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Rough set theory is a powerful tool for dealing with uncertainty, granularity, and incompleteness
of knowledge in information systems. This paper discusses five types of existing neighborhood-
based generalized rough sets. The concepts of minimal neighborhood description and maximal
neighborhood description of an element are defined, and by means of the two concepts, the
properties and structures of the third and the fourth types of neighborhood-based rough sets are
deeply explored. Furthermore, we systematically study the covering reduction of the third and
the fourth types of neighborhood-based rough sets in terms of the two concepts. Finally, two open
problems proposed by Yun et al. (2011) are solved.

1. Introduction

Rough set theory was first proposed by Pawlak [1] for dealing with vagueness and
granularity in information systems. It has been successfully applied to process control,
economics, medical diagnosis, biochemistry, environmental science, biology, chemistry,
psychology, conflict analysis, and other fields [2–10]. The further investigation into rough
set theory and its extension will find new applications and new theories [11].

The classical rough set theory is based on equivalence relation. However, equivalence
relation imposes restrictions and limitations on many applications [12–15]. Zakowski then
established the covering-based rough set theory by exploiting coverings of a universe [16].
The covering generalized rough sets are an improvement of traditional rough set model to
deal with more complex practical problems which the traditional one cannot handle. For
coveringmodels, two important theoretical issuesmust be explored. The first one is to present
reasonable definitions of set approximations, and the second one is to develop reasonable
algorithms for attribute reduct. The concept of attribute reduct can be viewed as the strongest
and the most important result in rough set theory to distinguish itself from other theories.
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However, the current processes covering generalized rough sets mainly focus on constructing
approximation operations [16–24]. Little attention has been paid to attribute reduction of
covering generalized rough sets [14, 19, 25]. In this paper, five types of special covering
generalized rough sets, that is, neighborhood-based generalized rough sets [24, 26, 27] are
elaborated, and the covering reduction is also examined and discussed in detail.

Zhu and Wang investigated the covering reduction of the first type of generalized
rough sets [14]. Yang and Li constructed a unified reduction theory for the first, the second,
and the fifth types of generalized rough sets [25]. This paper establishes the reduction theory
for the third and the fourth types of neighborhood-based generalized rough sets in terms of
the new concepts defined by us. This newly proposed theory can reduce redundant elements
in a covering and then find the minimal coverings that induce the same neighborhood-based
lower and upper approximation.

The remainder of this paper is organized as follows. In Section 2, we review the
relevant concepts and properties of generalized rough sets. Section 3 defines the concepts
of minimal neighborhood description and maximal neighborhood description related to an
element, and the new characterizations of the third and the fourth types of neighborhood-
based rough sets are given by means of the two concepts. In Section 4, we study the reduction
issues of the third and the fourth types of neighborhood-based rough sets. In Section 5, two
open problems proposed by Yun et al. in [28] are solved. This paper concludes in Section 6.

2. Preliminaries

In this section, we will briefly review basic concepts and results of the generalized rough sets.
Let U be a nonempty set and X ⊆ U. In this paper, we denote by ∼ X the complement of X.

Definition 2.1 ([17] Covering). Let U be a universe of discourse and C a family of subsets of
U. If no subsets in C is empty, and ∪C = U, C is called a covering of U.

It is clear that a partition of U is a covering of U, so the concept of a covering is
an extension of the concept of a partition. In the following discussion, unless stated to the
contrary, the coverings are considered to be finite, that is, coverings consist of a finite number
of sets in them.

Definition 2.2 ([17]Covering approximation space). LetU be a nonempty set andC a covering
ofU. The pair (U,C) is called a covering approximation space.

Definition 2.3 ([17], Neighborhood). Let C be a covering of U and x ∈ U. NC(x) = ∩{K ∈ C |
x ∈ K} is called the neighborhood of x. Generally, we omit the subscript C when there is no
confusion.

By the above Definition, it is easy to see that for all u ∈ N(x),N(u) ⊆ N(x) and for all
x ∈ U, x ∈ N(x).

In this paper, we consider five pairs of dual approximation operators defined bymeans
of neighborhoods.

Definition 2.4 ([24]Neighborhood-based approximation operations). Let (U,C) be a covering
approximation space. The five types of neighborhood-based approximation operations are
defined as follows: for any X ⊆ U,
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(1) C1(X) = ∪{K ∈ C | K ⊆ X}, C1(X) =∼ C1(∼ X) =∼ (∪{K ∈ C | K ⊆∼ X}),
(2) C2(X) = {x ∈ U | N(x) ⊆ X}, C2(X) = {x ∈ U | N(x) ∩X /= ∅},
(3) C3(X) = {x ∈ U | ∃u (u ∈ N(x) ∧N(u) ⊆ X)},

C3(X) = {x ∈ U | for all u (u ∈ N(x) → N(u) ∩X /= ∅)},
(4) C4(X) = {x ∈ U |for all u (x ∈ N(u) → N(u) ⊆ X)}, C4(X) = ∪{N(x) | x ∈

U ∧N(x) ∩X /= ∅},
(5) C5(X) = {x ∈ U | for all u (x ∈ N(u) → u ∈ X)}, C5(X) = ∪{N(x) | x ∈ X}.
C1, C2, C3, C4, and C5 are called the first, the second, the third, the fourth, and the fifth

neighborhood-based lower approximation operations with respect to C, respectively. C1, C2,
C3, C4, and C5 are called the first, the second, the third, the fourth, and the fifth neighborhood-
based upper approximation operations with respect to C, respectively.

This paper is concerned with the list of five definitions of approximations
(Definition 2.4). In fact, the above definition can be extended. For definitions of dual
approximations and many other approximations look at [29].

Note 1. In [24], C1(X) is denoted by ∩{∼ K | K ∈ C, K ∩ X = ∅}, that is, C1(X) = ∩{∼ K |
K ∈ C, K ∩ X = ∅}. This is not accurate. For example, let U = {x1, x2, x3}, C1 = {x1, x2},
C2 = {x3}, and C = {C1, C2}. Clearly, C is a covering of U and N(x1) = {x1, x2} = N(x2) and
N(x3) = {x3}. Taking X = {x1, x3}, since C1 ∩X/= ∅ and C2 ∩X /= ∅, it follows that ∩{∼ K | K ∈
C, K ∩ X = ∅} = ∅. However, it is easy to see that ∼ C1(∼ X) = U. Hence, C1(X)/= ∼ C1(∼ X).

This contradicts the fact that C1 and C1 are dual with each other. In above definition, we

denote C1(X) by ∼ (∪{K ∈ C | K ⊆∼ X}).

3. Minimal Neighborhood Description and Maximal
Neighborhood Description

In this section, we define the concepts of minimal neighborhood description and maximal
neighborhood description of an element. And we show that the two notions play essential
roles in the studies of neighborhood-based rough sets.

Now we give the definitions of minimal neighborhood description and maximal
neighborhood description related to an element.

Definition 3.1 (Minimal neighborhood description). Let (U,C) be a covering approximation
space and x ∈ U. The family of sets

NmidC(x) =
{
N(u) | u ∈ N(x) ∧ (

for all y ∈ U ∧N
(
y
) ⊆ N(u) =⇒ N

(
y
)
= N(u)

)}

(3.1)

is called the minimal neighborhood description of the element x. When there is no confusion,
we omit the subscript C.

By above definition, it is easy to see that every element in Nmid(x) is a minimal
neighborhood contained inN(x).
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Definition 3.2 (Maximal neighborhood description). Let (U,C) be a covering approximation
space and x ∈ U. The family of sets

NmadC(x) =
{
N(u) | x ∈ N(u) ∧ (

for all y ∈ U ∧N(u) ⊆ N
(
y
)
=⇒ N(u) = N

(
y
))}

(3.2)

is called the maximal neighborhood description of the element x. When there is no confusion,
we omit the subscript C.

By above definition, it is easy to see that every element in Nmad(x) is a maximal
neighborhood containing x.

In order to describe an object, we need only the essential characteristics related to
this object, not all the characteristics for this object. That are the purposes of the minimal
neighborhood description and the maximal neighborhood description concepts.

For better understanding of Definitions 3.1 and 3.2, we illustrate them by the following
example.

Example 3.3. Let U = {x1, x2, x3, x4}, C1 = {x1}, C2 = {x2}, C3 = {x1, x2, x3}, C4 = {x1, x2, x4},
and C = {C1, C2, C3, C4}. Clearly, C is a covering of U. It is easy to check that N(x1) = {x1},
N(x2) = {x2}, N(x3) = {x1, x2, x3}, and N(x4) = {x1, x2, x4}. By Definitions 3.1 and 3.2, we
can get that Nmid(x1) = {N(x1)}, Nmid(x2) = {N(x2)}, Nmid(x3) = {N(x1),N(x2)} =
Nmid(x4) and Nmad(x1) = {N(x3),N(x4)} = Nmad(x2), Nmad(x3) = {N(x3)}, and
Nmad(x4) = {N(x4)}.

Remark 3.4. Based on the above analysis, we know that every element in NmidC(x) is a
neighborhood of covering approximation space (U,C). Hence, for convenience, in this paper,
we may use for all NC(u) ∈ NmidC(x) to express any element belonging to NmidC(x).
Similarly, we may use for all NC(u) ∈ NmadC(x) to express any element belonging to
NmadC(x).

3.1. The Third Type of Neighborhood-Based Rough Sets and the Minimal
Neighborhood Description

In the following, we will employ the concept of minimal neighborhood description to
characterize the third type of neighborhood-based rough sets. Firstly, we introduce a lemma.

Lemma 3.5. Let (U,C) be a covering approximation space and x ∈ U. Then for all u ∈ N(x), there
existsN(z) ∈ Nmid(x) such that N(z) ⊆ N(u).

Proof. Since C is a finite covering of U, it follows from Definition 2.3 that the set {N(u) | u ∈
U} has only finite elements. We will use this fact to prove the lemma.

Let u ∈ N(x). Then N(u) ⊆ N(x). Assume that for all N(z) ∈ Nmid(x), N(z)/⊆N(u).
Then N(u) /∈ Nmid(x), hence by Definition 3.1, ∃u1 ∈ U, N(u1) ⊂ N(u). By N(u1) ⊂
N(u) and the assumption, we have N(u1) /∈ Nmid(x). Clearly u1 ∈ N(x), so again by
Definition 3.1, ∃u2 ∈ U, N(u2) ⊂ N(u1). Hence N(u2) ⊆ N(u). By the assumption, N(u2) /∈
Nmid(x). Clearly, u2 ∈ N(x), so again by Definition 3.1, ∃u3 ∈ U, N(u3) ⊂ N(u2) · · · .
Continue in this way, we have an infinite sequence N(u),N(u1),N(u2), . . . ,N(um), . . . in
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(U,C) such that N(u) ⊃ N(u1) ⊃ N(u2) ⊃ · · · ⊃ N(um) ⊃ · · · . But it is impossible since
the set {N(u) | u ∈ U} has only finite elements. This completes the proof.

Remark 3.6. Since for all x ∈ U, x ∈ N(x), it follows from Lemma 3.5 that there exists N(z) ∈
Nmid(x) such that N(z) ⊆ N(x). This implies that for all x ∈ U,Nmid(x)/= ∅.

Theorem 3.7. Let (U,C) be a covering approximation space. Then for X ⊆ U, C3(X) = {x ∈ U |
∃N(u) ∈ Nmid(x),N(u) ⊆ X}, C3(X) = {x ∈ U | for all N(u) ∈ Nmid(x),N(u) ∩X /= ∅}.

Proof. Let X ⊆ U. We first show that C3(X) = {x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ⊆ X}.
For all x ∈ C3(X), by the part (3) of Definition 2.4, we have that ∃u ∈ N(x), N(u) ⊆ X. By
Lemma 3.5, there existsN(z) ∈ Nmid(x) such thatN(z) ⊆ N(u). This implies thatN(z) ⊆ X.
It follows that x ∈ {x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ⊆ X}. Thus C3(X) ⊆ {x ∈ U |
∃N(u) ∈ Nmid(x),N(u) ⊆ X}. On the other hand, by Definitions 3.1 and 2.4, it is obvious
that C3(X) ⊇ {x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ⊆ X}. Hence C3(X) = {x ∈ U | ∃N(u) ∈
Nmid(x),N(u) ⊆ X}.

We have proved that C3(X) = {x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ⊆ X}. By
Definition 2.4, we know that C3 and C3 are dual with each other. Thus C3(X) =∼ C3(∼ X) =∼
{x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ⊆∼ X} =∼ {x ∈ U | ∃N(u) ∈ Nmid(x),N(u) ∩ X =
∅} = {x ∈ U | for all N(u) ∈ Nmid(x),N(u) ∩ X /= ∅}, that is, C3(X) = {x ∈ U | for all
N(u) ∈ Nmid(x),N(u) ∩X/= ∅}.

The above theorem establishes the relationship between the third type of neighbor-
hood-based rough sets and the notion ofminimal neighborhood description. In order to study
further the third type of neighborhood-based rough sets, we will explore the properties of
minimal neighborhood description.

Proposition 3.8. Let (U,C) be a covering approximation space and x ∈ U. Then for all N(u) ∈
Nmid(x),N(u) ⊆ N(x).

Proof. For all N(u) ∈ Nmid(x), by Definition 3.1, it is clear that u ∈ N(x). Thus by
Definition 2.3, we conclude that N(u) ⊆ N(x).

Proposition 3.9. Let (U,C) be a covering approximation space, x ∈ U andN(u) ∈ Nmid(x). Then
for all z ∈ N(u),N(u) = N(z).

Proof. Let z ∈ N(u). Then by Definition 2.3, we have that N(z) ⊆ N(u). By N(u) ∈ Nmid(x)
and Definition 3.1, it is clear that N(u) = N(z).

The above proposition shows that every element inNmid(x) is a minimal one.

Proposition 3.10. Let (U,C) be a covering approximation space, x ∈ U and N(u) ∈ Nmid(x). If
u ∈ N(z) for z ∈ U, thenN(u) ∈ Nmid(z).

Proof. Let z ∈ U and u ∈ N(z). Suppose that N(u) /∈ Nmid(z). Then by Definition 3.1, we
have that there exists y ∈ U such thatN(y) ⊂ N(u). Thus y ∈ N(u). ByN(u) ∈ Nmid(x) and
Proposition 3.9, this implies that N(y) = N(u), which contradicts the fact that N(y) ⊂ N(u).
Hence N(u) ∈ Nmid(z).
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Proposition 3.11. Let (U,C) be a covering approximation space and x ∈ U. Then for all N(u) ∈
Nmid(x),Nmid(u) = {N(u)}.

Proof. Let N(u) ∈ Nmid(x). Clearly, u ∈ N(u), it follows from Proposition 3.10 that
N(u) ∈ Nmid(u) and so {N(u)} ⊆ Nmid(u). On the other hand, for all N(z) ∈ Nmid(u),
by Proposition 3.8, we conclude that N(z) ⊆ N(u) and so z ∈ N(u). It follows from
Proposition 3.9 that N(z) = N(u) and thus N(z) ∈ {N(u)}. Hence Nmid(u) ⊆ {N(u)}.
In summary, Nmid(u) = {N(u)}.

In the following, we will use the above properties to study the third type of
neighborhood-based generalized rough sets.

The following example shows that two distinct coverings can generate the same
neighborhood-based lower and upper approximation (the third type of neighborhood-based
rough sets).

Example 3.12 (Two different coverings generate the same the third type of neighbor-
hood-based rough sets). Let U = {x, y, z}, C1 = {x}, C2 = {x, y}, C3 = {x, z}, C4 = {x, y, z},
B = {C1, C4}, and C = {C1, C2, C3, C4}. Clearly, B and C are two different coverings of U.
Then by Definition 2.3, we can get that NB(x) = {x}, NB(y) = {x, y, z} = NB(z) and
NC(x) = {x}, NC(y) = {x, y}, NC(z) = {x, z}. By Definition 3.1, it is easy to check that
NmidB(x) = NmidB(y) = NmidB(z) = {NB(x)} = {{x}} and NmidC(x) = NmidC(y) =
NmidC(z) = {NC(x)} = {{x}}. Hence NmidB(x) = NmidC(x), NmidB(y) = NmidC(y),
and NmidB(z) = NmidC(z). Thus by Theorem 3.7, it is easy to see that for all X ⊆ U,
B3(X) = C3(X), and B3(X) = C3(X).

Nowwe present the conditions under which two coverings generate the same the third
type of neighborhood-based rough sets.

Theorem 3.13. Let B and C be two coverings of a nonempty set U. Then for all X ⊆ U, B3(X) =

C3(X) and B3(X) = C3(X) if and only if for all x ∈ U, NmidB(x) = NmidC(x).

In order to prove the theorem, we first introduce a lemma.

Lemma 3.14. Let (U,C) be a covering approximation space. Then for all y ∈ U,

C3
({

y
})

=
{
x ∈ U | Nmid(x) =

{
N
(
y
)}}

. (3.3)

Proof. By Theorem 3.7, we have that C3({y}) = {x ∈ U | for all N(u) ∈ Nmid(x),N(u) ∩
{y}/= ∅} = {x ∈ U | for all N(u) ∈ Nmid(x), y ∈ N(u)}. By Proposition 3.9, we conclude
that {x ∈ U | for all N(u) ∈ Nmid(x), y ∈ N(u)} = {x ∈ U | for all N(u) ∈ Nmid(x), and
N(y) = N(u)} = {x ∈ U | Nmid(x) = {N(y)}}. Thus C3({y}) = {x ∈ U | Nmid(x) =
{N(y)}}.

Now we prove our theorem.

Proof. The sufficiency follows directly from Theorem 3.7.
Conversely, let x ∈ U. For all NB(u) ∈ NmidB(x).

(i) We first show that NC(u) ∈ NmidC(u). By Proposition 3.11, we have that
NmidB(u) = {NB(u)}. Thus by Lemma 3.14, u ∈ B3({u}). Applying the condition
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for all X ⊆ U, B3(X) = C3(X), we can have that B3({u}) = C3({u}). Thus
u ∈ C3({u}). It follows from Lemma 3.14 that NmidC(u) = {NC(u)}. Therefore,
NC(u) ∈ NmidC(u).

(ii) We will show that NB(u) = NC(u). For all v ∈ NB(u), by Proposition 3.9, we
have that NB(v) = NB(u). By Lemma 3.14, this implies that B3({v}) = B3({u}).
In addition, applying the condition for all X ⊆ U, B3(X) = C3(X), we can get that
B3({u}) = C3({u}) and B3({v}) = C3({v}). It follows that C3({v}) = C3({u}). By
(i) and Proposition 3.11, NmidC(u) = {NC(u)}. Thus by Lemma 3.14, we have
that u ∈ C3({u}) and so u ∈ C3({v}). According to Lemma 3.14, this implies that
NmidC(u) = {NC(v)}. It follows from Proposition 3.8 that NC(v) ⊆ NC(u) and
thus v ∈ NC(u). Therefore, NB(u) ⊆ NC(u). On the other hand, the proof of
NB(u) ⊇ NC(u) is similar to that of NB(u) ⊆ NC(u). Therefore NB(u) = NC(u).

(iii) Wewill show thatNC(u) ∈ NmidC(x). By the condition, we have that B3(NB(u)) =
C3(NB(u)). By (ii), we have that NC(u) = NB(u). Thus B3(NB(u)) = C3(NC(u)). By
Theorem 3.7, it is clear that x ∈ B3(NB(u)). Thus x ∈ C3(NC(u)). By Theorem 3.7,
this implies that ∃NC(z) ∈ NmidC(x) such that NC(z) ⊆ NC(u) and so z ∈ NC(u).
By (i) and Proposition 3.9, we can conclude that NC(z) = NC(u). This implies that
NC(u) ∈ NmidC(x).

By (ii) and (iii), we have thatNB(u) ∈ NmidC(x). ThusNmidB(x) ⊆ NmidC(x). In the
same way, we can prove thatNmidB(x) ⊇ NmidC(x). It follows thatNmidB(x) = NmidC(x).
This completes the proof of the necessity.

For the covering C of U, since the lower approximation C3 and the upper

approximation C3 are dual, they determine each other. That is to say, for two coverings B
and C, B3 = C3 if and only if B3 = C3. From the above analysis and Theorem 3.13, we can
obtain the following two corollaries.

Corollary 3.15. Let B and C be two coverings of a nonempty set U. Then for all X ⊆ U, B3(X) =
C3(X) if and only if for all y ∈ U, NmidB(y) = NmidC(y).

Corollary 3.16. Let B and C be two coverings of a nonempty set U. Then for all X ⊆ U, B3(X) =
C3(X) if and only if for all y ∈ U, NmidB(y) = NmidC(y).

Theorem 3.13 is an important result for studying the covering reduction of the third
type of neighborhood-based rough sets. In Section 4.1, we will present the concept of reduct
based on this theorem for the third type of rough set model.

3.2. The Fourth Type of Neighborhood-Based Rough Sets and the Maximal
Neighborhood Description

In this subsection, we will study the relationship between the fourth type of neighborhood-
based rough sets and the notion of maximal neighborhood description. For this purpose, we
first explore the properties of maximal neighborhood description.

Proposition 3.17. Let (U,C) be a covering approximation space and x ∈ U. Then for all N(u) ∈
Nmad(x),N(x) ⊆ N(u).
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Proof. LetN(u) ∈ Nmad(x). By Definition 3.2, we have that x ∈ N(u). Thus byDefinition 2.3,
N(x) ⊆ N(u).

Proposition 3.18. Let (U,C) be a covering approximation space and x, y ∈ U. If x ∈ N(y), then
there existsN(u) ∈ Nmad(x) such that N(y) ⊆ N(u).

Proof. Since C is a finite covering of U, it follows from Definition 2.3 that the set {N(u) | u ∈
U} has only finite elements. We will use this fact to prove the proposition.

Let x ∈ N(y). Assume that for all N(u) ∈ Nmad(x), N(y)/⊆N(u). Then N(y) /∈
Nmad(x), hence by Definition 3.2, ∃u1 ∈ U,N(y) ⊂ N(u1). By the assumption, we have that
N(u1) /∈ Nmad(x). Clearly, x ∈ N(u1), so again by Definition 3.2, ∃u2 ∈ U, N(u1) ⊂ N(u2).
Thus N(y) ⊆ N(u2). By the assumption, N(u2) /∈ Nmad(x). Clearly, x ∈ N(u2), so again
by Definition 3.2, ∃u3 ∈ U, N(u2) ⊂ N(u3) · · · . Continue in this way, we have an infinite
sequence N(y),N(u1),N(u2), . . . ,N(um), . . . in (U,C) such that N(y) ⊂ N(u1) ⊂ N(u2) ⊂
· · · ⊂ N(um) ⊂ · · · . But it is impossible since the set {N(u) | u ∈ U} has only finite elements.
This completes the proof.

By the above proposition, we can easily conclude the following result.

Corollary 3.19. Let (U,C) be a covering approximation space and x, y ∈ U. If x ∈ N(y), then
N(y) ⊆ ∪Nmad(x).

Remark 3.20. Since for all x ∈ U, x ∈ N(x), it follows from Proposition 3.18 that there exists
N(u) ∈ Nmad(x) such that N(x) ⊆ N(u). This implies that for all x ∈ U,Nmad(x)/= ∅.

Proposition 3.21. Let (U,C) be a covering approximation space, x ∈ U, and N(u) ∈ Nmad(x). If
y ∈ N(u) thenN(u) ∈ Nmad(y).

Proof. Suppose that N(u) /∈ Nmad(y). Then by y ∈ N(u) and Definition 3.2, there exists
y0 ∈ U such that N(u) ⊂ N(y0), which contradicts with N(u) ∈ Nmad(x). Thus N(u) ∈
Nmad(y).

Now we use the concept of maximal neighborhood description to characterize the
fourth type of neighborhood-based rough sets.

Theorem 3.22. Let (U,C) be a covering approximation space. Then for X ⊆ U,

C4(X) = {x ∈ U | ∪Nmad(x) ⊆ X}, C4(X) = ∪{∪Nmad(x) | x ∈ X}. (3.4)

Proof. Let X ⊆ U. We first show that C4(X) = {x ∈ U | ∪Nmad(x) ⊆ X}. For all x ∈ C4(X), we
will prove that x ∈ {x ∈ U | ∪Nmad(x) ⊆ X}. For all N(u) ∈ Nmad(x), by Definition 3.2,
x ∈ N(u). Since x ∈ C4(X), it follows from the part (4) of Definition 2.4 that N(u) ⊆ X. Thus
∪Nmad(x) ⊆ X. This implies that x ∈ {x ∈ U | ∪Nmad(x) ⊆ X}. Thus C4(X) ⊆ {x ∈ U |
∪Nmad(x) ⊆ X}. On the other hand, for all x ∈ {x ∈ U | ∪Nmad(x) ⊆ X}, we can get that
∪Nmad(x) ⊆ X. Further, for all u ∈ U and x ∈ N(u), by Corollary 3.19, we have thatN(u) ⊆
∪Nmad(x). Thus N(u) ⊆ X. It follows from the part (4) of Definition 2.4 that x ∈ C4(X) and
so {x ∈ U | ∪Nmad(x) ⊆ X} ⊆ C4(X). In summary, C4(X) = {x ∈ U | ∪Nmad(x) ⊆ X}.

Now we show that C4(X) = ∪{∪Nmad(x) | x ∈ X}. For all y ∈ C4(X), by
Definition 2.4, there exists z ∈ U such that N(z) ∩X/= ∅ and y ∈ N(z). Taking x ∈ N(z) ∩X,
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by Corollary 3.19, we have that N(z) ⊆ ∪Nmad(x) and x ∈ X. Thus N(z) ⊆ ∪{∪Nmad(x) |
x ∈ X} and so y ∈ ∪{∪Nmad(x) | x ∈ X}. Therefore, C4(X) ⊆ ∪{∪Nmad(x) | x ∈ X}. On the
other hand, for all y ∈ ∪{∪Nmad(x) | x ∈ X}, there exists x ∈ X such that y ∈ ∪Nmad(x).
Thus ∃N(u) ∈ Nmad(x), s.t. y ∈ N(u). By Definition 3.2, x ∈ N(u). Hence there exists N(u)
such that x ∈ N(u) ∩ X /= ∅ and y ∈ N(u). It follows from Definition 2.4 that y ∈ C4(X) and
so ∪{∪Nmad(x) | x ∈ X} ⊆ C4(X). In summary, C4(X) = ∪{∪Nmad(x) | x ∈ X}.

This completes the proof of theorem.

The following example shows that two different coverings can induce the same the
fourth type of neighborhood-based lower and upper approximation operations.

Example 3.23 (Two different coverings generate the same the fourth type of neighbor-
hood-based rough sets). Let U = {x1, x2, x3, x4}, C1 = {x1}, C2 = {x1, x2}, C3 = {x3, x4},
B = {C1, C2, C3}, and C = {C2, C3}. Clearly, B and C are two different coverings of U. By
Definition 2.3, it clear that NB(x1) = {x1}, NB(x2) = {x1, x2}, NB(x3) = {x3, x4} = NB(x4),
and NC(x1) = {x1, x2} = NC(x2), NC(x3) = {x3, x4} = NC(x4). It is easy to check that
NmadB(x1) = NmadB(x2) = {NB(x2)} = {x1, x2}, NmadB(x3) = NmadB(x4) = {NB(x3)} =
{x3, x4} and NmadC(x1) = NmadC(x2) = {NC(x2)} = {x1, x2}, NmadC(x3) = NmadC(x3) =
{NC(x4)} = {x3, x4}. Thus for all x ∈ U, NmadB(x) = NmadC(x) and so for all x ∈ U,
∪NmadB(x) = ∪NmadC(x). It follows by Theorem 3.22 that B4 = C4 and B4 = C4.

In the following, we study the conditions for two coverings generating the same fourth
type of neighborhood-based lower and upper approximation operations. Firstly, we present
two lemmas.

Lemma 3.24. Let C be a covering of a nonempty set U and x, y ∈ U. If N(u) ∈ Nmad(x) and
y /∈ N(u), then u /∈ ∪Nmad(y).

Proof. Suppose that u ∈ ∪Nmad(y). Then ∃N(v) ∈ Nmad(y), s.t. u ∈ N(v). Thus by
Definition 2.3, N(u) ⊆ N(v). Since N(u) ∈ Nmad(x), it follows from Definition 3.2 that
N(u) = N(v). By N(v) ∈ Nmad(y) and Definition 3.2, it is clear that y ∈ N(v). Thus
y ∈ N(u), which contradicts the condition y /∈ N(u). Therefore, u /∈ ∪Nmad(y).

Lemma 3.25. Let B and C be two coverings of a nonempty set U. And B and C satisfy the condition
that for all x ∈ U, ∪NmadB(x) = ∪NmadC(x). If for x ∈ U, NC(u) ∈ NmadC(x), NB(v) ∈
NmadB(x), and NC(u) ⊆ NB(v), thenNC(u) = NB(v).

Proof. Suppose that NC(u) ⊂ NB(v). Then, u ∈ NB(v). Taking w ∈ NB(v) − NC(u),
that is, w ∈ NB(v), w /∈ NC(u). Thus by NB(v) ∈ NmadB(x) and Proposition 3.21,
we have that NB(v) ∈ NmadB(w) and so u ∈ ∪NmadB(w). On the other hand, since
w /∈ NC(u) andNC(u) ∈ NmadC(x), it follows from Lemma 3.24 that u /∈ ∪NmadC(w). Thus
∪NmadC(w)/= ∪ NmadB(w), which contradicts the condition for all x ∈ U, ∪NmadB(x) =
∪NmadC(x). Therefore, NC(u) = NB(v).

Now we present the conditions under which the two different coverings generate the
same fourth type of neighborhood-based upper approximation operation.

Theorem 3.26. Let B and C be two coverings of a nonempty setU. Then the following assertions are
equivalent:

(1) for all X ⊆ U, B4(X) = C4(X),
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(2) for all x ∈ U, ∪NmadB(x) = ∪NmadC(x),

(3) for all x ∈ U,NmadB(x) = NmadC(x),

(4) ∪{NmadB(x) | x ∈ U} = ∪{NmadC(x) | x ∈ U}.

Proof. (1)⇒(2) for all x ∈ U, by Theorem 3.22, we have that B4({x}) = ∪NmadB(x) and
C4({x}) = ∪NmadC(x). Since for all X ⊆ U, B4(X) = C4(X), it follows that B4({x}) = C4({x}).
Thus ∪NmadB(x) = ∪NmadC(x).

(2)⇒(1) It follows directly from Theorem 3.22.
(2)⇒(3) Let x ∈ U. By assertion (2), ∪NmadB(x) = ∪NmadC(x). Thus, for all

NB(u) ∈ NmadB(x), there exists NC(v) ∈ NmadC(x) such that u ∈ NC(v). Suppose that
NB(u)/=NC(v). Then by Lemma 3.25, we have that NC(v)/⊆NB(u). Thus there exists w ∈
NC(v) such that w /∈ NB(u). By Proposition 3.21, w ∈ NC(v) implies NC(v) ∈ NmadC(w)
and so u ∈ ∪NmadC(w). In addition, by w /∈ NB(u) and Lemma 3.24, we have that u /∈
∪NmadB(w). Thus ∪NmadC(w)/= ∪NmadB(w), which is a contradiction with the assertion
(2). Therefore, NB(u) = NC(v) and so NB(u) ∈ NmadC(x). Thus NmadB(x) ⊆ NmadC(x).
In the same way, we can prove thatNmadB(x) ⊇ NmadC(x). ThusNmadB(x) = NmadC(x).

(3)⇒(2) It is obvious.
(3)⇒(4) It is obvious.
(4)⇒(3) Let x ∈ U. For all NB(u) ∈ NmadB(x), clearly, NB(u) ∈ ∪{NmadB(x) |

x ∈ U}. Since ∪{NmadB(x) | x ∈ U} = ∪{NmadC(x) | x ∈ U}, there exists NC(v) ∈
∪{NmadC(x) | x ∈ U} such that NB(u) = NC(v). By NB(u) ∈ NmadB(x) and Definition 3.2,
we have that x ∈ NB(u). Thus x ∈ NC(v). Since NC(v) ∈ ∪{NmadC(x) | x ∈ U}, it follows
that there exists z ∈ U such that NC(v) ∈ NmadC(z). Thus again by Proposition 3.21,
we can have that NC(v) ∈ NmadC(x). It follows from NB(u) = NC(v) that NB(u) ∈
NmadC(x). HenceNmadB(x) ⊆ NmadC(x). In the sameway, we can prove thatNmadB(x) ⊇
NmadC(x). Thus NmadB(x) = NmadC(x).

For the covering C of U, since the lower approximation C4 and the upper approxima-

tion C4 are dual, they determine each other. That is, for two coverings B and C, B4 = C4 if

and only if B4 = C4. From the above analysis and Theorem 3.26, we can obtain the following
results.

Corollary 3.27. Let B and C be two coverings of a nonempty setU. Then the following assertions are
equivalent:

(1) for all X ⊆ U, B4(X) = C4(X),

(2) for all x ∈ U, ∪NmadB(x) = ∪NmadC(x),

(3) for all x ∈ U,NmadB(x) = NmadC(x),

(4) ∪{NmadB(x) | x ∈ U} = ∪{NmadC(x) | x ∈ U}.

Now we present the conditions under which the two different coverings generate the
same the fourth type of neighborhood-based rough sets.

Theorem 3.28. Let B and C be two coverings of a nonempty setU. Then the following assertions are
equivalent:

(1) for all X ⊆ U, B4(X) = C4(X) and B4(X) = C4(X),
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(2) for all x ∈ U, ∪NmadB(x) = ∪NmadC(x),

(3) for all y ∈ U, NmadB(x) = NmadC(x),

(4) ∪{NmadB(x) | x ∈ U} = ∪{NmadC(x) | x ∈ U}.

Proof. It follows directly from Theorem 3.26 and Corollary 3.27.

The above theorem is an important result for studying the covering reduction of the
fourth type of neighborhood-based rough sets. In Section 4.2, we will present the concept of
reduct based on this theorem for the fourth type of rough set model.

4. Reduction of the Third and the Fourth Types of Neighborhood-Based
Rough Sets

Examples 3.12 and 3.23 show that for a covering, it could still be a covering by dropping
some of its members. Furthermore, the resulting new covering might still produce the
same neighborhood-based lower and upper approximations. Hence, a covering may have
“redundant” members, and a procedure is needed to find its “smallest” covering that induces
the same neighborhood-based lower and upper approximations. This technique can be used
to reduce the redundant information in data mining.

In this section, we will investigate the reduction issues about the third and the fourth
types of neighborhood-based generalized rough sets. Since for a covering it could not be a
covering by dropping some of its members, we need to extend the concepts of neighborhood,
minimal neighborhood description, and maximal neighborhood description to a general
family of subsets of a universe case so as to reasonably explore the covering reduction of
neighborhood-based rough sets.

Let U be a nonempty set called the universe of discourse. The class of all subsets
of U will be denoted by P(U). Naturally, we present the definitions of generalization of
neighborhood, minimal neighborhood description, and maximal neighborhood description.

Definition 4.1 (Neighborhood). Let U be a universe, C ⊆ P(U) and x ∈ U. NC(x) = ∩{K ∈ C |
x ∈ K} is called the neighborhood of x. Generally, we omit the subscript C when there is no
confusion.

Definition 4.2 (Minimal neighborhood description). LetU be a universe, C ⊆ P(U) and x ∈ U.
The family of sets NmidC(x) = {N(u) | u ∈ N(x) ∧ (for all y ∈ U ∧N(y) ⊆ N(u) ⇒ N(y) =
N(u))} is called the minimal neighborhood description of the element x. When there is no
confusion, we omit the subscript C.

Definition 4.3 (Maximal neighborhood description). LetU be a universe,C ⊆ P(U) and x ∈ U.
The family of sets NmadC(x) = {N(u) | x ∈ N(u) ∧ (for all y ∈ U ∧N(u) ⊆ N(y) ⇒ N(u) =
N(y))} is called the maximal neighborhood description of the element x. When there is no
confusion, we omit the subscript C.

It is easy to see that when C is a covering of U, Definitions 4.1, 4.2, and 4.3 are
coincident with Definitions 2.3, 3.1, and 3.2, respectively.
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4.1. Reduction of the Third Type of Neighborhood-Based Rough Sets

Throughout this subsection, we always assume that the rough set model which is discussed
by us is the third type of neighborhood-based generalized rough sets. So the definitions of
a reducible element, an irreducible covering, and a reduct are all based on the third type of
neighborhood-based rough sets.

A reduct should be able to preserve the original classification power provided by the
initial covering. In order to present a reasonablenotion of reduct, we first give the definition
of a reducible element of a covering.

Definition 4.4 (A reducible element about the third type of lower and upper approximation
operations). Let C be a covering of a universe U and K ∈ C. If for all x ∈ U, NmidC(x) =
NmidC−{K}(x), we say that K is a reducible element of C. Otherwise, K is an irreducible
element of C.

Definition 4.5 (Irreducible covering about the third type of lower and upper approximation
operations). Let C be a covering of a universe U. If every element of C is an irreducible
element, we say that C is irreducible. Otherwise, C is reducible.

Definition 4.6 (Reduct about the third type of lower and upper approximation operations).
LetC be a covering of a universeU andB ⊆ C. IfB is an irreducible covering and for all x ∈ U,
NmidB(x) = NmidC(x),we say that B is a reduct of C. Let red3(C) = {B | B is a reduct of C}.

In the following, we will illustrate that, for a covering, the reduct always exists and is
not unique. Further, we will show that every reduct and the initial covering induce the same
lower and upper approximation operations.

Firstly, we give an important proposition.

Proposition 4.7. Let C be a covering of a universeU and B ⊆ C. If B and C satisfy the condition that
for all x ∈ U,NmidB(x) = NmidC(x), then B is a covering of U.

Proof. Suppose that B is not a covering of U. Then ∪B ⊂ U. Taking x0 ∈ U − ∪B, by
Definition 4.1, we have that NB(x0) = ∅. Thus by Definition 4.2, NmidB(x0) = ∅. On the
other hand, since C is a covering of U, it follows from Remark 3.6 that NmidC(x0)/= ∅. Thus
NmidB(x0)/=NmidC(x0), which contradicts with the conditions for all x ∈ U, NmidB(x) =
NmidC(x). This completes the proof.

Corollary 4.8. Let C be a covering of a universe U and K ∈ C. If K is a reducible element of C, then
C − {K} is still a covering of U.

Proof. It comes directly from Definition 4.4 and Proposition 4.7.

The following theorem shows that for a covering, there is at least one reduct.

Theorem 4.9. Let C be a covering of a universeU. Then there exists B ⊆ C such that B is a reduct of
C.

Proof. Suppose that for all B ⊆ C, B is not a reduct of C. Then C is not a reduct of C. Thus by
Definition 4.6, C is a reducible covering. This implies that there existsK1 ∈ C such thatK1 is a
reducible element of C. We write B1 = C − {K1}. By Definition 4.4, we have that for all x ∈ U,
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NmidB1(x) = NmidC(x). Further, by Corollary 4.8, B1 is a covering of U, and clearly, B1 ⊂ C.
Thus by the assumption, B1 is not a reduct of C. Since for all x ∈ U,NmidB1(x) = NmidC(x),
it follows from Definition 4.6 that B1 is a reducible covering and so there exists K2 ∈ B1 such
that K2 is a reducible element of B1. We write B2 = B1 − {K2}. By Definition 4.4, we have
that for all x ∈ U, NmidB2(x) = NmidB1(x). By for all x ∈ U, NmidB1(x) = NmidC(x),
this implies that for all x ∈ U, NmidB2(x) = NmidC(x). Further, by Corollary 4.8, B2 is a
covering of U, and clearly, B2 ⊂ B1 ⊂ C, that is, B2 ⊂ C. Thus by the assumption, B2 is not a
reduct of C · · · . Continue in this way, we have an infinite sequence C,B1,B2, . . . ,Bm, . . . such
that C ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm ⊃ · · · . But it is impossible since the covering C has only finite
elements. This completes the proof.

Actually, the proving process of the above theorem provides a procedure to compute
the reduct of a covering of a universe.

The following result shows that the definition of reduct is reasonable.

Theorem 4.10. Let C be a covering of a universe U. Then for all B ∈ red3(C), B and C generate the
same the third neighborhood-based lower and upper approximations.

Proof. It follows directly from Definition 4.6, Proposition 4.7, and Theorem 3.13.

Lemma 4.11. Let C be a covering of a universe U and B ⊆ C. B and C satisfy the condition that
for all x ∈ U, NmidB(x) = NmidC(x). Then for all x ∈ U, for all NC(u) ∈ NmidC(x), we have
that NC(u) = NB(u) and NB(u) ∈ NmidB(x).

Proof. Let x ∈ U. Then by the condition, NmidB(x) = NmidC(x). Thus for all NC(u) ∈
NmidC(x), there exists NB(v) ∈ NmidB(x) such that NC(u) = NB(v). Hence u ∈ NB(v)
and by Proposition 4.7, B is a covering of U. Thus, applying Proposition 3.9, we have that
NB(v) = NB(u). It follows that NC(u) = NB(u) and NB(u) ∈ NmidB(x).

Proposition 4.12. Let C be a covering of a universe U and B ⊂ C. B and C satisfy the condition that
for all x ∈ U,NmidB(x) = NmidC(x). Then for all K ∈ C − B, K is a reducible element of C.

Proof. Let K ∈ C − B and x ∈ U. Then B ⊆ C − {K} ⊆ C.
(i) We will show that C − {K} and B are two coverings of U. By the condition and

Proposition 4.7, B is a covering of U. Clearly, B ⊆ C − {K}, thus C − {K} is also a
covering of U.

By (i) and the condition, we know that C, C − {K}, and B are all coverings of U.
Hence, in the following process of proof, we can use directly the concepts and
conclusions obtained in Section 3.

(ii) We will prove that for all z ∈ U, for all NC(u) ∈ NmidC(z), NC(u) = NC−{K}(u).
For allNC(u) ∈ NmidC(z), by the condition and Lemma 4.11, we have thatNC(u) =
NB(u). Since B ⊆ C−{K} ⊆ C, it follows by Definition 2.3 thatNC(u) ⊆ NC−{K}(u) ⊆
NB(u) = NC(u). ThusNC(u) = NC−{K}(u).

(iii) We will show that NmidC(x) ⊆ NmidC−{K}(x). For all NC(u) ∈ NmidC(x), then
by Definition 3.1, u ∈ NC(x). By NC(x) ⊆ NC−{K}(x), we have that u ∈ NC−{K}(x).
Thus suppose that NC−{K}(u) /∈ NmidC−{K}(x). Then by Definition 3.1, there exists
z ∈ U such that NC−{K}(z) ⊂ NC−{K}(u). By (ii), we have that NC(u) = NC−{K}(u),
thus, NC−{K}(z) ⊂ NC(u). Clearly, NC(z) ⊆ NC−{K}(z), thus NC(z) ⊂ NC(u), which
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contradicts the fact that NC(u) ∈ NmidC(x). Thus NC−{K}(u) ∈ NmidC−{K}(x). It
follows by (ii) that NC(u) ∈ NmidC−{K}(x). ThusNmidC(x) ⊆ NmidC−{K}(x).

(iv) We will show that NmidC−{K}(x) ⊆ NmidC(x). For all NC−{K}(u) ∈ NmidC−{K}(x).
Since C − {K} ⊆ C, it is clear that NC(u) ⊆ NC−{K}(u). By u ∈ NC(u) and
Lemma 3.5, there exists NC(z) ∈ NmidC(u) such that NC(z) ⊆ NC(u). This
implies that NC(z) ⊆ NC−{K}(u) and so z ∈ NC−{K}(u). Thus by Proposition 3.9,
NC−{K}(z) = NC−{K}(u). Further, by NC(z) ∈ NmidC(u) and (ii), we have that
NC(z) = NC−{K}(z). ThusNC(z) = NC−{K}(u). In addition, by Lemma 4.11,NC(z) =
NB(z) and NB(z) ∈ NmidB(u). Thus NB(z) = NC−{K}(u) and so u ∈ NB(z).
It follows by Proposition 3.9 that NB(z) = NB(u) and so NC−{K}(u) = NB(u)
and NB(u) ∈ NmidB(u). By Definition 3.1, it is clear that u ∈ NC−{K}(x). Since
B ⊆ C − {K}, it follows that NC−{K}(x) ⊆ NB(x). Thus u ∈ NB(x). It follows by
Proposition 3.10 that NB(u) ∈ NmidB(x) and so NC−{K}(u) ∈ NmidB(x). Thus, by
the condition NmidB(x) = NmidC(x), we conclude that NC−{K}(u) ∈ NmidC(x). It
follows that NmidC−{K}(x) ⊆ NmidC(x).

By (iii) and (iv), we have that NmidC−{K}(x) = NmidC(x). We have proved that
for all x ∈ U,NmidC−{K}(x) = NmidC(x). Thus by Definition 4.4,K is a reducible element of
C.

Corollary 4.13. Let C be a covering of a universe U, K ∈ C a reducible element of C and K1 ∈
C − {K}. If K1 is an irreducible element of C, then K1 is an irreducible element of C − {K}.

Proof. Suppose that K1 is a reducible element of C − {K}. Then by Definition 4.4, for all x ∈
U, NmidC−{K}(x) = NmidC−{K,K1}(x). In addition, since K is a reducible element of C, it
follows fromDefinition 4.4 that for all x ∈ U,NmidC(x) = NmidC−{K}(x). Thus for all x ∈ U,
NmidC(x) = NmidC−{K,K1}(x). Clearly, K1 ∈ C − (C − {K,K1}), thus by Proposition 4.12, K1

is a reducible element of C, which contradicts the condition that K1 is an irreducible element
of C. This completes the proof.

The above proposition guarantees that omitting a reducible element in a covering
will not make any current irreducible element reducible. Therefore, the set of all irreducible
elements of C is constant. We denote this set by cor3(C), that is,

cor3(C) = {K | K is an irreducible element of C}. (4.1)

The following result establishes the relationship between cor3(C) and red3(C).

Theorem 4.14. Let C be a covering of a universeU. Then cor3(C) = ∩red3(C).

Proof. Let K ∈ cor3(C). Suppose that K /∈ ∩red3(C). Then there exists B ∈ red3(C) such that
K /∈ B. Hence K ∈ C − B. By Definition 4.6 and Proposition 4.12, this implies that K is a
reducible element of C, which contradicts the fact that K ∈ cor3(C). Hence K ∈ ∩red3(C)
and so cor3(C) ⊆ ∩red3(C). On the other hand, let K ∈ ∩red3(C). Suppose that K /∈ cor3(C).
ThenK is a reducible element of C. By Definition 4.4, we have that for all x ∈ U,NmidC(x) =
NmidC−{K}(x) and by Corollary 4.8, C − {K} is a covering of U. Thus by Theorem 4.9, there
exists B ⊆ C − {K} such that B is a reduct of C − {K}. By Definition 4.6, this implies that B
is an irreducible covering and for all x ∈ U, NmidB(x) = NmidC−{K}(x). Thus for all x ∈ U,
NmidB(x) = NmidC(x) and B is an irreducible covering. It follows from Definition 4.6 that B
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is a reduct of C. Since B ⊆ C − {K}, it follows that K /∈ B, which contradicts the fact that K ∈
∩red3(C). ThusK ∈ cor3(C), and so ∩red3(C) ⊆ cor3(C). In summary, cor3(C) = ∩red3(C).

The above result states that an element will not be reduced in any reduction procedure
if and only if it is irreducible. Hence the irreducible elements will be reserved in any reduction
procedure, that is to say, cor3(C) is contained in any reduct of C. So we can compute the reduct
of C based on cor3(C).

Example 4.15. Let U = {x1, x2, x3, x4}, C1 = {x1}, C2 = {x1, x2, x3}, C3 = {x1, x2, x4}, C4 =
{x1, x2, x3, x4}, and C = {C1, C2, C3, C4}. Clearly, C is a covering of U.

By Definition 4.2, it easy to check that

NmidC(x1) = NmidC(x2) = NmidC(x3) = NmidC(x4) = {{x}}. (4.2)

By Definition 4.2, we can get that

NmidC−{C1}(x1) = NmidC−{C1}(x2) = NmidC−{C1}(x3) = NmidC−{C1}(x4) = {{x1, x2}}.
(4.3)

Hence C and C− {C1} do not satisfy the condition for all x ∈ U,NmidC(x) = NmidC−{C1}(x).
It follows from Definition 4.4 that C1 is an irreducible element of C.

By Definition 4.2, we can get that

NmidC−{C2}(x1) = NmidC−{C2}(x2) = NmidC−{C2}(x3) = NmidC−{C2}(x4) = {{x1}}. (4.4)

Hence

NmidC(x1) = NmidC−{C2}(x1), NmidC(x2) = NmidC−{C2}(x2),

NmidC(x3) = NmidC−{C2}(x3), NmidC(x4) = NmidC−{C2}(x4).
(4.5)

It follows from Definition 4.4 that C2 is a reducible element of C. In the same way, we can
check that C3 and C4 are all reducible elements of C.

Hence cor3(C) = {C1}.
Since {C1, C2} and {C1, C3} are not coverings of U, it follows from Corollaries 4.8 and

4.13 that every element of {C1, C2, C3} is an irreducible. Thus {C1, C2, C3} is a reduct of C.
For {C1, C2, C4}, by Definition 4.2, it is easy to check that

Nmid{C1,C2,C4}(x1)=Nmid{C1,C2,C4}−{C2}(x1), Nmid{C1,C2,C4}(x2)=Nmid{C1,C2,C4}−{C2}(x2),

Nmid{C1,C2,C4}(x3)=Nmid{C1,C2,C4}−{C2}(x3), Nmid{C1,C2,C4}(x4)=Nmid{C1,C2,C4}−{C2}(x4).
(4.6)

It follows from Definition 4.4 that C2 is a reducible element of {C1, C2, C4}. Further, for
{C1, C4}, by Corollaries 4.8 and 4.13, it is clear that C1 and C4 are all irreducible elements
of {C1, C4}. Thus it is clear that {C1, C4} is a reduct of C. A similar analysis to {C1, C3, C4}, we
can also get that {C1, C4} is a reduct of C.
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To sum up, C has two reducts that are {C1, C2, C3} and {C1, C4}. It is easy to see that
cor3(C) = {C1} = {C1, C2, C3} ∩ {C1, C4} = ∩red3(C).

The above example also illustrates that for a covering, the reduct is not unique.

Remark 4.16. LetC be a covering of a universeU. ForB ∈ red3(C), for all K ∈ B, by Definitions
4.4, 4.5, and 4.6, it is easy to see that B and B − {K} do not satisfy the condition for all x ∈ U,
NmidB(x) = NmidC(x). Thus by Theorem 3.13, we know that B and B − {K} cannot induce
the same lower and upper approximation operations. This illustrates that for all B ∈ red3(C),
B is a smallest covering that induces the same the third type of neighborhood-based rough
sets.

4.2. Reduction of the Third Type of Neighborhood-Based Rough Sets

Throughout this subsection, we always assume that the rough set model which is discussed
by us is the fourth type of neighborhood-based generalized rough sets. So the definitions of
a reducible element, an irreducible covering and a reduct, are all based on the fourth type of
neighborhood-based rough sets.

Notation 1. Let C be a covering ofU. We write NMC = ∪{NmadC(x) | x ∈ U}.

By Theorem 3.28, we know that if NMC = NMB, then B and C generate the same
the forth type of neighborhood-based lower and upper approximation operations. So we can
give the following definition of a reducible element.

Definition 4.17 (A reducible element about the fourth type of lower and upper approximation
operations). Let C be a covering of a universeU andK ∈ C. IfNMC = NMC−{K}, we say that
K is a reducible element of C. Otherwise, K is an irreducible element of C.

Definition 4.18 (Irreducible covering about the fourth type of lower and upper approximation
operations). Let C be a covering of a universe U. If every element of C is an irreducible
element, we say that C is irreducible. Otherwise, C is reducible.

Definition 4.19 (Reduct about the fourth type of lower and upper approximation operations).
Let C be a covering of a universe U and B ⊆ C. If B is irreducible and NMB = NMC, we say
that B is a reduct of C. Let red4(C) = {B | B is a reduct of C}.

The following proposition is basic.

Proposition 4.20. Let C be a covering of a universe U and B ⊆ C. If B and C satisfy the condition
that NMB = NMC, then B is a covering of U.

Proof. Suppose that B is not a covering of U. Then ∪B ⊂ U. Taking x0 ∈ U − ∪B, by
Definition 4.1, we have that for all u ∈ U, x0 /∈ NB(u). Thus for all NB(u) ∈ NMB,
x0 /∈ NB(u). On the other hand, since C is a covering of U, it follows from Definition 3.2 that
∪NMC = U. Thus there exists NC(u) ∈ NMC such that x0 ∈ NC(u). Hence NC(u) /∈ NMB
and soNMB /=NMC, which is a contradiction with the conditionNMB = NMC. Thus B is a
covering of U.
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Corollary 4.21. Let C be a covering of a universeU andK ∈ C. IfK is a reducible element of C, then
C − {K} is still a covering of U.

Proof. It comes directly from Definition 4.17 and Proposition 4.20.

In the following, we will illustrate that for a covering, the reduct always exists.

Theorem 4.22. Let C be a covering of a universe U. Then there exists B ⊆ C such that B is a reduct
of C.

Proof. The proof is similar to that of Theorem 4.9.

Now we show that every reduct and the initial covering induce the same lower and
upper approximation operations.

Theorem 4.23. Let C be a covering of a universe U. Then for all B ∈ red4(C), B and C generate the
same the fourth type of neighborhood-based lower and upper approximations.

Proof. By Definition 4.19 and Proposition 4.20, B is a covering of U. Thus by Definition 4.19
and Theorem 3.28, for all B ∈ red4(C), B and C generate the same the fourth type of
neighborhood-based lower and upper approximations.

Lemma 4.24. Let C be a covering of a universe U and B ⊆ C. B and C satisfy the condition that
NMB = NMC. Then for all NC(u) ∈ NMC, we have that NC(u) = NB(u) and NB(u) ∈ NMB.

Proof. By the conditions and Proposition 4.20, we know that B and C are all coverings of U.
Hence, in the following process of proof, we can use directly the concepts and conclusions
obtained in Section 3.

Let NC(u) ∈ NMC. Then by NMB = NMC, there exists NB(v) ∈ NMB such that
NC(u) = NB(v) and so u ∈ NB(v). By Definition 2.3, it is clear that NB(u) ⊆ NB(v). In
addition, since B ⊆ C, it follows from Definition 2.3 that NC(u) ⊆ NB(u). By NC(u) = NB(v),
we have that NB(v) ⊆ NB(u). By NB(v) ∈ NMB, Notation 1 and Definition 3.2, this implies
NB(v) = NB(u). ThusNC(u) = NB(u) and NB(u) ∈ NMB.

Proposition 4.25. Let C be a covering of a universe U and B ⊂ C. B and C satisfy the condition that
NMB = NMC. Then for all K ∈ C − B, K is a reducible element of C.

Proof. Let K ∈ C − B, then B ⊆ C − {K} ⊆ C.

(i) We will show that C − {K} and B are two coverings of U. By the condition and
Proposition 4.20, B is a covering of U. Clearly, B ⊆ C − {K}, thus C − {K} is also a
covering of U.

By (i) and the condition, we know that C, C − {K} and B are all coverings of U.
Hence, in the following process of proof, we can use directly the concepts and
conclusions obtained in Section 3.

(ii) We will show that NMC ⊆ NMC−{K}. For all NC(u) ∈ NMC, then by Lemma 4.24,
NC(u) = NB(u) and NB(u) ∈ NMB. Since B ⊆ C − {K} ⊆ C, it follows
from Definition 2.3 that NC(u) ⊆ NC−{K}(u) ⊆ NB(u). Thus by NC(u) = NB(u),
we have that NC−{K}(u) = NB(u). Suppose that NC−{K}(u) /∈ NMC−{K}. Then
NC−{K}(u) /∈ NmadC−{K}(u). Thus by Definition 3.2, there exists z ∈ U such that
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NC−{K}(u) ⊂ NC−{K}(z) and so NB(u) ⊂ NC−{K}(z), which contradicts the fact that
NB(u) ∈ NMB. Thus NC−{K}(u) ∈ NMC−{K}. Combining NC(u) = NB(u) and
NC−{K}(u) = NB(u), we can get that NC(u) = NC−{K}(u) and so NC(u) ∈ NMC−{K}.
Thus, NMC ⊆ NMC−{K}.

(iii) Wewill show thatNMC−{K} ⊆ NMC, for all NC−{K}(u) ∈ NMC−{K}. ByB ⊆ C−{K},
it is clear that NC−{K}(u) ⊆ NB(u). By u ∈ NB(u) and Proposition 3.18, there exists
NB(z) ∈ NmadB(u) such that NB(u) ⊆ NB(z). This implies NC−{K}(u) ⊆ NB(z).
By Notation 1, it is clear that NB(z) ∈ NMB. Since NMB = NMC, it follows that
there exists NC(v) ∈ NMC such that NB(z) = NC(v). Thus NC−{K}(u) ⊆ NC(v).
Clearly, NC(v) ⊆ NC−{K}(v), hence NC−{K}(u) ⊆ NC(v) ⊆ NC−{K}(v). In addition,
since NC−{K}(u) ∈ NMC−{K}, it follows from Notation 1 and Definition 3.2 that
NC−{K}(u) = NC−{K}(v). This implies that NC−{K}(u) = NC(v). It follows by
NC(v) ∈ NMC that NC−{K}(u) ∈ NMC. Thus NMC−{K} ⊆ NMC.

By (ii) and (iii), we have that NMC−{K} = NMC. Thus by Definition 4.17, K is a
reducible element of C.

Corollary 4.26. Let C be a covering of a universe U, K ∈ C a reducible element of C and K1 ∈
C − {K}. If K1 is an irreducible element of C, then K1 is an irreducible element of C − {K}.

Proof. Suppose thatK1 is a reducible element of C−{K}. Then by Definition 4.17,NMC−{K} =
NMC−{K,K1}. Since K is a reducible element of C, it follows from Definition 4.17 that NMC =
NMC−{K}. ThusNMC = NMC−{K,K1}. Clearly,K1 ∈ C−(C−{K,K1}), thus by Proposition 4.25,
K1 is a reducible element of C, which contradicts the condition that K1 is an irreducible
element of C. This completes the proof.

The above proposition guarantees that omitting a reducible element in a covering will
not make any current irreducible element reducible. Therefore, for a covering C, the set of all
irreducible elements is constant. We denote this set by cor4(C), that is,

cor4(C) = {K | K is an irreducible element of C}. (4.7)

Theorem 4.27. Let C be a covering of a universeU. Then cor4(C) = ∩red4(C).

Proof. The proof is similar to that of Theorem 4.14.

The above result states that an element will not be reduced in any reduction procedure
if and only if it is irreducible. Hence the irreducible elements will be reserved in any reduction
procedure, that is to say, cor4(C) is contained in any reduct of C. So we can compute the reduct
of C based on cor4(C).

Example 4.28. Let U = {x1, x2, x3, x4}, C1 = {x1, x2, x3}, C2 = {x1, x2, x4}, C3 = {x1, x2}, C4 =
{x3}, C5 = {x4}, and C = {C1, C2, C3, C4, C5}. Clearly, C is a covering of U.

By Definition 4.3 and Notation 1, it is easy to see that NMC = {{x1, x2}, {x3}, {x4}}.
Since NMC−{C1} = {{x1, x2}, {x3}, {x4}}, it follows that NMC = NMC−{C1}. Thus C1 is

a reducible element of C. In the same way, we can check thatC2 andC3 are reducible elements
of C.

Since NMC−{C4} = {{x1, x2, x3}, {x4}}, it follows that NMC /=NMC−{C4}. Thus C4 is an
irreducible element of C.
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Since NMC−{C5} = {{x1, x2, x4}, {x3}}, it follows that NMC /=NMC−{C5}. Thus C5 is an
irreducible element of C.

Hence cor4(C) = {C4, C5}.
It is easy to check thatNM{C1,C2,C4,C5} /=NM{C2,C4,C5} andNM{C1,C2,C4,C5}/=NM{C1,C4,C5}.

Thus C1 and C2 are irreducible elements of {C1, C2, C4, C5}. By Corollary 4.26, C4 and C5 are
also irreducible elements of {C1, C2, C4, C5}. Hence {C1, C2, C4, C5} is an irreducible covering
ofU. It follows that {C1, C2, C4, C5} is a reduct of C.

It is easy to check that NM{C1,C3,C4,C5} = NM{C3,C4,C5} and NM{C1,C3,C4,C5}/=
NM{C1,C4,C5}. Thus C1 is a reducible element of {C1, C3, C4, C5}, and C3 is an irreducible
element of {C1, C3, C4, C5}. Further, by Corollary 4.26, {C3, C4, C5} is an irreducible covering.
Further, it is easy to verify that NMC = NM{C3,C4,C5}. Hence {C3, C4, C5} is a reduct of C. A
similar analysis to {C2, C3, C4, C5}, we can also get that {C3, C4, C5} is a reduct of C.

To sum up, C has two reducts that are {C1, C2, C3, C4} and {C3, C4, C5}. It is easy to see
that cor4(C) = {C3, C4} = {C1, C2, C3, C4} ∩ {C3, C4, C5} = ∩red4(C).

Remark 4.29. LetC be a covering of a universeU. ForB ∈ red4(C), for all K ∈ B, by Definitions
4.17, 4.18, and 4.19, it is easy to see thatB andB−{K} do not satisfy the condition for all x ∈ U,
NmidB(x) = NmidC(x). Thus by Theorem 3.28, we know that B and B − {K} cannot induce
the same lower and upper approximation operations. This illustrates that for all B ∈ red4(C),
B is a smallest covering that induces the same the fourth type of neighborhood-based rough
sets.

5. The Two Open Problems

In [28], Yun et al. proposed two open problems how to give sufficient and necessary
conditions for {N(x) | x ∈ U} to form a partition of U by using only a single covering
approximation operator Ci (i = 1, 4). That is to say, the first one is how to characterize the
conditions for {N(x) | x ∈ U} to form a partition by applying the first type of generalized
approximation operator, and the second one is how to characterize the conditions for {N(x) |
x ∈ U} to form a partition by applying the fourth type of generalized approximation operator.
In this section, we present some conditions under which {N(x) | x ∈ U} forms a partition of
U. As a result, the two open problems are solved (see Theorems 5.3 and 5.4).

Lemma 5.1. Let C be a covering of a universe U. If {N(x) | x ∈ U} forms a partition of U, then
for all x ∈ U,N(x) ∩ (∪{K | K ∈ C, x /∈ K}) = ∅.

Proof. Let x ∈ U. Suppose that N(x) ∩ (∪{K | K ∈ C, x /∈ K})/= ∅. Then we choose u ∈
N(x) ∩ (∪{K | K ∈ C, x /∈ K}), that is, u ∈ N(x) and u ∈ ∪{K | K ∈ C, x /∈ K}. Thus
there exists K ∈ {K | K ∈ C, x /∈ K} such that u ∈ K. By Definition 2.3, this implies that
N(u) ⊆ K. On the other hand, since {N(x) | x ∈ U} forms a partition of U, it follows from
u ∈ N(x) that N(u) = N(x) and so x ∈ N(u). Thus x ∈ K. This is a contradiction with
K ∈ {K | K ∈ C, x /∈ K}. Therefore, N(x) ∩ (∪{K | K ∈ C, x /∈ K}) = ∅.

Lemma 5.2. Let C be a covering of a universe U and x, z ∈ U. If N(z) ⊆ N(x), then {K ∈ C | z /∈
K} ⊆ {K ∈ C | x /∈ K}.

Proof. Let K ∈ {K ∈ C | z /∈ K}. Suppose that K /∈ {K ∈ C | x /∈ K}. Then x ∈ K. By
Definition 2.3, this implies that N(x) ⊆ K. Since N(z) ⊆ N(x), it follows that N(z) ⊆ K and
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so z ∈ K, which contradicts the fact that K ∈ {K ∈ C | z /∈ K}. Thus K ∈ {K ∈ C | x /∈ K}.
Hence {K ∈ C | z /∈ K} ⊆ {K ∈ C | x /∈ K}.

Theorem 5.3. Let C be a covering of a universe U. Then {N(x) | x ∈ U} forms a partition of U if
and only if for each x ∈ U, C1({x}) = N(x).

Proof. Let x ∈ U. By Lemma 5.1, we have thatN(x)∩(∪{K | K ∈ C, x /∈ K}) = ∅. This implies
that N(x) ⊆ ∼ (∪{K | K ∈ C, x /∈ K}). In addition, by the part (1) of Definition 2.4, we have
that ∼ (∪{K | K ∈ C, x /∈ K}) = ∼ (∪{K | K ∈ C, K ⊆∼ {x}}) = C1({x}). Consequently,
N(x) ⊆ C1({x}). On the other hand, for all y ∈ C1({x}), then y ∈∼ (∪{K | K ∈ C, K ⊆∼ {x}}).
Thus y /∈ ∪{K | K ∈ C, K ⊆∼ {x}}, that is, y /∈ ∪{K | K ∈ C, x /∈ K}. This implies that
for all K ∈ C, x /∈ K ⇒ y /∈ K. Thus for all K ∈ C, y ∈ K ⇒ x ∈ K. This implies that {K | K ∈
C, y ∈ K} ⊆ {K | K ∈ C, x ∈ K} and so ∩{K | K ∈ C, y ∈ K} ⊇ ∩{K | K ∈ C, x ∈ K}, that is,
N(y) ⊇ N(x). Since {N(x) | x ∈ U} forms a partition of U, it follows that N(y) = N(x) and
so y ∈ N(x). Thus C1({x}) ⊆ N(x). In summary, C1({x}) = N(x). This completes the proof
of the necessity.

Conversely, suppose that {N(x) | x ∈ U} is not a partition of U. Then there exist
N(x),N(y) ∈ {N(x) | x ∈ U} such that N(x)/=N(y) and N(x) ∩ N(y)/= ∅. Taking z ∈
N(x) ∩N(y), thenN(z) ⊆ N(x) ∩N(y). Clearly,N(z)/=N(x) orN(z)/=N(y). Without loss
of generality, we may assume that N(z)/=N(x), then N(z) ⊂ N(x). Thus, by Lemma 5.2,
we have that {K ∈ C | z /∈ K} ⊆ {K ∈ C | x /∈ K}. Thus ∼ (∪{K ∈ C | z /∈ K}) ⊇∼
(∪{K ∈ C | x /∈ K}) and so ∼ (∪{K ∈ C | K ⊆ ∼ {z}}) ⊇∼ (∪{K ∈ C | K ⊆ ∼ {x}}).
It follows from the part (1) of Definition 2.4 that C1({z}) ⊇ C1({x}). By the condition, we
have that C1({z}) = N(z) and C1({x}) = N(x). Thus N(z) ⊇ N(x), which contradicts with
N(z) ⊂ N(x). Hence {N(x) | x ∈ U} forms a partition of U.

In fact, the above theorem establishes the relationship between the first type of
generalized rough sets and the other types of neighborhood-based rough sets.

Theorem 5.4. Let C be a covering of a universe U. Then {N(x) | x ∈ U} forms a partition of U if
and only if for each x ∈ U, C4(N(x)) = N(x).

Proof. The necessity is obvious.
Conversely, suppose that {N(x) | x ∈ U} is not a partition of U. Then there exist

N(x),N(y) ∈ {N(x) | x ∈ U} such that N(x)/=N(y) and N(x) ∩ N(y)/= ∅. Taking z ∈
N(x) ∩ N(y), then N(z) ⊆ N(x) ∩ N(y). Clearly, N(z)/=N(x) or N(z)/=N(y). Without
loss of generality, we may assume that N(z)/=N(x), then N(z) ⊂ N(x). Thus x /∈ N(z)
(Otherwise, by Definition 2.3,N(x) ⊆ N(z)). In addition, clearly, N(x) ∩N(z)/= ∅; therefore,
by the part (4) of Definition 2.4, we have that x ∈ C4(N(z)). Thus C4(N(z))/=N(z), which
contradicts the condition for all x ∈ U, C4(N(x)) = N(x). Thus {N(x) | x ∈ U} forms a
partition of U.

6. Conclusions

This paper defines the concepts of minimal neighborhood description and maximal
neighborhood description in neighborhood-based rough set models. We give the new
characterizations of the third and the fourth types of neighborhood-based rough sets. By
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means of these new characterizations, we explore the covering reduction of two types of
neighborhood-based rough sets and have shown that the reduct of a covering is the minimal
covering that generates the same lower and upper approximations. Clearly, the notions of
minimal neighborhood description and maximal neighborhood description play essential
roles in the studies of the reduction issues of the third and the fourth types of neighborhood-
based rough sets. In fact, the two concepts are the essential characteristics related to the
neighborhood-based rough sets. In particular, the notion of maximal neighborhood descrip-
tion is very useful. A similar notion was also discussed in [30]. In the future, we will further
study neighborhood-based rough sets by means of these concepts.
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