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A second-order semilinear Volterra integrodifferential equation involving fractional time deriva-
tives is considered. We prove existence and uniqueness of mild solutions and classical solutions in
appropriate spaces.

1. Introduction

In this work we discuss the following problem:ď

u′′(t) = Au(t) + f(t) +
∫ t

0
g
(
t, s, u(s), Dβ1u(s), . . . , Dβnu(s)

)
ds, t > 0,

u(0) = u0 ∈ X, u′(0) = u1 ∈ X,

(1.1)

where 0 < βi ≤ 1, i = 1, . . . , n. Here the prime denotes time differentiation andDβi , i = 1, . . . , n
denotes fractional time differentiation (in the sense of Riemann-Liouville or Caputo). The
operator A is the infinitesimal generator of a strongly continuous cosine family C(t), t ≥ 0
of bounded linear operators in the Banach space X, f and g are nonlinear functions from
R+ to X and R+ × R+ × X × · · · × X to X, respectively, u0 and u1 are given initial data in X.
The problem with β1 = · · · = βn = 0 or 1 has been investigated by several authors (see [1–
7] and references therein, to cite a few). Well-posedness has been proved using fixed point
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theorems and the theory of strongly continuous cosine families in Banach spaces developed
in [8, 9]. This theory allows us to treat a more general integral or integrodifferential equation,
the solutions of which are called “mild” solutions. In case of regularity (of the initial data and
the nonlinearities), the mild solutions are shown to be classical. In case β1 = β2 = · · · = βn = 1,
the underlying space is the space of continuously differentiable functions.

In this work, when 0 < βi < 1, i = 1, . . . , n, we will see that mild solutions need not
be that regular (especially when dealing with Riemann-Liouville fractional derivatives). It
is the objective of this paper to find the appropriate space and norm where the problem is
solvable. We first consider the problem with a fractional derivative in the sense of Caputo
and look for a mild solution in C1. Under certain conditions on the data it is shown that this
mild solution is classical. Then we consider the case of fractional derivatives in the sense of
Riemann-Liouville. We prove existence and uniqueness of mild solution under much weaker
regularity conditions than the expected ones. Indeed, when the nonlinearity involves a term
of the form

1
Γ
(
1 − β

)
∫ t

0

u′(s)ds

(t − s)β
, 0 < β < 1, (1.2)

then one is attracted by u′(s) in the integral and therefore it is natural to seek mild solutions
in the space of continuously differentiable functions. This is somewhat surprising if instead
of this expression one is given CDβu(t) (the latter is exactly the definition of the former).
However, this is not the case when we deal with the Riemann-Liouville fractional derivative.
Solutions are only β-differentiable and not necessarily once continuously differentiable. It will
be therefore wise to look for solutions in an appropriate “fractional” space. We will consider
the new spaces Eβ and FSβ (see (4.1)) instead of the classical ones E and C1 (see [1–7]).

To simplify our task we will treat the following simpler problem

u′′(t) = Au(t) + f(t) +
∫ t

0
g
(
t, s, u(s), Dβu(s)

)
ds, t > 0,

u(0) = u0 ∈ X, u′(0) = u1 ∈ X,

(1.3)

with 0 < β < 1. The general case can be derived easily.
The rest of the paper is divided into three sections. In the second section we prepare

some material consisting of notation and preliminary results needed in our proofs. The next
section treats well-posedness when the fractional derivative is taken in the sense of Caputo.
Section 4 is devoted to the Riemann-Liouville fractional derivative case.

2. Preliminaries

In this section we present some assumptions and results needed in our proofs later. This will
fix also the notation used in this paper.

Definition 2.1. The integral

(Iαh)(x) =
1

Γ(α)

∫x

a

h(t)dt

(x − t)1−α
, x > a (2.1)
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is called the Riemann-Liouville fractional integral of h of order α > 0 when the right side
exists.

Here Γ is the usual Gamma function

Γ(z) :=
∫∞

0
e−ssz−1ds, z > 0. (2.2)

Definition 2.2. The (left hand) Riemann-Liouville fractional derivative of order 0 < α < 1 is
defined by

(Dα
ah)(x) =

1
Γ(1 − α)

d

dx

∫x

a

h(t)dt
(x − t)α

, x > a, (2.3)

whenever the right side is pointwise defined.

Definition 2.3. The fractional derivative of order 0 < α < 1 in the sense of Caputo is given by

(
CDα

ah
)
(x) =

1
Γ(1 − α)

∫x

a

h′(t)dt
(x − t)α

, x > a. (2.4)

Remark 2.4. The fractional integral of order α is well defined on Lp, p ≥ 1 (see [10]). Further,
from Definition 2.2, it is clear that the Riemann-Liouville fractional derivative is defined for
any function h ∈ Lp, p ≥ 1 for which k1−α ∗ h is differentiable (where k1−α(t) := t−α/Γ(1 − α)
and ∗ is the incomplete convolution). In fact, as domain ofDα

0 = Dα we can take

D(Dα) =
{
h ∈ Lp(0, T) : k1−α ∗ h ∈ W1,p(0, T)

}
, (2.5)

where

W1,p(0, T) :=

{
u : ∃ϕ ∈ Lp(0, T) : u(t) = C +

∫ t

0
ϕ(s)ds

}
. (2.6)

In particular, we know that the absolutely continuous functions (p = 1) are differentiable
almost everywhere and therefore the Riemann-Liouville fractional derivative exists a.e. In
this case (for an absolutely continuous function) the derivative is summable [10, Lemma 2.2]
and the fractional derivative in the sense of Caputo exists. Moreover, we have the following
relationship between the two types of fractional derivatives:

(Dα
ah)(x) =

1
Γ(1 − α)

[
h(a)

(t − a)α
+
∫x

a

h′(t)dt
(x − t)α

]

=
1

Γ(1 − α)
h(a)

(t − a)α
+
(
CDα

ah
)
(x), x > a.

(2.7)

See [10–15] for more on fractional derivatives.
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We will assume the following.

(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R,
of bounded linear operators in the Banach space X.

The associated sine family S(t), t ∈ R is defined by

S(t)x :=
∫ t

0
C(s)x ds, t ∈ R, x ∈ X. (2.8)

It is known (see [9, 16]) that there exist constants M ≥ 1 and ω ≥ 0 such that

|C(t)| ≤ Meω|t|, t ∈ R, |S(t) − S(t0)| ≤ M

∣∣∣∣∣
∫ t

t0

eω|s|ds

∣∣∣∣∣, t, t0 ∈ R. (2.9)

If we define

E :=
{
x ∈ X : C(t)x is once continuously differentiable on R

}
(2.10)

then we have the following.

Lemma 2.5 (see [9, 16]). Assume that (H1) is satisfied. Then

(i) S(t)X ⊂ E, t ∈ R,

(ii) S(t)E ⊂ D(A), t ∈ R,

(iii) (d/dt)C(t)x = AS(t)x, x ∈ E, t ∈ R,

(iv) (d2/dt2)C(t)x = AC(t)x = C(t)Ax, x ∈ D(A), t ∈ R.

Lemma 2.6 (see [9, 16]). Suppose that (H1) holds, v : R → X a continuously differentiable function
and q(t) =

∫ t
0 S(t − s)v(s)ds. Then, q(t) ∈ D(A), q′(t) =

∫ t
0 C(t − s)v(s)ds and q′′(t) =

∫ t
0 C(t −

s)v′(s)ds + C(t)v(0) = Aq(t) + v(t).

Definition 2.7. A function u(·) ∈ C2(I, X) is called a classical solution of (1.3) if u(t) ∈ D(A),
satisfies the equation in (1.3) and the initial conditions are verified.

In case of Riemann-Liouville fractional derivative then we require additionally that
Dβu(t) be continuous.

Definition 2.8. A continuously differentiable solution of the integrodifferential equation

u(t) = C(t)u0 + S(t)u1 +
∫ t

0
S(t − s)f(s)ds

+
∫ t

0
S(t − s)

∫ s

0
g
(
s, τ, u(τ),CDβu(τ)

)
dτ ds

(2.11)

is called mild solution of problem (1.3).
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In case of Riemann-Liouville fractional derivative the (continuous) solution is merely
β-differentiable (i.e.,Dβu(t) exists and is continuous).

It follows from [8] that, in case of continuity of the nonlinearities, solutions of (1.3) are
solutions of the more general problem (2.11).

3. Well-Posedness in C1([0, T])

For the sake of comparison with the results in the next section we prove here existence and
uniqueness of solutions in the space C1([0, T]). This is the space where we usually look for
mild solutions in case the first-order derivative of u appears in the nonlinearity (see [1–
7]). We consider fractional derivatives in the sense of Caputo. In case of Riemann-Liouville
fractional derivatives we can pass to Caputo fractional derivatives through the formula (2.7)
provided that solutions are in C1([0, T]) (in theory, absolute continuity is enough).

Let XA = D(A) endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖. We need the
following assumptions on f and g:

(H2) f : R+ → X is continuously differentiable,

(H3) g : R+×R+×XA×X → X is continuous and continuously differentiable with respect
to its first variable,

(H4) g and g1 (the derivative of g with respect to its first variable) are Lipschitz
continuous with respect to the last two variables, that is

∥∥g(t, s, x1, y1
) − g

(
t, s, x2, y2

)∥∥ ≤ Ag

(‖x1 − x2‖A +
∥∥y1 − y2

∥∥),
∥∥g1(t, s, x1, y1

) − g1
(
t, s, x2, y2

)∥∥ ≤ Ag1

(‖x1 − x2‖A +
∥∥y1 − y2

∥∥), (3.1)

for some positive constants Ag and Ag1 .

Theorem 3.1. Assume that (H1)–(H4) hold. If u0 ∈ D(A) and u1 ∈ E then there exists T > 0 and
a unique function u : [0, T] → X, u ∈ C([0, T];XA) ∩ C2([0, T];X) which satisfies (1.3) with
Caputo fractional derivative CDβu.

Proof. We start by proving existence and uniqueness of mild solutions in the space of
continuously differentiable functions C1([0, T]). To this end we consider for t ∈ [0, T]

(Ku)(t) : = C(t)u0 + S(t)u1 +
∫ t

0
S(t − s)f(s)ds

+
∫ t

0
S(t − s)

∫ s

0
g
(
s, τ, u(τ),CDβu(τ)

)
dτ ds.

(3.2)

Notice that C(t)u0 ∈ D(A) because u0 ∈ D(A) and we have AC(t)u0 = C(t)Au0. Also from
the facts that u1 ∈ E and S(t)E ⊂ D(A) (see (ii) of Lemma 2.5) it is clear that S(t)u1 ∈ D(A).
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Moreover, it follows from Lemma 2.6, (H2) and (H3) that both integral terms in (3.2) are in
D(A). Therefore,Ku ∈ C([0, T];D(A)). In addition to that we have from Lemma 2.6,

(AKu)(t) = C(t)Au0 +AS(t)u1 +
∫ t

0
C(t − s)f ′(s)ds +C(t)f(0) − f(t)

+
∫ t

0
C(t − s)

[
g
(
s, s, u(s),CDβu(s)

)
+
∫ s

0
g1
(
s, τ, u(τ),CDβu(τ)

)
dτ

]
ds

−
∫ t

0
g
(
t, τ, u(τ),CDβu(τ)

)
dτ, t ∈ [0, T].

(3.3)

Next, a differentiation of (3.2) yields

(Ku)′(t) = S(t)Au0 + C(t)u1 +
∫ t

0
C(t − s)f(s)ds

+
∫ t

0
C(t − s)

∫ s

0
g
(
s, τ, u(τ),CDβu(τ)

)
dτ ds, t ∈ [0, T].

(3.4)

Therefore,Ku ∈ C1([0, T];X) (remember that u ∈ C1([0, T];X)) and K maps C1 into C1.
Now we want to prove thatK is a contraction on C1 endowed with the metric

ρ(u, v) := sup
0≤t≤T

(‖u(t) − v(t)‖ + ‖A(u(t) − v(t))‖ + ∥∥u′(t) − v′(t)
∥∥). (3.5)

For u, v in C1, we can write

‖(Ku)(t) − (Kv)(t)‖

≤
∫ t

0

(∫ t−s

0
Meωτdτ

)
Ag

∫ s

0

(
‖u(τ) − v(τ)‖A +

∥∥∥CDβu(τ)−CDβv(τ)
∥∥∥)dτ ds, (3.6)

and since

∥∥∥CDβu(τ)−CDβv(τ)
∥∥∥ ≤ 1

Γ
(
1 − β

)
∫ τ

0
(τ − σ)−β

∥∥u′(σ) − v′(σ)
∥∥dσ

≤ τ1−β

Γ
(
2 − β

) sup
0≤t≤T

∥∥u′(t) − v′(t)
∥∥,

(3.7)

it appears that

‖(Ku)(t) − (Kv)(t)‖ ≤ MAgT2

2
max

(
1,

T1−β

Γ
(
2 − β

)
)(∫T

0
eωτdτ

)
ρ(u, v). (3.8)
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Moreover,

‖(AKu)(t) − (AKv)(t)‖

≤
∫ t

0
Meω(t−s)Ag

(
‖u(s) − v(s)‖A +

∥∥∥CDβu(s)−CDβv(s)
∥∥∥)ds

+
∫ t

0
Meω(t−s)Ag1

∫ s

0

(
‖u(τ) − v(τ)‖A +

∥∥∥CDβu(τ)−CDβv(τ)
∥∥∥)dτ ds

+
∫ t

0
Ag

(
‖u(s) − v(s)‖A +

∥∥∥CDβu(s)−CDβv(s)
∥∥∥)ds

(3.9)

implies that

‖(AKu)(t) − (AKv)(t)‖

≤ max

(
1,

T1−β

Γ
(
2 − β

)
)[

AgT +M
(
Ag +Ag1T

)](∫T

0
eω(T−s)ds

)
ρ(u, v).

(3.10)

In addition to that, we see that

∥∥(Ku)′(t) − (Kv)′(t)
∥∥

≤
∫ t

0
Meω(t−s)Ag

∫ s

0

(
‖u(τ) − v(τ)‖A +

∥∥∥CDβu(τ)−CDβv(τ)
∥∥∥)dτ ds

≤ MAg

∫ t

0
eω(t−s)

∫ s

0

(
‖u(τ) − v(τ)‖A +

τ1−β

Γ
(
2 − β

) sup
0≤σ≤τ

∥∥u′(σ) − v′(σ)
∥∥
)
dτ ds

≤ max

(
1,

T1−β

Γ
(
2 − β

)
)
MAgT

(∫T

0
eω(T−s)ds

)
ρ(u, v).

(3.11)

These three relations (3.8), (3.10), and (3.11) show that, for T small enough, K is indeed a
contraction on C1, and hence there exists a unique mild solution u ∈ C1. Furthermore, it is
clear (from (3.4), Lemmas 1, and 2) that u ∈ C2([0, T];X) and satisfies the problem (1.3).

4. Existence of Mild Solutions in Case of R-L Derivative

In the previous section we proved existence and uniqueness of classical solutions provided
that (u0, u1) ∈ D(A) × E. From the proof of Theorem 3.1 it can be seen that existence and
uniqueness of mild solutions hold when (u0, u1) ∈ E × X. In case of Riemann-Liouville
fractional derivative one can still prove well-posedness in C1 by passing to the Caputo
fractional derivative with the help of (2.7) (with a problem of singularity at zero which may
be solved through a multiplication by an appropriate term of the form tγ). This also will
require (u0, u1) ∈ E × X. Moreover, from the integrofractional-differential equation (2.11) it
is clear that the mild solutions do not have to be continuously differentiable. In this section
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we will prove existence and uniqueness of mild solutions for the case of Riemann-Liouville
fractional derivative for a less regular space than E ×X. Namely, for 0 < β < 1, we consider

Eβ :=
{
x ∈ X : DβC(t)x is continuous on R+

}

FSβ :=
{
v ∈ C([0, T]) : Dβv ∈ C([0, T])

} (4.1)

equipped with the norm ‖v‖β := ‖v‖C + ‖Dβv‖C where ‖ · ‖C is the uniform norm in C([0, T]).
We will use the following assumptions:
(H5) f : R+ → X is continuous,
(H6) g : R+ ×R+ ×X ×X → X is continuous and Lipschitzian, that is

∥∥g(t, s, x1, y1
) − g

(
t, s, x2, y2

)∥∥ ≤ Ag

(‖x1 − x2‖ +
∥∥y1 − y2

∥∥), (4.2)

for some positive constant Ag .
The result below is mentioned in [15, Lemma 2.10] (see also [15]) for functions. Here

we state it and prove it for Bochner integral.

Lemma 4.1. If I1−αR(t)x ∈ C1([0, T]), T > 0, then one has

Dα

∫ t

0
R(t − s)x ds =

∫ t

0
DαR(t − s)x ds + lim

t→ 0+
I1−αR(t)x, x ∈ X, t ∈ [0, T]. (4.3)

Proof. By Definition 2.2 and Fubini’s theorem we have

Dα

∫ t

0
R(t − s)x ds =

1
Γ(1 − α)

d

dt

∫ t

0

dτ

(t − τ)α

∫ τ

0
R(τ − s)xds

=
1

Γ(1 − α)
d

dt

∫ t

0
ds

∫ t

s

R(τ − s)x
(t − τ)α

dτ

=
1

Γ(1 − α)

∫ t

0
ds

∂

∂t

∫ t

s

R(τ − s)x
(t − τ)α

dτ +
1

Γ(1 − α)
lim
s→ t−

∫ t

s

R(τ − s)x
(t − τ)α

dτ.

(4.4)

These steps are justified by the assumption I1−αR(t)x ∈ C1([0, T]). Moreover, a change of
variable σ = τ − s leads to

Dα

∫ t

0
R(t − s)x ds =

1
Γ(1 − α)

∫ t

0
ds

∂

∂t

∫ t−s

0

R(σ)x
(t − s − σ)α

dσ

+
1

Γ(1 − α)
lim
t→ 0+

∫ t

0

R(σ)x
(t − σ)α

dσ.

(4.5)

This is exactly the formula stated in the lemma.
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Corollary 4.2. For the sine family S(t) associated with the cosine family C(t) one has, for x ∈ X and
t ∈ [0, T]

Dα

∫ t

0
S(t − s)xds =

∫ t

0
DαS(t − s)x ds =

∫ t

0
I1−αC(t − s)x ds. (4.6)

Proof. First, from (2.7), we have

d

dt
I1−αS(t)x = DαS(t)x =

1
Γ(1 − α)

[
S(0)x
tα

+
∫ t

0
(t − s)−α

dS(s)
ds

x ds

]

=
1

Γ(1 − α)

∫ t

0
(t − s)−αC(s)xds = I1−αC(t)x.

(4.7)

Notice that this means that (d/dt)I1−αS(t)x = I1−αC(t)xwhich is in accordancewith a general
permutation property valid when the function is 0 at 0 (see [10, 15]). It also shows that in
this case the Riemann-Liouville derivative and the Caputo derivative are equal. Now from
the continuity of C(t) it is clear that I1−αC(t)x is continuous on [0, T] (actually, the operator
Iα has several smoothing properties, see [11]) and therefore I1−αS(t)x ∈ C1([0, T]). We can
therefore apply Lemma 4.1 to obtain

Dα

∫ t

0
S(t − s)xds =

∫ t

0
DαS(t − s)xds + lim

t→ 0+
I1−αS(t)x, x ∈ X, t ∈ [0, T]. (4.8)

Next, we claim that limt→ 0+I1−αS(t)x = 0. This follows easily from the definition of S(t) and
I1−α. Indeed, we have

∣∣∣I1−αS(t)x
∣∣∣ ≤ 1

Γ(1 − α)

∫ t

0
(t − s)−α|S(s)x|ds ≤ t1−α

Γ(2 − α)
sup
0≤t≤T

|S(t)x|. (4.9)

We are now ready to state and prove our main result of this section.

Theorem 4.3. Assume that (H1), (H5), and (H6) hold. If (u0, u1) ∈ Eβ ×X, then there exists T > 0
and a unique mild solution u ∈ FSβ of problem (1.3) with Riemann-Liouville fractional derivative.

Proof. For t ∈ [0, T], consider the operator

(Ku)(t) : = C(t)u0 + S(t)u1 +
∫ t

0
S(t − s)f(s)ds

+
∫ t

0
S(t − s)

∫ s

0
g
(
s, τ, u(τ), Dβu(τ)

)
dτ ds.

(4.10)
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It is clear that Ku ∈ C([0, T];X) when u ∈ FSβ. From Corollary 4.2, we see that

Dβ(Ku)(t) = DβC(t)u0 +DβS(t)u1 +
∫ t

0
I1−βC(t − s)f(s)ds

+
∫ t

0
I1−βC(t − s)

∫ s

0
g
(
s, τ, u(τ), Dβu(τ)

)
dτ ds.

(4.11)

ThereforeKu ∈ FSβ and maps FSβ to FSβ because u0 ∈ Eβ,

DβS(t)u1 =
d

dt
I1−βS(t)u1=CDβS(t)u1 = I1−βC(t)u1, (4.12)

and the integral terms are obviously continuous. For u, v ∈ FSβ, we find

‖(Ku)(t) − (Kv)(t)‖

≤
∫ t

0

(∫ t−s

0
Meωτdτ

)
Ag

∫ s

0

(
‖u(τ) − v(τ)‖ +

∥∥∥Dβu(τ) −Dβv(τ)
∥∥∥)dτ ds

≤ MAgT2

2

(∫T

0
eωτdτ

)(
sup
0≤t≤T

‖u(t) − v(t)‖ + sup
0≤t≤T

∥∥∥Dβu(t) −Dβv(t)
∥∥∥
)

≤ MAgT2

2

(∫T

0
eωτdτ

)
‖u(t) − v(t)‖β.

(4.13)

Further,

∥∥∥(DβKu
)
(t) −

(
DβKv

)
(t)

∥∥∥

≤
∫ t

0

∥∥∥∥I1−βC(t − s)
∫ s

0

[
g
(
s, τ, u(τ), Dβu(τ)

)
− g

(
s, τ, v(τ), Dβv(τ)

)]
dτ ds

∥∥∥∥

≤ MAg

∫ t

0

(t − s)1−βeω(t−s)

Γ
(
2 − β

) s ds sup
0≤t≤T

(
‖u(t) − v(t)‖ +

∥∥∥Dβu(t) −Dβv(t)
∥∥∥)

≤ MAgT2−β

Γ
(
2 − β

)
(∫T

0
eω(T−s)ds

)
‖u(t) − v(t)‖β.

(4.14)

Thus, for T sufficiently small, K is a contraction on the complete metric space FSβ and hence
there exists a unique mild solution to (1.3).
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