant c0r ∈ �
r ; that is,

z(t, 0) = z0(t, c0r). This solution can be found by the method of simple iterations, which is convergent
for a sufficiently small ε ∈ [0, ε0].

Corollary 2.4. If the number n of unknown variables is equal to the numberm of boundary conditions
(and hence r = d), the boundary value problem (2.13), (2.14) has a unique solution. In such a case,
the problems considered for functional-differential equations are of Fredholm’s type with a zero index.
By using the procedure proposed in [2] with some simplifying assumptions, we can generalize the
proposed method to the case of multiple roots of equation (2.17) to determine sufficient conditions for
the existence of solutions of the boundary-value problem (2.13), (2.14).

3. Example

We will illustrate the above proved theorems on the example of a weakly perturbed
linear boundary value problem. Consider the following simplest boundary value problem-a
periodic problem for the delayed differential equation:

ż(t) = z(t − τ) + ε
k∑

i=1

Bi(t)z(hi(t)) + g(t), t ∈ (0, T],

z(s) = ψ(s), if s < 0,

z(0) = z(T),

(3.1)

where 0 < τ, T = const, Bi are n × n matrices, Bi, g ∈ Lp[0, T], ψ : �1 \ (0, T] → �
n , hi(t) ≤ t

are measurable functions. Using the symbols Shi and ψ
hi (see (1.3), (1.4), (2.9)), we arrive at

the following operator system:

ż(t) = z(t − τ) + εB(t)(Shz)(t) + ϕ(t, ε),
�z := z(0) − z(T) = θn,

(3.2)
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where B(t) := (B1(t), . . . , Bk(t)) is an n ×N matrix (N = nk), and

ϕ(t, ε) := g(t) + ψh0(t) + ε
k∑

i=1

Bi(t)ψhi(t) ∈ Lp[0, T]. (3.3)

We will consider the simplest case with T ≤ τ . Utilizing the delayed matrix exponential, it
can be easily verified that in this case, the matrix

X(t) = eI(t−τ)τ = I (3.4)

is a normal fundamental matrix for the homogeneous generating system

ż(t) = z(t − τ). (3.5)

Then,

Q := �X(·) = e−Iττ − eI(T−τ)τ = θn,

PQ = PQ∗ = I, (r = n, d = m = n),

K(t, s) =

⎧
⎨

⎩

e
I(t−τ−s)
τ = I, 0 ≤ s ≤ t ≤ T,
Θ, s > t,

�K(·, s) = K(0, s) −K(T, s) = −I,
H(τ) = PQ∗�K(·, s) = −I,

(ShiI)(t) = χhi(t, 0) · I = I ·
⎧
⎨

⎩

1, if 0 ≤ hi(t) ≤ T,
0, if hi(t) < 0.

(3.6)

To illustrate the theorems proved above, we will find the conditions for which the boundary
value problem (3.1) has a solution z(t, ε) that, for ε = 0, turns into one of solutions (1.38)
z0(t, cr) of the generating problem. In contrast to the previous works [7, 9], we consider the
case when the unperturbed boundary-value problem

ż(t) = z(t − τ) + ϕ(t, 0),
z(0) = z(T)

(3.7)

has an n-parametric family of linear-independent solutions of the form(1.38)

z := z0(t, cn) = cn +
(
Gϕ
)
(t), ∀cn ∈ �n . (3.8)

For this purpose, it is necessary and sufficient for the vector function

ϕ(t) = g(t) + ψh0(t) (3.9)
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to satisfy the condition of type (1.37)

∫T

0
H(s)ϕ(s) ds = −

∫T

0
ϕ(s) ds = θn. (3.10)

Then, according to the Theorem 2.1, the constant cn = c0n ∈ �n must satisfy (2.17), that is, the
equation

F
(
c0n

)
:=
∫T

0
H(s)Z

(
(Shz0)

(
s, c0n

)
, s, 0

)
ds = θn, (3.11)

which in our case is a linear algebraic system

B0c
0
n = −

∫T

0
B(s)

(
Sh
(
Gϕ
))
(s)ds, (3.12)

with the n × nmatrix B0 in the form

B0 =
∫T

0
H(s)B(s)(ShI)(s)ds

= −
∫T

0

k∑

i=1

Bi(s)(ShiI)(s)ds = −
k∑

i=1

∫T

0
Bi(s)χhi(s, 0)ds.

(3.13)

According to Corollary 2.4, if detB0 /= 0, the problem (3.1) for the case T ≤ τ has a unique
solution z(t, ε) with the properties

z(·, ε) ∈ Dn
p[0, T],

ż(·, ε) ∈ Lnp[0, T],

z(t, ·) ∈ C[0, ε0],

z(t, 0) = z0
(
t, c0n

)
,

(3.14)

for g ∈ Lp[0, T], ψ(t) ∈ Lp[0, T], and for measurable delays hi that which satisfy the criterion
(3.10) of the existence of a generating solution where

c0n = −B+
0

∫T

0
B(s)

(
Sh
(
Gϕ
))
(s)ds. (3.15)

A solution z(t, ε) of the boundary value problem (3.1) can be found by the convergentmethod
of simple iterations (see Theorem 2.3).
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If, for example, hi(t) = t −Δi, where 0 < Δi = const < T , i = 1, . . . , k, then

χhi(t, 0) =

⎧
⎨

⎩

1 if 0 ≤ hi(t) = t −Δi ≤ T,
0 if hi(t) = t −Δi < 0,

=

⎧
⎨

⎩

1 if Δi ≤ t ≤ T + Δi,

0, if t < Δi.
(3.16)

The n × nmatrix B0 can be rewritten in the form

B0 =
∫T

0
H(s)

k∑

i=1

Bi(s)χhi(s, 0)dτ

= −
k∑

i=1

∫T

0
Bi(s)χhi(s, 0)ds = −

k∑

i=1

∫T

Δi

Bi(s)ds,

(3.17)

and the unique solvability condition of the boundary value problem (3.1) takes the form

det

[
k∑

i=1

∫T

Δi

Bi(s)ds

]

/= 0. (3.18)

It is easy to see that if the vector function Z(z(hi(t)), t, ε) is nonlinear in z, for example as
a square, then (3.11) generating the constants will be a square-algebraic system and, in this
case, the boundary value problem (3.1) can have two solutions branching from the point
ε = 0.
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