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We obtain some W2,2 a priori bounds for a class of uniformly elliptic second-order differential
operators, both in a no-weighted and in a weighted case. We deduce a uniqueness and existence
theorem for the related Dirichlet problem in some weighted Sobolev spaces on unbounded
domains.

1. Introduction

Let Ω be an open subset of R
n, n ≥ 2. The uniformly elliptic second-order linear differential

operator

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (1.1)

with leading coefficients aij = aji ∈ L∞(Ω), i, j = 1, . . . , n, and the associated Dirichlet problem

u ∈W2,2(Ω) ∩
◦
W1,2(Ω),

Lu = f, f ∈ L2(Ω),
(1.2)

have been extensively studied under different hypotheses of discontinuity on the coefficients
of L (we refer to [1] for a general survey on the subject). In particular, someW2,2 bounds and
the related existence and uniqueness results have been obtained.

Among the various hypotheses, in the framework of discontinuous coefficients, we
are interested here in those of Miranda’s type, having in mind the classical result of [2]where
the leading coefficients have derivatives (aij)xk ∈ Ln(Ω), n ≥ 3. First generalizations in this
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direction have been carried on, always considering a bounded and sufficiently regular set Ω,
assuming that the derivatives belong to some wider spaces. In particular, in [3], the (aij)xk
are in the weak-Ln space, while, in [4], they are supposed to be in an appropriate subspace of
the classical Morrey space L2p,n−2p(Ω), where p ∈]1, n/2[. In [5], the leading coefficients are
supposed to be close to functions whose derivatives are in Ln(Ω). A further extension, to a
very general case, has been proved in [6, 7], supposing that the aij are in VMO, which means
a kind of continuity in the average sense and not in the pointwise sense.

In this paper, we deal with unbounded domains and we impose hypotheses of
Miranda’s type on the leading coefficients, assuming that their derivatives (aij)xk belong
to a suitable Morrey type space, which is a generalization to unbounded domains of the
classical Morrey space. The existence of the derivatives is of crucial relevance in our analysis,
since it allows us to rewrite the operator L in divergence form and puts us in position to use
some known results concerning variational operators. A straightforward consequence of our
argument is the followingW2,2-bound, having the only term ‖Lu‖L2(Ω) in the right-hand side,

‖u‖W2,2(Ω) ≤ c‖Lu‖L2(Ω), ∀u ∈W2,2(Ω) ∩
◦
W1,2(Ω), (1.3)

where the dependence of the constant c is explicitly described (see Section 4). This kind
of estimate often cannot be obtained when dealing with unbounded domains and clearly
immediately takes to the uniqueness of the solution of problem (1.2).

In the framework of unbounded domains, under more regular boundary conditions,
an analogous a priori bound can be found in [8], where different assumptions on the aij are
taken into account. We quote here also the results of [9], where, in the spirit of [5], the leading
coefficients are supposed to be close, in as specific sense, to functions whose derivatives are
in spaces of Morrey type and have a suitable behavior at infinity.

TheW2,2-bound obtained in (1.3) allows us to extend our result to a weighted case. The
relevance of Sobolev spaces with weight in the study of the theory of PDEs with prescribed
boundary conditions on unbounded open subsets of R

n is well known. Indeed, in this
framework, it is necessary to require not only conditions on the boundary of the set, but
also conditions controlling the behaviour of the solution at infinity. In this order of ideas, we
also consider the Dirichlet problem,

u ∈W2,2
s (Ω) ∩

◦
W1,2

s (Ω),

Lu = f, f ∈ L2
s(Ω),

(1.4)

where s ∈ R,W2,2
s (Ω),

◦
W1,2

s (Ω), and L2
s(Ω) are weighted Sobolev spaces where the weight ρs

is power of a function ρ : Ω → R+, of class C2(Ω), and such that

sup
x∈Ω

∣∣∂αρ(x)
∣∣

ρ(x)
< +∞, ∀|α| ≤ 2,

lim
|x|→+∞

(
ρ(x) +

1
ρ(x)

)
= +∞, lim

|x|→+∞
ρx(x) + ρxx(x)

ρ(x)
= 0,

(1.5)

see Sections 2 and 3 for more details. Also in this weighted case, we obtain the bound

‖u‖W2,2
s (Ω) ≤ c‖Lu‖L2

s(Ω), ∀u ∈W2,2
s (Ω) ∩

◦
W1,2

s (Ω), (1.6)
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where the dependence of the constant c is again completely determined. From this a priori
estimate, in Section 5, we deduce the solvability of problem (1.4).

Existence and uniqueness results for similar problems in the weighted case, but with
different weight functions and different assumptions on the coefficients, have been proved
in [10]. Recent results concerning a priori estimates for solutions of the Poisson and heat
equations in weighted spaces can be found in [11], where weights of Kondrat’ev type are
considered.

2. A Class of Weighted Sobolev Spaces

Let Ω be an open subset of R
n, not necessarily bounded, n ≥ 2. We want to introduce a class

of weight functions defined on Ω.
To this aim, given k ∈ N0, we consider a function ρ : Ω → R+ such that ρ ∈ Ck(Ω) and

sup
x∈Ω

∣∣∂αρ(x)
∣∣

ρ(x)
< +∞, ∀|α| ≤ k. (2.1)

As an example, we can think of the function

ρ(x) =
(
1 + |x|2

)t
, t ∈ R . (2.2)

In the following lemma, we show a property, needed in the sequel, concerning this class of
weight functions.

Lemma 2.1. If assumption (2.1) is satisfied, then

sup
x∈Ω

∣∣∂αρs(x)
∣∣

ρs(x)
< +∞ ∀s ∈ R, ∀|α| ≤ k. (2.3)

Proof. The proof is obtained by induction. From (2.1), we get

∣∣∣
(
ρs
)
xi

∣∣∣ =
∣∣∣sρs−1ρxi

∣∣∣ ≤ c1ρρs−1 = c1ρs, i = 1, . . . , n, (2.4)

with c1 positive constant depending only on s. Thus (2.3) holds for |α| = 1.
Now, let us assume that (2.3) holds for any β such that |β| < |α| and any s ∈ R, and fix

a β such that |β| = |α| − 1. Then, using (2.1) and by the induction hypothesis written for s − 1,
we have

∣∣∂αρs
∣∣ =

∣∣∣∂β
(
ρs
)
xi

∣∣∣ =
∣∣∣∂β
(
sρs−1ρxi

)∣∣∣

≤ c2
∑

γ≤β

∣∣∣∂β−γρxi∂
γρs−1

∣∣∣ ≤ c3ρρs−1 = c3ρs, for i = 1, . . . , n,
(2.5)

with c3 positive constant depending only on s. Hence, (2.3) holds true also for α.

Now, let us study some properties of a new class of weighted Sobolev spaces, with
weight function of the above-mentioned type.
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For k ∈ N0, p ∈ [1,+∞[, and s ∈ R, and given a weight function ρ satisfying (2.1), we
define the spaceWk,p

s (Ω) of distributions u on Ω such that

‖u‖
W

k,p
s (Ω) =

∑

|α|≤k

∥∥ρs∂αu
∥∥
Lp(Ω) < +∞, (2.6)

equippedwith the norm given in (2.6). Moreover, we denote by
◦
W

k,p
s (Ω) the closure ofC∞

◦ (Ω)
inWk,p

s (Ω) and putW0,p
s (Ω) = Lps(Ω).

Lemma 2.2. Let k ∈ N0, p ∈ [1,+∞[, and s ∈ R . If assumption (2.1) is satisfied, then there exist
two constants c1, c2 ∈ R+ such that

c1‖u‖Wk,p
s (Ω) ≤

∥∥ρtu
∥∥
W

k,p
s−t (Ω) ≤ c2‖u‖Wk,p

s (Ω), ∀t ∈ R, ∀u ∈Wk,p
s (Ω), (2.7)

with c1 = c1(t) and c2 = c2(t).

Proof. Observe that from (2.3), we have

∣∣∂α
(
ρtu
)∣∣ ≤ c1

∑

β≤α

∣∣∣∂α−βρt∂βu
∣∣∣ ≤ c2

∣∣∣ρt∂βu
∣∣∣, ∀|α| ≤ k, (2.8)

with c2 ∈ R+ depending only on t. This entails the inequality on the right-hand side of (2.7).
To get the left-hand side inequality, it is enough to show that

∣∣ρt∂αu
∣∣ ≤ c3

∑

β≤α

∣∣∣∂β
(
ρtu
)∣∣∣, ∀|α| ≤ k, (2.9)

with c3 ∈ R+ depending only on t.
We will prove (2.9) by induction. From (2.3), one has

∣∣ρtuxi
∣∣ =

∣∣∣
(
ρtu
)
xi
− (ρt)xiu

∣∣∣ ≤ c4
((
ρtu
)
x + ρ

t|u|), (2.10)

for i = 1, . . . , n, with c4 ∈ R+ depending only on t. Hence, (2.9) holds for |α| = 1.
If (2.3) holds for any β such that |β| < |α|, then, using again (2.3) and by the induction

hypothesis, we have

∣∣ρt∂αu
∣∣ ≤ ∣∣∂α(ρtu)∣∣ + c5

∑

β<α

∣∣∣∂α−βρt
∣∣∣
∣∣∣∂βu

∣∣∣

≤ ∣∣∂α(ρtu)∣∣ + c6
∑

β<α

∣∣∣ρt∂βu
∣∣∣ ≤ c7

∑

β≤α

∣∣∣∂β
(
ρtu
)∣∣∣,

(2.11)

with c7 ∈ R+ depending only on t.

Let us specify a density result.

Lemma 2.3. Let k ∈ N0, p ∈ [1,+∞[, and s ∈ R . If Ω has the segment property and assumption
(2.1) is satisfied, then D(Ω) is dense inWk,p

s (Ω).
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Proof. The proof follows by Lemma 2.2 in [12], since clearly both ρ, ρ−1 ∈ L∞
loc(Ω).

This allows us to prove the following inclusion.

Lemma 2.4. Let k ∈ N0, p ∈ [1,+∞[, and s ∈ R . If Ω has the segment property and assumption
(2.1) is satisfied, then

Wk,p(Ω) ∩
◦
Wk,p(Ω) ⊂

◦
W

k,p
s (Ω). (2.12)

Proof. The density result stated in Lemma 2.3 being true, we can argue as in the proof of
Lemma 2.1 of [10] to obtain the claimed inclusion.

From this last lemma, we easily deduce that, if Ω has the segment property, also

Ck
o(Ω) ⊂

◦
W

k,p
s (Ω).

Lemma 2.5. Let k ∈ N0, p ∈ [1,+∞[, and s ∈ R . If Ω has the segment property and assumption
(2.1) is satisfied, then the map

u −→ ρsu (2.13)

defines a topological isomorphism fromW
k,p
s (Ω) toWk,p(Ω) and from

◦
W

k,p
s (Ω) to

◦
Wk,p(Ω).

Proof. The first part of the proof easily follows from Lemma 2.2 with t = s. Let us show that

u ∈
◦
W

k,p
s (Ω) if and only if ρsu ∈

◦
Wk,p(Ω).

If u ∈
◦
W

k,p
s (Ω), there exists a sequence (φh)h∈N

⊂ C∞
o (Ω) converging to u in Wk,p

s (Ω).
Therefore, fixed ε ∈ R+, there exists h0 ∈ N such that

∥∥ρs
(
φh − u

)∥∥
Wk,p(Ω) <

ε

2
, ∀h > h0. (2.14)

Fix h1 > h0, clearly ρsφh1 ∈
◦
Wk,p(Ω), because of its compact support. Therefore, there exists a

sequence (ψn)n∈N
⊂ C∞

o (Ω) converging to ρsφh1 inW
k,p(Ω). Hence, there exists n0 ∈ N such

that

∥∥ψn − ρsφh1
∥∥
Wk,p(Ω) <

ε

2
, ∀n > n0. (2.15)

Putting together (2.14) and (2.15), we get

∥∥ψn − ρsu
∥∥
Wk,p(Ω) ≤

∥∥ψn − ρsφh1
∥∥
Wk,p(Ω) +

∥∥ρsφh1 − ρsu
∥∥
Wk,p(Ω) < ε, (2.16)

for all n > n0. Thus, ρsu ∈
◦
Wk,p(Ω).

Vice versa, if we assume that ρsu ∈
◦
Wk,p(Ω), we find a sequence (φh)h∈N

⊂ C∞
o (Ω)

converging to ρsu inWk,p(Ω). Hence, there exists h0 ∈ N such that

∥∥ρ−sφh − u
∥∥
W

k,p
s (Ω) <

ε

2
, ∀h > h0. (2.17)
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Fix h1 > h0, since ρ−sφh1 ∈ Ck
o(Ω), which is contained in

◦
W

k,p
s (Ω) by Lemma 2.4, there exists

a sequence (ψn)n∈N
⊂ C∞

o (Ω) converging to ρ−sφh1 inW
k,p
s (Ω). Therefore, there exists n0 ∈ N

such that

∥∥ψn − ρ−sφh1
∥∥
W

k,p
s (Ω) <

ε

2
, ∀n > n0. (2.18)

From (2.17) and (2.18), we get

∥∥ψn − u
∥∥
W

k,p
s (Ω) ≤

∥∥ψn − ρ−sφh1
∥∥
W

k,p
s (Ω) +

∥∥ρ−sφh1 − u
∥∥
W

k,p
s (Ω) < ε, (2.19)

for all n > n0, so that u ∈
◦
W

k,p
s (Ω).

3. Preliminary Results

From now on, we consider a weight ρ : Ω → R+, ρ ∈ C2(Ω), and such that (2.1) is satisfied
(for k = 2). Moreover, we assume that

lim
|x|→+∞

(
ρ(x) +

1
ρ(x)

)
= +∞, lim

|x|→+∞
ρx(x) + ρxx(x)

ρ(x)
= 0. (3.1)

An example of a function verifying our hypotheses is given by

ρ(x) =
(
1 + |x|2

)t
, t ∈ R \ {0}. (3.2)

We associate to ρ a function σ defined by

σ = ρ if ρ −→ +∞, for |x| −→ +∞,

σ =
1
ρ

if ρ −→ 0, for |x| −→ +∞.
(3.3)

Clearly σ verifies (2.1) and

lim
|x|→+∞

σ(x) = +∞, lim
|x|→+∞

σx(x) + σxx(x)
σ(x)

= 0. (3.4)

Now, let us fix a cutoff function f ∈ C∞
◦ (R+) such that

0 ≤ f ≤ 1, f(t) = 1 if t ∈ [0, 1], f(t) = 0 if t ∈ [2,+∞[ . (3.5)
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Then, set

ζk : x ∈ Ω −→ f

(
σ(x)
k

)
, k ∈ N,

Ωk = {x ∈ Ω : σ(x) < k}, k ∈ N .

(3.6)

By our definition, it follows that ζk ∈ C∞
◦ (Ω) and

0 ≤ ζk ≤ 1, ζk = 1 on Ωk, ζk = 0 on Ω \Ω2k, k ∈ N . (3.7)

Finally, we introduce the sequence

ηk : x ∈ Ω −→ 2kζk(x) + (1 − ζk(x))σ(x), k ∈ N . (3.8)

For any k ∈ N , one has

ηk = ζk(2k − σ) + σ ≥ σ, in Ω2k, (3.9)

ηk ≤ 2k + σ ≤
(

2k
infΩ2k

σ
+ 1

)
σ = (ck + 1)σ, in Ω2k, (3.10)

ηk = σ, in Ω \Ω2k, (3.11)

where ck ∈ R+ depends only on k. This entails that

σ ∼ ηk, ∀k ∈ N. (3.12)

Concerning the derivatives, easy calculations give that, for any k ∈ N,

(
ηk
)
x =

(
ηk
)
xx = 0, in Ωk, (3.13)

(
ηk
)
x = σx,

(
ηk
)
xx = σxx, in Ω \Ω2k, (3.14)

(
ηk
)
x ≤ c1σx,

(
ηk
)
xx ≤ c2

(
σ2
x

σ
+ σxx

)
, in Ω \Ω2k, (3.15)

with c1 and c2 positive constants independent of x and k.
From (3.9), (3.11), (3.13), (3.14), and (3.15), we obtain, for any k ∈N ,

(
ηk
)
x

ηk
≤ c′1

σx
σ
, in Ω,

(
ηk
)
xx

ηk
≤ c′2

σ2
x + σσxx
σ2

, in Ω,

(3.16)

where c′1 and c
′
2 are positive constants independent of x and k.
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Combining (3.13) and (3.16), we have also, for any k ∈ N,
(
ηk
)
x

ηk
≤ c′1 sup

Ω\Ωk

σx
σ
, in Ω, (3.17)

(
ηk
)
xx

ηk
≤ c′2 sup

Ω\Ωk

σ2
x + σσxx
σ2

, in Ω. (3.18)

We conclude this section proving the following lemma.

Lemma 3.1. Let σ and Ωk, k ∈ N, be defined by (3.3) and (3.6), respectively. Then

lim
k→+∞

sup
Ω\Ωk

σx(x) + σxx(x)
σ(x)

= 0. (3.19)

Proof. Set

ϕ(x) =
σx(x) + σxx(x)

σ(x)
, x ∈ Ω,

ψk = sup
Ω\Ωk

ϕ, k ∈ N.
(3.20)

By the second relation in (3.4), the supremum of ϕ over Ω \Ωk is actually a maximum; thus,
for every k ∈ N, there exists xk ∈ Ω \Ωk such that ψk = ϕ(xk).

To prove (3.19), we have to show that limk→+∞ψk = 0.
We proceed by contradiction. Hence, let us assume that there exists ε0 > 0 such that,

for any k ∈ N, there exists nk > k such that ψnk = ϕ(xnk) ≥ ε0.
If the sequence (xnk)k∈N

is bounded, there exists a subsequence (x′
nk)k∈N

converging
to a limit x ∈ Ω, and by the continuity of σ, (σ(x′

nk))k∈N
converges to σ(x). On the other

hand, x′
nk ∈ Ω \Ωk, thus σ(x′

nk) ≥ nk, which is in contrast with the fact that (σ(x′
nk))k∈N

is a
convergent sequence.

Therefore, (xnk)k∈N
is unbounded, so that there exists a subsequence (x′′

nk)k∈N
such

that limk→+∞|x′′
nk | = +∞. Thus, by the second relation in (3.4), one has limk→+∞ϕ(x′′

nk) = 0.
This gives the contradiction since ϕ(x′′

nk) ≥ ε0.

4. A No Weighted A Priori Bound

We want to prove a W2,2 bound for an uniformly elliptic second-order linear differential
operator. Let us start recalling the definitions of the function spaces in which the coefficients
of our operator will be chosen.

For any Lebesgue measurable subsetG of R
n, let Σ(G) be the σ-algebra of all Lebesgue

measurable subsets ofG. Given E ∈ Σ(G), we denote by |E| the Lebesgue measure of E, by χE
its characteristic function, and by E(x, r) the intersection E ∩ B(x, r) (x ∈ R

n, r ∈ R+), where
B(x, r) is the open ball with center x and radius r.

For n ≥ 2, λ ∈ [0, n[, p ∈ [1,+∞[, and fixed t in R+, the space of Morrey typeMp,λ(Ω, t)
is the set of all functions g in Lploc(Ω) such that

∥∥g
∥∥
Mp,λ(Ω,t) = sup

τ∈]0,t]
x∈Ω

τ−λ/p
∥∥g
∥∥
Lp(Ω(x,τ)) < +∞, (4.1)
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endowed with the norm defined in (4.1). It is easily seen that, for any t1, t2 ∈ R+, a function
g belongs to Mp,λ(Ω, t1) if and only if it belongs to Mp,λ(Ω, t2); moreover, the norms of g in
these two spaces are equivalent. This allows us to restrict our attention to the spaceMp,λ(Ω) =
Mp,λ(Ω, 1).

We now introduce three subspaces ofMp,λ(Ω) needed in the sequel. The set VMp,λ(Ω)
is made up of the functions g ∈Mp,λ(Ω) such that

lim
t→ 0

∥∥g
∥∥
Mp,λ(Ω,t) = 0, (4.2)

while M̃p,λ(Ω) and M
p,λ
◦ (Ω) denote the closures of L∞(Ω) and C∞

◦ (Ω) in Mp,λ(Ω), respec-
tively. We point out that

M
p,λ
◦ (Ω) ⊂ M̃p,λ(Ω) ⊂ VMp,λ(Ω). (4.3)

We putMp(Ω) =Mp,0(Ω), VMp(Ω) = VMp,0(Ω), M̃p(Ω) = M̃p,0(Ω), andMp
◦(Ω) =Mp,0

◦ (Ω).
We want to define the moduli of continuity of functions belonging to M̃p,λ(Ω) or

M
p,λ
◦ (Ω). To this aim, let us put, for h ∈ R+ and g ∈Mp,λ(Ω),

F
[
g
]
(h) = sup

E∈Σ(Ω)
sup
x∈Ω

|E(x,1)|≤1/h

∥∥gχE
∥∥
Mp,λ(Ω). (4.4)

Recall first that for a function g ∈Mp,λ(Ω) the following characterization holds:

g ∈ M̃p,λ(Ω) ⇐⇒ lim
h→+∞

F
[
g
]
(h) = 0, (4.5)

while

g ∈Mp,λ
◦ (Ω) ⇐⇒ lim

h→+∞

(
F
[
g
]
(h) +

∥∥(1 − ζh)g
∥∥
Mp,λ(Ω)

)
= 0, (4.6)

where ζh denotes a function of class C∞
o (R

n) such that

0 ≤ ζh ≤ 1, ζh|B(0,h) = 1, supp ζh ⊂ B(0, 2h). (4.7)

Thus, if g is a function in M̃p,λ(Ω), a modulus of continuity of g in M̃p,λ(Ω) is a map σ̃p,λ[g] :
R+ → R+ such that

F
[
g
]
(h) ≤ σ̃p,λ[g](h), lim

h→+∞
σ̃p,λ

[
g
]
(h) = 0 . (4.8)



10 International Journal of Differential Equations

While, if g belongs to M
p,λ
o (Ω), a modulus of continuity of g in M

p,λ
o (Ω) is an application

σo
p,λ[g] : R+ → R+ such that

F
[
g
]
(h) +

∥∥(1 − ζh)g
∥∥
Mp,λ(Ω) ≤ σop,λ

[
g
]
(h),

lim
h→+∞

σo
p,λ[g

]
(h) = 0 .

(4.9)

If Ω has the property

|Ω(x, r)| ≥ Arn ∀x ∈ Ω , ∀r ∈ ]0, 1], (4.10)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Ω, τ) (τ ∈ R+) of functions g ∈ L1

loc (Ω) such that

[
g
]
BMO(Ω,τ) = sup

x∈Ω
r∈]0,τ]

−
∫

Ω(x,r)

∣∣∣∣∣g − −
∫

Ω(x,r)
g dy

∣∣∣∣∣ dy < +∞ , (4.11)

where

−
∫

Ω(x,r)
g dy = |Ω(x, r)|−1

∫

Ω(x,r)
g dy. (4.12)

If g ∈ BMO(Ω) = BMO(Ω, τA), where

τA = sup

⎧
⎪⎨

⎪⎩
τ ∈ R+ : sup

x∈Ω
r∈]0,τ]

rn

|Ω(x, r)| ≤
1
A

⎫
⎪⎬

⎪⎭
, (4.13)

we say that g ∈ VMO(Ω) if [g]BMO(Ω,τ) → 0 for τ → 0+.
If g belongs to VMO(Ω), a modulus of continuity of g in VMO(Ω) is function η[g] :

]0, 1] → R+ such that

[
g
]
BMO(Ω,τ) ≤ η

[
g
]
(τ) ∀τ ∈ ]0, 1], lim

τ→ 0+
η
[
g
]
(τ) = 0 . (4.14)

For more details on the above-defined function spaces, we refer to [8, 13–15].
Let us start proving a useful lemma.

Lemma 4.1. If Ω has the uniform C1,1-regularity property and

g, gx ∈
⎧
⎨

⎩
VMr(Ω), r > 2, for n = 2,

VMr,n−r(Ω), r ∈ ]2,n], for n > 2,
(4.15)

then g ∈ VMO(Ω).



International Journal of Differential Equations 11

Proof. For n > 2, the result can be found in [16], combining Lemma 4.1 and the argument in
the proof of Lemma 4.2.

Concerning n = 2, we firstly apply a known extension result, see [9, Corollary 2.2],
stating that any function g such that g, gx ∈ VMr(Ω) admits an extension p(g) such that
p(g), (p(g))x ∈ VMr(R2).

Then, we prove that for all x0 ∈ R
2 and t ∈ R+, there exists a constant c ∈ R+ such that

−
∫

B(x0,t)

∣∣∣∣∣p
(
g
) − −

∫

B(x0,t)
p
(
g
)
dx

∣∣∣∣∣ dx ≤ c
(
t(r−2/r)

∥∥(p
(
g
))

x

∥∥
Lr(B(x0,t))

)
. (4.16)

Indeed, in view of the above considerations, if (4.16) holds true, one has that p(g) ∈
VMO(R2), so g ∈ VMO(Ω).

Consider the function

g∗ : z ∈ R
2 −→ p

(
g
)
(x0 + tz) ∈ R. (4.17)

By Poincaré-Wirtinger inequality and Hölder inequality, one gets

−
∫

B(x0,t)

∣∣∣∣∣p
(
g
)
(x) − −

∫

B(x0,t)
p
(
g
)
(x)dx

∣∣∣∣∣dx

= π−1
∫

B(0,1)

∣∣∣∣∣g
∗(z) − −

∫

B(0,1)
g∗(z)dz

∣∣∣∣∣dz ≤ c1
∫

B(0,1)

∣∣(g∗)
z(z)

∣∣dz

= c1t−1
∫

B(x0,t)

∣∣(p
(
g
))

x(x)
∣∣dx ≤ c1t−1|B(x0, t)|(r−1/r)

∥∥(p
(
g
))

x

∥∥
Lr(B(x0,t))

,

(4.18)

this gives (4.16).

For reader’s convenience, we recall here some results proved in [17], adapted to our
needs.

Lemma 4.2. If Ω is an open subset of R
n having the cone property and g ∈Mr,λ(Ω), with r > 2 and

λ = 0 if n = 2, and r ∈]2, n] and λ = n − r if n > 2, then

u −→ gu (4.19)

is a bounded operator fromW1,2(Ω) to L2(Ω). Moreover, there exists a constant c ∈ R+, such that

∥∥gu
∥∥
L2(Ω) ≤ c

∥∥g
∥∥
Mr,λ(Ω)‖u‖W1,2(Ω), (4.20)

with c = c (Ω, n, r).
Furthermore, if g ∈ M̃r,λ(Ω), then for any ε > 0 there exists a constant cε ∈ R+, such that

∥∥gu
∥∥
L2(Ω) ≤ ε ‖u‖W1,2(Ω) + cε‖u‖L2(Ω), (4.21)

with cε = cε(ε,Ω, n, r, σ̃r,λ[g]).
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If g ∈ M t,μ(Ω), with t ≥ 2 and μ > n − 2t, then the operator in (4.19) is bounded from
W2,2(Ω) to L2(Ω). Moreover, there exists a constant c′ ∈ R+, such that

∥∥gu
∥∥
L2(Ω) ≤ c′

∥∥g
∥∥
Mt,μ(Ω)‖u‖W2,2(Ω), (4.22)

with c′ = c′(Ω, n, t, μ).
Furthermore, if g ∈ M̃ t,μ(Ω), then for any ε > 0 there exists a constant c′ε ∈ R+, such that

∥∥gu
∥∥
L2(Ω) ≤ ε ‖u‖W2,2(Ω) + c

′
ε‖u‖L2(Ω), (4.23)

with c′ε = c
′
ε(ε,Ω, n, t, μ, σ̃

t,μ[g]).

Proof. The proof easily follows from Theorem 3.2 and Corollary 3.3 of [17].

From now on, we assume that Ω is an unbounded open subset of R
n, n ≥ 2, with the

uniform C1,1-regularity property.
We consider the differential operator

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑

i=1

ai
∂

∂xi
+ a, (4.24)

with the following conditions on the coefficients:

aij = aji ∈ L∞(Ω), i, j = 1, . . . , n,

∃ν > 0 :
n∑

i,j=1

aijξiξj ≥ ν|ξ|2, a.e. in Ω, ∀ξ ∈ Rn,
(h1)

(
aij
)
xj
, ai ∈Mr,λ

o (Ω), i, j = 1, . . . , n,

with r > 2, λ = 0 if n = 2,

with r ∈ ]2, n], λ = n − r if n > 2 ,

(h2)

a ∈ M̃ t,μ(Ω), with t ≥ 2, μ > n − 2t,

ess inf
Ω

a = a0 > 0.
(h3)

We explicitly observe that under the assumptions (h1)–(h3) the operator L : W2,2(Ω) →
L2(Ω) is bounded, as a consequence of Lemma 4.2.

We are now in position to prove the above-mentioned a priori estimate.

Theorem 4.3. Let L be defined in (4.24). Under hypotheses (h1)–(h3), there exists a constant c ∈ R+

such that

‖u‖W2,2(Ω) ≤ c‖Lu‖L2(Ω), ∀u ∈W2,2(Ω) ∩
◦
W1,2(Ω), (4.25)

with c = c(Ω, n, ν, r, t, μ, ||aij ||L∞(Ω), σo
r,λ[(aij)xj ], σo

r,λ[ai], σ̃t,μ[a], a0).



International Journal of Differential Equations 13

Proof. Let us put

L0 = −
n∑

i,j=1

aij
∂2

∂xi∂xj
(4.26)

and fix u ∈ W2,2(Ω) ∩
◦
W1,2(Ω). Lemma 4.1 being true, Lemma 3.1 of [18] (for n = 2) and

Theorem 5.1 of [17] (for n > 2) apply, so that there exists a constant c1 ∈ R+ such that

‖u‖W2,2(Ω) ≤ c1
(
‖L0u‖L2(Ω) + ‖u‖L2(Ω)

)
, (4.27)

with c1 = c1(Ω, n, ν, ||aij ||L∞(Ω), σo
r,λ[(aij)xj ]). Therefore,

‖u‖W2,2(Ω) ≤ c1
(
‖Lu‖L2(Ω) + ‖u‖L2(Ω) +

n∑

i=1

‖aiuxi‖L2(Ω) + ‖au‖L2(Ω)

)
. (4.28)

On the other hand, from Lemma 4.2, one has

‖aiuxi‖L2(Ω) ≤ ε‖u‖W2,2(Ω) + cε‖uxi‖L2(Ω),

‖au‖L2(Ω) ≤ ε‖u‖W2,2(Ω) + c
′
ε‖u‖L2(Ω),

(4.29)

with cε = cε(ε,Ω, n, r, σor,λ[ai]) and c′ε = c
′
ε(ε,Ω, n, t, μ, σ̃

t,μ[a]).
Furthermore, classical interpolation results give that there exists a constant K ∈ R+

such that

‖ux‖L2(Ω) ≤ Kε‖u‖W2,2(Ω) +
K

ε
‖u‖L2(Ω), (4.30)

with K = K(Ω). Combining (4.28), (4.29) and (4.30) we conclude that there exists c2 ∈ R+

such that

‖u‖W2,2(Ω) ≤ c2
(
‖Lu‖L2(Ω) + ‖u‖L2(Ω)

)
, (4.31)

with c2 = c2(Ω, n, ν, r, t, μ, ||aij ||L∞(Ω), σo
r,λ[(aij)xj ], σo

r,λ[ai], σ̃t,μ[a]).
To show (4.25), it remains to estimate ‖u‖L2(Ω). To this aim let us rewrite our operator

in divergence form

Lu = −
n∑

i,j=1

(
aijuxi

)
xj
+

n∑

i=1

⎛

⎝
n∑

j=1

(
aij
)
xj
+ ai

⎞

⎠ uxi + au, (4.32)

in order to adapt to our framework some known results concerning operators in variational
form. Following along the lines, the proofs of Theorem 4.3 of [19] (for n = 2) and of
Theorem 4.2 of [13] (for n > 2), with opportune modifications—we explicitly observe that the
continuity of the bilinear form associated to (4.32) in our case is an immediate consequence
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of Lemma 4.2—we obtain that

‖u‖L2(Ω) ≤ c3‖Lu‖L2(Ω), (4.33)

with c3 = c3(n, ν, r, σor,λ[(aij)xj ], σo
r,λ[ai], a0). Putting together (4.31) and (4.33), we obtain

(4.25).

5. Uniqueness and Existence Results

This section is devoted to the proof of the solvability of a Dirichlet problem for a class
of second-order linear elliptic equations in the weighted space W2,2

s (Ω). The W2,2-bound
obtained in Theorem 4.3 allows us to show the following a priori estimate in the weighted
case.

Theorem 5.1. Let L be defined in (4.24). Under hypotheses (h1)–(h3), there exists a constant c ∈ R+

such that

‖u‖W2,2
s (Ω) ≤ c‖Lu‖L2

s(Ω), ∀u ∈W2,2
s (Ω) ∩

◦
W1,2

s (Ω), (5.1)

with c = c(Ω, n, s, ν, r, t, μ, ||aij ||L∞(Ω), ||ai||Mr,λ(Ω), σo
r,λ[(aij)xj ], σo

r,λ[ai],σ̃t,μ[a], a0).

Proof. Fix u ∈ W2,2
s (Ω) ∩

◦
W1,2

s (Ω) . In the sequel, for sake of simplicity, we will write ηk = η,
for a fixed k ∈ N. Observe that η satisfies (2.1), as a consequence of (3.16), so that Lemma 2.5

applies giving that ηsu ∈ W2,2(Ω) ∩
◦
W1,2(Ω). Therefore, in view of Theorem 4.3, there exists

c0 ∈ R+, such that
∥∥ηsu

∥∥
W2,2(Ω) ≤ c0

∥∥L
(
ηsu

)∥∥
L2(Ω), (5.2)

with c0 = c0(Ω, n, ν, r, t, μ, ||aij ||L∞(Ω), σo
r,λ[(aij)xj ], σo

r,λ[ai], σ̃t,μ[a], a0). Easy computations
give

L
(
ηsu

)
= ηsLu − s

n∑

i,j=1

aij
(
(s − 1)ηs−2ηxiηxj u + ηs−1ηxixj u + 2ηs−1ηxiuxj

)

+ s
n∑

i=1

aiη
s−1ηxiu.

(5.3)

Putting together (5.2) and (5.3), we deduce that

∥∥ηsu
∥∥
W2,2(Ω) ≤ c1

⎛

⎝∥∥ηsLu
∥∥
L2(Ω) +

n∑

i,j=1

(∥∥∥ηs−2ηxiηxj u
∥∥∥
L2(Ω)

+
∥∥∥ηs−1ηxixj u

∥∥∥
L2(Ω)

+
∥∥∥ηs−1ηxiuxj

∥∥∥
L2(Ω)

)
+

n∑

i=1

∥∥∥aiηs−1ηxiu
∥∥∥
L2(Ω)

⎞

⎠,

(5.4)

where c1 ∈ R+ depends on the same parameters as c0 and on s.
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On the other hand, from Lemma 4.2 and (3.17), we get

∥∥∥aiηs−1ηxiu
∥∥∥
L2(Ω)

≤ c2 sup
Ω\Ωk

σx
σ
‖ai‖Mr,λ(Ω)

∥∥ηsu
∥∥
W1,2(Ω), (5.5)

with c2 = c2(Ω, n, r).
Combining (3.17), (3.18), (5.4), and (5.5), with simple calculations we obtain the

bound

∥∥ηsu
∥∥
W2,2(Ω) ≤ c3

⎡

⎣∥∥ηsLu
∥∥
L2(Ω) +

⎛

⎝sup
Ω\Ωk

σ2
x + σσxx
σ2

+ sup
Ω\Ωk

σx
σ

⎞

⎠∥∥ηsu
∥∥
W2,2(Ω)

⎤

⎦, (5.6)

where c3 depends on the same parameters as c1 and on ‖ai‖Mr,λ(Ω).
By Lemma 3.1, it follows that there exists ko ∈ N such that

⎛

⎝ sup
Ω\Ωko

σ2
x + σσxx
σ2

+ sup
Ω\Ωko

σx
σ

⎞

⎠ ≤ 1
2c3

. (5.7)

Now, if we still denote by η the function ηko , from (5.6) and (5.7), we deduce that

∥∥ηsu
∥∥
W2,2(Ω) ≤ 2c3

∥∥ηsLu
∥∥
L2(Ω). (5.8)

Then, by Lemma 2.2 and by (3.12), written for k = ko, we have

∑

|α|≤2
‖σs∂αu‖L2(Ω) ≤ c4‖σsLu‖L2(Ω), (5.9)

with c4 depending on the same parameters as c3 and on ko.
This last estimate being true for every s ∈ R, we also have

∑

|α|≤2

∥∥σ−s∂αu
∥∥
L2(Ω) ≤ c5

∥∥σ−sLu
∥∥
L2(Ω). (5.10)

The bounds in (5.9) and (5.10) together with the definition (3.3) of σ give estimate
(5.1).

Lemma 5.2. The Dirichlet problem

u ∈W2,2
s (Ω) ∩

◦
W1,2

s (Ω),

−Δu + bu = f, f ∈ L2
s(Ω),

(5.11)
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where

b = 1 +

∣∣∣∣∣−s(s + 1)
n∑

i=1

σ2
xi

σ2
+ s

n∑

i=1

σxixi
σ

∣∣∣∣∣, (5.12)

is uniquely solvable.

Proof. Observe that u is a solution of problem (5.11) if and only ifw = σsu is a solution of the
problem

w ∈W2,2(Ω) ∩
◦
W1,2(Ω),

−Δ(σ−sw) + bσ−sw = f, f ∈ L2
s(Ω).

(5.13)

Clearly, for any i ∈ {1, . . . , n},

∂2

∂x2
i

(
σ−sw

)
= σ−swxixi − 2sσ−s−1σxiwxi + s(s + 1)σ−s−2σ2

xiw − sσ−s−1σxixiw, (5.14)

then (5.13) is equivalent to the problem

w ∈W2,2(Ω) ∩
◦
W1,2(Ω),

−Δw +
n∑
i=1
αiwxi + αw = g, g ∈ L2(Ω),

(5.15)

where

αi = 2s
σxi
σ
, i = 1, . . . , n, α = b − s(s + 1)

n∑

i=1

σ2
xi

σ2
+ s

n∑

i=1

σxixi
σ

, g = σsf. (5.16)

Using Theorem 5.2 in [18] (for n = 2), Theorem 4.3 of [20] (for n > 2), (1.6) of [8], and
the hypotheses on σ, we obtain that (5.15) is uniquely solvable and then problem (5.11) is
uniquely solvable too.

Theorem 5.3. Let L be defined in (4.24). Under hypotheses (h1)–(h3), the problem

u ∈W2,2
s (Ω) ∩

◦
W1,2

s (Ω),

Lu = f, f ∈ L2
s(Ω),

(5.17)

is uniquely solvable.

Proof. For each τ ∈ [0, 1], we put

Lτ = τ(L) + (1 − τ)(−Δ + b). (5.18)
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In view of Theorem 5.1,

‖u‖W2,2
s (Ω) ≤ c‖Lτu‖Lps (Ω), ∀u ∈W2,2

s (Ω) ∩
◦
W1,2

s (Ω), ∀τ ∈ [0, 1]. (5.19)

Thus, taking into account the result of Lemma 5.2 and using the method of continuity along
a parameter (see, e.g., Theorem 5.2 of [21]), we obtain the claimed result.
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