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We use generalized differential transform method (GDTM) to derive the solution of space-
time fractional telegraph equation in closed form. The space and time fractional derivatives are
considered in Caputo sense and the solution is obtained in terms of Mittag-Leffler functions.

1. Introduction

Differential equations of fractional order have been successfully employed for modeling the
so called anomalous phenomena during last two decades. As a consequence, there has been
an intensive development of the theory of fractional differential equations [1–4]. Recently,
various analytical and numerical methods have been employed to solve linear and nonlinear
fractional differential equations. A few to mention are Adomian decomposition method
[5–7], homotopy perturbation method [8, 9], homotopy analysis method [10], variational
iterationmethod [11, 12], matrixmethod [13], and differential transformmethod [14–16]. The
differential transformmethodwas proposed by Zhou [17] to solve linear and nonlinear initial
value problems in electric circuit analysis. Thismethod constructs an analytical solution in the
form of a polynomial. It is different from the traditional higher order Taylor series method,
which requires symbolic computation of the necessary derivatives of the data functions
and takes long time in computation, whereas the differential transform is an iterative
procedure for obtaining analytic Taylor series solution. The method is further developed
by Momani, Odibat, and Erturk in their papers [14–16] for solving two-dimensional linear
and nonlinear partial differential equations of fractional order. Recently, Biazar and Eslami
[18] applied differential transform method to solve systems of Volterra integral equations
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of the first kind, El-Said et al. [19] developed extended Weierstrass transformation method
for nonlinear evolution equations, and Keskin and Oturanc [20] developed the reduced
differential transform method to solve fractional partial differential equations.

In the present paper, we apply the method of generalized differential transform to
solve space-time fractional telegraph equation. The classical telegraph equation is a partial
differential equation with constant coefficients given by [21]

utt − c2uxx + aut + bu = 0, (1.1)

where a, b and c are constants. This equation is used in modeling reaction diffusion and
signal analysis for propagation of electrical signals in a cable of transmission line [21, 22].
Both current I and voltage V satisfy an equation of the form (1.1). This equation also arises
in the propagation of pressure waves in the study of pulsatile blood flow in arteries and in
one-dimensional random motion of bugs along a hedge. Compared to the heat equation, the
telegraph equation is found to be a superior model for describing certain fluid flow problems
involving suspensions [23]. This equation is used in modeling reaction diffusion and signal
analysis for transmission and propagation of electrical signals.

The classical telegraph equation and space or time fractional telegraph equations
have been studied by a number of researchers namely Biazar et al. [24], Cascaval et al.
[25], Kaya [26], Momani [5], Odibat and Momani [27], Sevimlican [12], and Yıldırim [9].
Orsingher and Zhao [28] have shown that the law of the iterated Brownian motion and the
telegraph processes with Brownian time are governed by time-fractional telegraph equations.
Orsingher and Beghin [29] presented that the transition function of a symmetric process
with discontinuous trajectories satisfies the space-fractional telegraph equation. Several
techniques such as transform method, Adomian decomposition method, juxtaposition of
transforms, generalized differential transform method, variational iteration method, and
homotopy perturbation method have been used to solve space or time fractional telegraph
equation.

In the present paper, we make an attempt to solve homogeneous and nonhomo-
geneous space-time fractional telegraph equation by means of generalized differential
transform method.

2. Preliminaries

Definition 2.1. Caputo fractional derivative of order α is defined as [30]:

Dα
af(x) =

1
Γ(m − α)

∫x

a

f (m)(ξ)

(x − ξ)α−m+1
dξ, (m − 1 < α ≤ m), m ∈ N. (2.1)

Definition 2.2. The Mittag-Leffler function which is a generalization of exponential function
is defined as [31]:

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
(α ∈ C, R(α) > 0). (2.2)
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A further generalization of (2.2) is given in the form [32]

Eα,β(z) =
∞∑
n=0

zn

Γ
(
αn + β

) ; (
α, β ∈ C, R(α) > 0, R

(
β
)
> 0

)
. (2.3)

For α = 1, Eα(z) reduces to ez.

Definition 2.3. Generalized two-dimensional differential transform [14–16] is as given below:
Consider a function of two variables u(x, y) and suppose that it can be represented as a
product of two single-variable functions, that is, u(x, y) = f(x)g(y). If function u(x, y) is
analytic and differentiated continuously with respect to x and y in the domain of interest,
then the generalized two-dimensional differential transform of the function u(x, y) is given
by

Uα,β(k, h) =
1

Γ(αk + 1)Γ
(
βh + 1

)
[(
Dα

x0

)k(
D

β
y0

)h
u
(
x, y

)]
(x0,y0)

, (2.4)

where 0 < α, β ≤ 1(Dα
x0
)k = Dα

x0
· · ·Dα

x0
· · ·Dα

x0
(k times), Dα

x0
is defined by (2.1) and Uα,β(k, h)

is the transformed function.

The generalized differential transform inverse of Uα,β(k, h) is given by

u
(
x, y

)
=

∞∑
k=0

∞∑
h=0

Uα,β(k, h)(x − x0)kα
(
y − y0

)hβ
. (2.5)

Some basic properties of the generalized two-dimensional differential transform are as
given below.

Let Uα,β(k, h), Vα,β(k, h) and Wα,β(k, h) be generalized two-dimensional differential
transform of the functions u(x, y), v(x, y), and w(x, y), respectively, then

(a) if u(x, y) = v(x, y) ±w(x, y), thenUα,β(k, h) = Vα,β(k, h) ±Wα,β(k, h),

(b) if u(x, y) = av(x, y), a is constant, then Uα,β(k, h) = aVα,β(k, h),

(c) if u(x, y) = D
γ
x0v(x, y) where m − 1 < γ ≤ m, m ∈ N then Uα,β(k, h) = (Γ(αk + γ +

1)/Γ(αk + 1)) Vα,β(k + γ/α, h),

(d) if u(x, y) = D
μ
y0v(x, y) where n − 1 < μ ≤ n, n ∈ N, then Uα,β(k, h) = (Γ(βh + μ +

1)/Γ(βh + 1)) Vα,β(k, h + μ/β).

3. Solution of Space-Time Fractional Telegraph Equations by
Generalized Two-Dimensional Differential Transform Method

In this section, we consider space-time fractional telegraph equations in the following form:

c2D2α
x u(x, t) = D

pβ
t u(x, t) + aD

rβ
t u(x, t) + bu(x, t) + f(x, t), 0 < x < 1, t > 0, (3.1)
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where β = 1/q, p, q, r ∈ N, 1 < 2α ≤ 2, 1 < pβ ≤ 2, 0 < rβ ≤ 1, D2α
x ≡ Dα

xD
α
x, D

pβ
t ≡ D

β
t D

β
t · · ·D

β
t

(p times), Drβ
t ≡ D

β
t D

β
t · · ·D

β
t (r times), Dα

x, D
β
t are Caputo fractional derivatives defined by

(2.1), a, b, and c are constants, f(x, t) is given function.
Particularly for α = 1, q = 1, p = 2, r = 1, f = 0, space-time fractional telegraph (3.1)

reduces to classical telegraph (1.1).
To give a clear overview of the methodology, we have selected three illustrative

examples, the first is a homogeneous space-time fractional telegraph equation with
conditions involving ordinary derivative with respect to space, the second is a homogeneous
space-time fractional telegraph equation with conditions involving fractional derivative with
respect to space, and the third is a nonhomogeneous space-time fractional telegraph equation
with conditions involving fractional derivative with respect to space.

Example 3.1. Consider the following homogeneous space-time fractional telegraph equation:

D3/2
x u(x, t) = D

pβ
t u(x, t) +D

rβ
t u(x, t) + u(x, t), 0 < x < 1, t > 0, (3.2)

where β = 1/q, p, q, r ∈ N, 1 < pβ ≤ 2, 0 < rβ ≤ 1,D3/2
x ≡ (D1/2

x )
3
,Dpβ

t ≡ D
β
t D

β
t · · ·D

β
t (p times),

D
rβ
t ≡ D

β
t D

β
t · · ·D

β
t (r times), Dα

x, D
β
t are Caputo fractional derivatives defined by (2.1), p + r

is odd and

u(0, t) = Eβ

(
−tβ

)
, ux(0, t) = Eβ

(
−tβ

)
. (3.3)

Applying generalized two-dimensional differential transform (2.4)with x0 = 0 = y0, α = 1/2,
to both sides of (3.2) and (3.3) and using properties (c) and (d), we obtain

U1/2,β(k + 3, h) =
Γ((k/2) + 1)

Γ(((k + 3)/2) + 1)

[
Γ
(
β
(
h + p

)
+ 1

)
Γ
(
βh + 1

) U1/2,β
(
k, h + p

)

+
Γ
(
β(h + r) + 1

)
Γ
(
βh + 1

) U1/2,β(k, h + r) +U1/2,β(k, h)

]
,

(3.4)

U1/2,β(0, h) =
(−1)h

Γ
(
βh + 1

) , U1/2,β(1, h) = 0,

U1/2,β(2, h) =
(−1)h

Γ
(
βh + 1

) , h = 0, 1, 2, . . . .

(3.5)

Utilizing recurrence relation (3.4), the transformed conditions (3.5) and the condition p + r
is odd, we can easily obtain, for l, h = 0, 1, 2, . . .

U1/2,β(3l, h) =
(−1)h

Γ((3/2)l + 1)Γ
(
βh + 1

) , (3.6)
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U1/2,β(3l + 1, h) = 0, (3.7)

U1/2,β(3l + 2, h) =
(−1)h

Γ((3/2)l + 2)Γ
(
βh + 1

) . (3.8)

Now, from (2.5), we have

u(x, t) =
∞∑
k=0

∞∑
h=0

U1/2,β(k, h)xk/2tβh. (3.9)

Using the values of U1/2,β(k, h) from (3.5)–(3.8) in (3.9), the exact solution of space-
time fractional telegraph (3.2) is obtained as

u(x, t) =
[
E3/2

(
x3/2

)
+ xE3/2,2

(
x3/2

)]
Eβ

(
−tβ

)
, (3.10)

which is same as obtained by Garg and Sharma [33] using Adomian decomposition method.

Setting p = 2, q = r = 1, the space-time fractional telegraph (3.2) reduces to
space fractional telegraph equation and the solution is same as obtained by Momani
[5], Odibat and Momani [27], and Yıldırim [9] using Adomian decomposition method,
generalized differential transform method, and homotopy perturbation method, respec-
tively.

Further, setting α = 1, it reduces to classical telegraph equation and the solution is
same as obtained by Kaya [26] using Adomian decomposition method.

Example 3.2. Consider the following homogeneous space-time fractional telegraph equation:

D2α
x u(x, t) = D

pβ
t u(x, t) +D

rβ
t u(x, t) + u(x, t), 0 < x < 1, t > 0, (3.11)

where β = 1/q, p, q, r ∈ N, 1 < 2α ≤ 2, 1 < pβ ≤ 2, 0 < rβ ≤ 1, D2α
x ≡ Dα

xD
α
x, D

pβ
t ≡ D

β
t D

β
t · · ·D

β
t

(p times), Drβ
t ≡ D

β
t D

β
t · · ·D

β
t (r times), Dα

x, D
β
t are Caputo fractional derivatives defined by

(2.1), p + r is odd and

u(0, t) = Eβ

(
−tβ

)
, Dα

xu(x, t)|x=0 = Eβ

(
−tβ

)
. (3.12)

Applying generalized two-dimensional differential transform (2.4) with x0 = 0 = y0 to both
sides of (3.11), (3.12) and using properties (c) and (d) we obtain

Uα,β(k + 2, h) =
Γ(αk + 1)

Γ(α(k + 2) + 1)

[
Γ
(
β
(
h + p

)
+ 1

)
Γ
(
βh + 1

) Uα,β

(
k, h + p

)

+
Γ
(
β(h + r) + 1

)
Γ
(
βh + 1

) Uα,β(k, h + r) +Uα,β(k, h)

]
,

(3.13)
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Uα,β(0, h) =
(−1)h

Γ
(
βh + 1

) , Uα,β(1, h) =
(−1)h

Γ(α + 1)Γ
(
βh + 1

) , h = 0, 1, 2, . . . . (3.14)

Utilizing the recurrence relation (3.13), the transformed conditions (3.14) and the condition
p + r is odd, we obtain

Uα,β(k, h) =
(−1)h

Γ(kα + 1)Γ
(
hβ + 1

) , for k, h = 0, 1, 2, . . . . (3.15)

Now, from (2.5), we have

u(x, t) =
∞∑
k=0

∞∑
h=0

Uα,β(k, h)xαktβh. (3.16)

Using the values ofUα,β(k, h) from (3.15) in (3.16), the exact solution of homogeneous space-
time fractional telegraph (3.11) is obtained as

u(x, t) = Eα(xα)Eβ

(
−tβ

)
. (3.17)

Remark 3.3. (1) Setting q = 1, p = 2, r = 1, (3.11) reduces to space fractional telegraph equation

D2α
x u(x, t) = D2

t u(x, t) +Dtu(x, t) + u(x, t), 0 < x < 1, t > 0, (3.18)

with solution

u(x, t) = Eα(xα)e−t. (3.19)

(2) Setting α = 1, (3.11) reduces to time fractional telegraph equation:

D2
xu(x, t) = D

pβ
t u(x, t) +D

rβ
t u(x, t) + u(x, t), 0 < x < 1, t > 0, (3.20)

with solution

u(x, t) = exEβ

(
−tβ

)
. (3.21)

(3) Setting α = 1, q = 1, p = 2, r = 1, (3.11) reduces to classical telegraph equation:

D2
xu(x, t) = D2

t u(x, t) +Dtu(x, t) + u(x, t), 0 < x < 1, t > 0, (3.22)

with solution

u(x, t) = ex−t, (3.23)

which is same as obtained by Kaya [26] using Adomian decomposition method.
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Example 3.4. Consider the following non-homogeneous space-time fractional telegraph
equation:

D2α
x u(x, t) = D

pβ
t u(x, t) +D

rβ
t u(x, t) + u(x, t) − 2Eα(xα)Eβ

(
−tβ

)
, 0 < x < 1, t > 0, (3.24)

where β = 1/q, p, q, r ∈ N, 1 < 2α ≤ 2, 1 < pβ ≤ 2, 0 < rβ ≤ 1, D2α
x ≡ Dα

xD
α
x, D

pβ
t ≡ D

β
t D

β
t · · ·D

β
t

(p times), Drβ
t ≡ D

β
t D

β
t · · ·D

β
t (r times), Dα

x, D
β
t are Caputo fractional derivatives defined by

(2.1), p and r are even and

u(0, t) = Eβ

(
−tβ

)
, Dα

xu(x, t)|x=0 = Eβ

(
−tβ

)
. (3.25)

Applying generalized two-dimensional differential transform (2.4) with x0 = 0 = y0 to both
sides of (3.24), (3.25), and using properties (c) and (d) we obtain

Uα,β(k + 2, h) =
Γ(αk + 1)

Γ(α(k + 2) + 1)

[
Γ
(
β
(
h + p

)
+ 1

)
Γ
(
βh + 1

) Uα,β

(
k, h + p

)
+
Γ
(
β(h + r) + 1

)
Γ
(
βh + 1

) Uα,β(k, h + r)

+Uα,β(k, h) − 2(−1)h
Γ(αk + 1)Γ

(
βh + 1

)
]
,

(3.26)

Uα,β(0, h) =
(−1)h

Γ
(
βh + 1

) , Uα,β(1, h) =
(−1)h

Γ(α + 1)Γ
(
βh + 1

) , h = 0, 1, 2, . . . . (3.27)

Utilizing the recurrence relation (3.26) and the transformed conditions (3.27), we obtain

Uα,β(k, h) =
(−1)h

Γ(kα + 1)Γ
(
hβ + 1

) , k, h = 0, 1, 2, . . . . (3.28)

Now from (2.5), we have

u(x, t) =
∞∑
k=0

∞∑
h=0

Uα,β(k, h)xαktβh. (3.29)

Using the values of Uα,β(k, h) from (3.28) in (3.29), the exact solution of non-homogeneous
space-time fractional telegraph (3.24) is obtained as

u(x, t) = Eα(xα)Eβ

(
−tβ

)
. (3.30)

Remark 3.5. (1) Setting q = 2, p = 4, r = 2, (3.24) reduces to non-homogeneous space fractional
telegraph equation:

D2α
x u(x, t) = D2

t u(x, t) +Dtu(x, t) + u(x, t) − 2Eα(xα)e−t, 0 < x < 1, t > 0, (3.31)
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with solution

u(x, t) = Eα(xα)e−t. (3.32)

(2) Setting α = 1, (3.24) reduces to non-homogeneous time fractional telegraph
equation:

D2
xu(x, t) = D

pβ
t u(x, t) +D

rβ
t u(x, t) + u(x, t) − 2exEβ

(
−tβ

)
, 0 < x < 1, t > 0, (3.33)

with solution

u(x, t) = exEβ

(
−tβ

)
. (3.34)

(3) Setting α = 1, q = 2, p = 4, r = 2, (3.24) reduces to non-homogeneous telegraph
equation:

D2
xu(x, t) = D2

t u(x, t) +Dtu(x, t) + u(x, t) − 2exE1/2

(
−t1/2

)
, 0 < x < 1, t > 0, (3.35)

with solution

u(x, t) = exE1/2

(
−t1/2

)
. (3.36)
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