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We investigate a fractional diffusion/anti-diffusion equation proposed by Andrew C. Fowler to
describe the dynamics of sand dunes sheared by a fluid flow. In this paper, we prove the global-in-
time well-posedness in the neighbourhood of travelling-waves solutions of the Fowler equation.

1. Introduction

The study of mechanisms that allow the formation of structures such as sand dunes and
ripples at the bottom of a fluid flow plays a crucial role in the understanding of coastal
dynamics. The modeling of these phenomena is particularly complex since we must not only
solve the Navier-Stokes or Saint-Venant equations with equation for sediment transport, but
also take into account the evolution of the bottom. Instead of solving the whole system fluid
flow, free surface and free bottom, nonlocal models of fluid flow interacting with the bottom
were introduced in [1, 2]. Among these models, we are interested in the following nonlocal
conservation law [1, 3]:

∂tu(t, x) + ∂x

(
u2

2

)
(t, x) + I[u(t, ·)](x) − ∂2xxu(t, x) = 0, t ∈ (0, T), x ∈ R,

u(0, x) = u0(x), x ∈ R,

(1.1)

where T is any given positive time, u = u(t, x) represents the dune height (see Figure 1), and
I is a nonlocal operator defined as follows: for any Schwartz function ϕ ∈ S(R) and any
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Figure 1: Domain considered for the Fowler model: h is the depth water, η the free surface, and u the sea
bottom.

x ∈ R,

I
[
ϕ
]
(x) :=

∫+∞

0
|ξ|−1/3ϕ′′(x − ξ)dξ. (1.2)

Equation (1.1) is valid for a river flow over an erodible bottom u(t, x) with slow
variation and describes both accretion and erosion phenomena [4]. See [4, 5] for numerical
results on this equation.

The nonlocal term I can be seen as a fractional power of order 2/3 of the Laplacian
with the bad sign. Indeed, it has been proved [4]

F
(
I
[
ϕ
]
− ϕ′′)(ξ) = ψI(ξ)Fϕ(ξ), (1.3)

where

ψI(ξ) = 4π2ξ2 − aI|ξ|4/3 + ibIξ|ξ|1/3, (1.4)

with aI, bI positive constants,F denotes the Fourier transform defined in (1.7), and Γ denotes
the Euler function. One simple way to establish this fact is the derivation of a new formula
for the operator I, see Proposition 2.5.

Remark 1.1. For causal functions (i.e., ϕ(x) = 0 for x < 0), this operator is up to amultiplicative
constant, the Riemann-Liouville fractional derivative operator which is defined as follows [6]:

1
Γ(2/3)

∫+∞

0

ϕ′′(x − ξ)
|ξ|1/3

dξ =
d−2/3

dx−2/3ϕ
′′(x) =

d4/3

dx4/3
ϕ(x). (1.5)

Therefore, the Fowler model has two antagonistic terms: a usual diffusion and a
nonlocal fractional anti-diffusive term of lower order. This remarkable feature enabled to
apply this model for signal processing. Indeed, the diffusion is used to reduce the noise
whereas the nonlocal anti-diffusion is used to enhance the contrast [7].

Recently, some results regarding this equation have been obtained, namely, existence
of travelling-waves uφ(t, x) = φ(x − ct) where φ ∈ C1

b
(R) and c ∈ R represents wave
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velocity, the global well-posedness for L2-initial data, the failure of the maximum principle,
and the local-in-time well-posedness in a subspace of C1

b
[4, 8]. Notice that the travelling-

waves are not necessarily of solitary type (see [8]) and therefore may not belong to L2(R),
the space where a global well-posedness result is available. In [8], the authors prove local
well-posedness in a subspace of C1

b
(R) but fail to obtain global existence.

To prove the existence of travelling-waves solutions of the Fowler equation, the
authors used the implicit function theorem on suitable Banach spaces [8]. Much work has
been devoted to investigate existence, uniqueness, and regularity of travelling-waves for
integral differential equations, see for instance [9] and references therein.

An interesting topic is to know if the shape of this travelling-wave is maintained
when it is perturbed. This raises the question of the stability of travelling-waves. But
before interesting ourselves in this problem, we have to show first the global existence of
perturbations around these travelling-waves. Hence in this paper, we prove the global well-
posedness in an L2-neighbourhood of a regular travelling-wave, namely u = uφ + v. To prove
this result, we consider the following Cauchy problem:

∂tv(t, x) + ∂x

(
v2

2
+ uφv

)
(t, x) + I[v(t, ·)](x) − ∂2xxv(t, x) = 0, t ∈ (0, T), x ∈ R,

v(0, x) = v0(x), x ∈ R,

(1.6)

where v0 ∈ L2(R) is an initial perturbation and T is any given positive time.
To prove the existence and uniqueness results, we begin by introducing the notion of

mild solution (see Definition 2.1) based on Duhamel’s formula (2.1), in which the kernel K
of I − ∂2xx appears. The use of this formula allows to prove the local-in-time existence with
the help of a contracting fixed point theorem. The global existence is obtained thanks to an
energy estimate (4.68). This approach is classical: we refer for instance to [4, 10].

The plan of this paper is organised as follows. In the next section, we define the notion
of mild solution to (1.6) and we give some properties on the kernel K of I − ∂2xx that will be
needed in the sequel. Sections 3 and 4 are, respectively, devoted to the proof of the uniqueness
and the existence of a mild solution for (1.6). Section 5 contains the proof of the regularity of
the solution.

Notations

(i) The norm of a measurable function f ∈ Lp(R) is written ‖f‖p
Lp(R) =

∫
R
|f(x)|p dx for 1 ≤

p <∞.
(ii) We denote by F the Fourier transform of f which is defined by the following: for

all ξ ∈ R

Ff(ξ) :=
∫

R

e−2iπxξf(x)dx, (1.7)

and F−1 denotes the inverse of Fourier transform.
(iii) The Schwartz space of rapidly decreasing functions on R is denoted by S(R).
(iv)We write Ck(R) = {f : R → C; f, f ′, . . . , f (k) are continous on R}.
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(v)We denote by Cb(R) the space of all bounded continuous real-valued functions on
R with the norm ‖ · ‖L∞ = sup

R
|f |.

(vi)We write for any T > 0,

C1,2((0, T] × R) :=
{
u ∈ C((0, T] × R); ∂tu, ∂xu, ∂2xxu ∈ C((0, T] × R)

}
. (1.8)

(vii) We denote by D(U) the space of test functions on U and D′(U) denotes the
distribution space.

Here is our main result.

Theorem 1.2. Let T > 0 and v0 ∈ L2(R). There exists a unique mild solution v ∈ L∞((0, T);L2(R))
of (1.6) (see Definition 2.1) which satisfies

v ∈ C
(
[0, T];L2(R)

)
, v(0, ·) = v0 almost everywhere. (1.9)

Moreover, if φ ∈ C2
b(R) then v ∈ C1,2((0, T] × R) and satisfies

∂tv + ∂x

(
v2

2
+ uφv

)
+ I[v] − ∂2xxv = 0, (1.10)

on (0, T] × R, in the classical sense or equivalently, u = uφ + v is a classical solution of (1.1).

2. Duhamel Formula and Main Properties of K

Definition 2.1. Let T > 0 and v0 ∈ L2(R). We say that v ∈ L∞((0, T);L2(R)) is a mild solution to
(1.6) if for any t ∈ (0, T):

v(t, ·) = K(t, ·) ∗ v0 −
∫ t

0
∂xK(t − s, ·) ∗

(
v2

2
+ uφv

)
(s, ·) ds, (2.1)

whereK(t, x) = F−1(e−tψI(·))(x) is the kernel of the operator I−∂2xx, and ψI is defined in (1.4).

The expression (2.1) is the Duhamel formula and is obtained using the spatial Fourier
transform.

Proposition 2.2 (main properties of K, [4]). The kernel K satisfies

(1) ∀t > 0, K(t, ·) ∈ L1(R) and K ∈ C∞((0,∞) × R),

(2) ∀s, t > 0, K(s, ·) ∗K(t, ·) = K(s + t, ·), ∀u0 ∈ L2(R), limt→ 0K(t, ·) ∗ u0 = u0 in L2(R),

(3) ∀T > 0, ∃K0 such that ∀t ∈ (0, T], ||∂xK(t, ·)||L2(R) ≤ K0t
−3/4,

(4) ∀T > 0, ∃K1 such that ∀t ∈ (0, T], ||∂xK(t, ·)||L1(R) ≤ K1t
−1/2.
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Remark 2.3. An interesting property for the kernel K is the non-positivity (see Figure 2), and
the main consequence of this feature is the failure of maximum principle [4]. We use again
this property to show that the constant solutions of the Fowler equation are unstable [11].

Remark 2.4. Using Plancherel formula, we have for any v0 ∈ L2(R) and any t ∈ (0, T]

‖K(t, ·) ∗ v0‖L2(R) ≤ eα0t‖v0‖L2(R), (2.2)

where α0 = −min Re(ψI) > 0.

Proposition 2.5 (integral formula for I). For all ϕ ∈ S(R) and all x ∈ R,

I
[
ϕ
]
(x) =

4
9

∫0

−∞

ϕ(x + z) − ϕ(x) − ϕ′(x)z

|z|7/3
dz. (2.3)

Proof. The proof is based on simple integrating by parts. The regularity and the rapidly
decreasing of ϕ ensure the validity of the computations that follow. We have

∫+∞

0
ϕ′′(x − ξ)|ξ|−1/3 dξ =

∫+∞

0

d

dξ

(
ϕ′(x) − ϕ′(x − ξ)

)
|ξ|−1/3dξ

=
1
3

∫+∞

0
|ξ|−4/3

(
ϕ′(x) − ϕ′(x − ξ)

)
dξ

=
1
3

∫+∞

0
|ξ|−4/3 d

dξ

(
ϕ′(x)ξ + ϕ(x − ξ) − ϕ(x)

)
dξ

=
4
9

∫+∞

0

ϕ(x − ξ) − ϕ(x) + ϕ′(x)ξ

|ξ|7/3
dξ

=
4
9

∫0

−∞

ϕ(x + ξ) − ϕ(x) − ϕ′(x)ξ

|ξ|7/3
dξ.

(2.4)

There is no boundary term at infinity (resp., at zero) because ϕ is a rapidly decreasing
function on R (resp., ϕ is smooth).

Remark 2.6. Using integral formula (2.3), [4, 8] proved that

F
(
I
[
ϕ
])
(ξ) = 4π2Γ

(
2
3

)
|ξ|4/3

(
−1
2
+ i

√
3
2

sgn(ξ)

)
Fϕ(ξ). (2.5)

Notice that F(I[ϕ])(ξ) = 4π2Γ(2/3)(iξ)4/3 which is consistent with Remark 1.1: up to a
multiplicative constant I[ϕ] is d4/3ϕ/dx4/3.
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Figure 2: Evolution of the kernel K for t = 0.1 (red) and t = 0.5 s (blue).

Proposition 2.7. Let s ∈ R and ϕ ∈ Hs(R). Then I[ϕ] ∈ Hs−4/3(R) and we have

∥∥I[ϕ]∥∥Hs−4/3(R) ≤ 4π2Γ
(
2
3

)∥∥ϕ∥∥Hs(R). (2.6)

Proof. For all s ∈ R and all ϕ ∈ Hs(R), we have, using Remark 2.6

∥∥I[ϕ]∥∥Hs−4/3(R) =
(∫

R

(
1 + |ξ|2

)s−4/3∣∣F(
I
[
ϕ
])
(ξ)

∣∣2 dξ)1/2

= 4π2Γ
(
2
3

)(∫
R

(1 + |ξ|2)s−4/3
∣∣∣∣∣12 − i sgn(ξ)

√
3
2

∣∣∣∣∣|ξ|8/3∣∣F(
ϕ
)
(ξ)

∣∣2 dξ
)1/2

= 4π2Γ
(
2
3

)⎛
⎝∫

R

(
|ξ|2

1 + |ξ|2

)4/3(
1 + |ξ|2

)s∣∣F(
ϕ
)
(ξ)

∣∣2 dξ
⎞
⎠

1/2

≤ 4π2Γ
(
2
3

)[∫
R

(
1 + |ξ|2

)s∣∣F(
ϕ
)
(ξ)

∣∣2 dξ]1/2

= 4π2Γ
(
2
3

)∥∥ϕ∥∥Hs(R).

(2.7)

Remark 2.8. From the previous proposition, we deduce that for all s ∈ R and all ϕ ∈ Hs(R),
I[ϕ] ∈ Hs−4/3(R). In particular, using the Sobolev embeddingH2/3(R) ↪→ Cb(R) ∩ L2(R), we
deduce that I : H2(R) → Cb(R) ∩ L2(R) is a bounded linear operator.
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Proposition 2.9 (Duhamel formula (2.1) is well defined). Let T > 0, v0 ∈ L2(R) and w ∈
L∞((0, T);L1(R)) + L∞((0, T);L2(R)). Then, the function

v : t ∈ (0, T] −→ K(t, ·) ∗ v0 −
∫ t

0
∂xK(t − s, ·) ∗w(s, ·)ds (2.8)

is well defined and belongs to C([0, T];L2(R)) (being extended at t = 0 by the value v(0, ·) = v0).

Proof. From Proposition 2.2, it is easy to see that v is well defined and that for any t ∈ (0, T],
v(t, ·) ∈ L2(R). Indeed, ∀t > 0, ∂xK(t, ·) ∈ L1(R) ∩ L2(R) so by Young inequalities ∂xK(t, ·) ∗
w(t, ·) exists, and using the estimates on the gradient (item 3 and 4 of Proposition 2.2) we
deduce that v is well defined and v(t, ·) ∈ L2(R).

Let us prove the continuity of v. By the second item of Proposition 2.2, we have that
the function t ∈ (0, T] → K(t, ·) ∗ v0 is continuous and it is extended continuously up to t = 0
by the value v(0, ·) = v0. We define the function

F : t ∈ [0, T] −→
∫ t

0
∂xK(t − s, ·) ∗w(s, ·)ds. (2.9)

Now, we are going to prove that F is uniformly continuous. For any h > 0, Young inequalities
imply

‖F(t + h, ·) − F(t, ·)‖L2 ≤
∫ t

0
‖∂xK(t + h − s, ·) − ∂xK(t − s, ·)‖Li ds‖w‖L∞((0,T);Lj )

+
∫ t+h

t
‖∂xK(t + h − s, ·)‖Li ds‖w‖L∞((0,T);Lj ),

(2.10)

where i, j ∈ N
∗ are such that i + j = 3. Since ∂xK(t, ·) = F−1(ξ → 2iπξe−tψI(ξ)), the dominated

convergence theorem implies that

‖∂xK(t − s + h, ·) − ∂xK(t − s, ·)‖Li(R) −→ 0, as h −→ 0. (2.11)

Moreover, using the estimates on the gradient (items 3 and 4 of Proposition 2.2), we have the
following inequality:

∫ t+h

t

‖∂xK(t − s + h, ·)‖Lj (R)ds ≤ cjhαj , (2.12)

where cj is a positive constant and αj = 1/2 if j = 1, 1/4 if j = 2.
From (2.10), we obtain that ‖F(t+h, ·)−F(t, ·)‖L2(R) → 0, as h → 0. Hence, the function

F is continuous and this completes the proof of the continuity of v.
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Remark 2.10. Using the semi group property of the kernel K, we have for all t0 ∈ (0, T) and
all t ∈ [0, T − t0], [4]

v(t + t0, ·) = K(t, ·) ∗ v(t0, ·) −
∫ t

0
∂xK(t − s, ·) ∗w(t0 + s, ·)ds. (2.13)

3. Uniqueness of a Solution

Let us first establish the following Lemma.

Lemma 3.1. Let T > 0 and v0 ∈ L2(R). For i = 1, 2, letwi ∈ L∞((0, T);L1(R))∪L∞((0, T);L2(R))
and define vi as in Proposition 2.9 by

vi(t, ·) = K(t, ·) ∗ v0 −
∫ t

0
∂xK(t − s, ·) ∗wi(s, ·)ds. (3.1)

Then,

‖v1 − v2‖C([0,T];L2(R)) ≤

⎧⎨
⎩
4K0T

1/4‖w1 −w2‖L∞((0,T);L1(R)) if wi ∈ L∞(
(0, T);L1(R)

)
,

2K1
√
T ‖w1 −w2‖L∞((0,T);L2(R)) if wi ∈ L∞(

(0, T);L2(R)
)
.

(3.2)

Proof. For all t ∈ [0, T], we have

v1(t, ·) − v2(t, ·) = −
∫ t

0
∂xK(t − s, ·) ∗ (w1 −w2)(s, ·)ds. (3.3)

Hence with the help of Young inequalities, we get

‖v1(t, ·) − v2(t, ·)‖L2(R) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
‖∂xK(t − s, ·)‖L2(R)‖(w1 −w2)(s, ·)‖L1(R)ds

if wi ∈ L∞(
(0, T);L1(R)

)
,∫ t

0
‖∂xK(t − s, ·)‖L1(R)‖(w1 −w2)(s, ·)‖L2(R)ds

if wi ∈ L∞(
(0, T);L2(R)

)
.

(3.4)

It then follows that

‖v1(t, ·) − v2(t, ·)‖L2(R) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
‖∂xK(t − s, ·)‖L2(R) ds‖w1 −w2‖L∞((0,T);L1(R))

if wi ∈ L∞(
(0, T);L1(R)

)
,∫ t

0
‖∂xK(t − s, ·)‖L1(R) ds‖w1 −w2‖L∞((0,T);L2(R))

if wi ∈ L∞(
(0, T);L2(R)

)
.

(3.5)
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Using again the estimates of the gradient ofK (see Proposition 2.2), we conclude the proof of
this Lemma.

Proposition 3.2. Let T > 0 and v0 ∈ L2(R). There exists at most one v ∈ L∞((0, T);L2(R)) which
is a mild solution to (1.6).

Proof. Let v1, v2 ∈ L∞((0, T);L2(R)) be two mild solutions to (1.6) and t ∈ [0, T]. Using the
previous Lemma, we get

‖v1 − v2‖C([0,t];L2(R)) ≤ 2K0t
1/4

∥∥∥v2
1 − v

2
2

∥∥∥
L∞((0,t);L1(R))

+ 2K1
√
t
∥∥uφv1 − uφv2∥∥L∞((0,t);L2(R)). (3.6)

Since,

∥∥∥v2
1 − v

2
2

∥∥∥
L∞((0,t);L1(R))

≤M‖v1 − v2‖C([0,t];L2(R)), (3.7)

withM = ‖v1‖C([0,T];L2(R)) + ‖v2‖C([0,T];L2(R)), then

‖v1 − v2‖C([0,t];L2(R)) ≤
(
2MK0t

1/4 + 2K1t
1/2∥∥uφ∥∥C1

b
(R)

)
‖v1 − v2‖C([0,t];L2(R)). (3.8)

Therefore, v1 = v2 on [0, t] for any t ∈ (0, T] satisfying 2MK0t
1/4 + 2K1t

1/2‖uφ‖C1
b
(R) < 1. Since

v1 and v2 are continuous with values in L2(R), we have that v1 = v2 on [0, T∗]where T∗ is the
positive solution of the following:

2MK0t
1/4 + 2K1t

1/2∥∥uφ∥∥C1
b
(R) = 1, (3.9)

that is, T∗ = ((−2MK0 +
√
4M2K2

0 + 8K1‖uφ‖C1
b
(R))/4K1‖uφ‖C1

b
(R))

4
. To prove that v1 = v2 on

[0, T], let us define

t0 := sup{t ∈ [0, T] s.tv1 = v2[0, t]}, (3.10)

and we assume that t0 < T . By continuity of v1 and v2, we have that v1(t0, ·) = v2(t0, ·). Using
the semigroup property, see Remark 2.10, we deduce that v1(t0 + ·, ·) = v2(t0 + ·, ·) are mild
solutions to (1.6) with the same initial data v1(t0, ·) = v2(t0, ·) which implies, from the first
step of this proof, that v1(t, ·) = v2(t, ·) for t ∈ [t0, T∗ + t0]. Finally, we get a contradiction with
the definition of t0 and we infer that t0 = T . This completes the proof of this proposition.
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4. Global-In-Time Existence of a Mild Solution

Proposition 4.1 (local-in-time existence). Let v0 ∈ L2(R). There exists T∗ > 0 that only depends
on ‖v0‖L2(R) and ||uφ||C1

b
(R) such that (1.6) admits a unique mild solution v ∈ C([0, T∗];L2(R)) ∩

C((0, T∗];H1(R)). Moreover, v satisfies

sup
t∈(0,T∗]

t1/2‖∂xv(t, ·)‖L2(R) < +∞. (4.1)

Proof. For v ∈ C([0, T];L2(R)) ∩ C((0, T];H1(R)), we consider the following norm:

‖|v|‖ := ‖v‖C([0,T];L2(R)) + sup
t∈(0,T]

t1/2‖∂xv(t, ·)‖L2(R), (4.2)

and we define the affine space

X :=
{
v ∈ C

(
[0, T];L2(R)

)
∩ C

(
(0, T];H1(R)

)
s.t. v(0, ·) = v0, ‖|v|‖ < +∞

}
. (4.3)

It is readily seen that X endowed with the distance induced by the norm ‖| · ‖| is a complete
metric space. For v ∈ X, we define the function

Θv : t ∈ [0, T] −→ K(t, ·) ∗ v0 −
1
2

∫ t

0
∂xK(t − s, ·) ∗ v2(s, ·)ds −

∫ t

0
∂xK(t − s, ·) ∗ uφv(s, ·)ds.

(4.4)

From Proposition 2.9, Θv ∈ C([0, T];L2(R)) and satisfies Θv(0, ·) = v0.

Step 1 (Θv ∈ X). Since

∂x(K(t, ·) ∗ v0) = ∂xK(t, ·) ∗ v0 = F−1
(
ξ �−→ 2iπξe−tψI(ξ)Fv0(ξ)

)
, (4.5)

the dominated convergence theorem implies that for any t0 > 0,

∫
R

4π2|ξ|2
∣∣∣e−tψI(ξ) − e−t0ψI(ξ)

∣∣∣2|Fv0(ξ)|2dξ −→ 0, as t −→ t0. (4.6)

Therefore, the function t > 0 → (ξ �→ 2iπξe−tψI(ξ)Fv0(ξ)) ∈ L2(R) is continuous and since F is
an isometry of L2, we deduce that t > 0 → ∂xK(t, ·) ∗ v0 ∈ L2(R) is continuous. We have then
established that t > 0 → K(t, ·) ∗ v0 ∈ H1(R) is continuous. Moreover, from Proposition 2.2,
we have

‖∂xK(t, ·) ∗ v0‖L2(R) ≤ K1t
−1/2‖v0‖L2(R). (4.7)
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Let w denote the function

w(t, ·) = 1
2

∫ t

0
∂xK(t − s, ·) ∗ v2(s, ·)ds +

∫ t

0
∂xK(t − s, ·) ∗ uφv(s, ·)ds. (4.8)

Let us now prove that w ∈ C((0, T];H1(R)). We first have

∂xw(t, ·) =
∫ t

0
∂xK(t − s, ·) ∗ v∂xv(s, ·)ds +

∫ t

0
∂xK(t − s, ·) ∗ ∂x

(
uφv

)
(s, ·)ds. (4.9)

Using Young inequalities and Proposition 2.2, we get

‖∂xw(t, ·)‖L2(R) ≤
∫ t

0
‖∂xK(t − s, ·) ∗ v∂xv(s, ·)‖L2(R) ds

+
∫ t

0

∥∥∂xK(t − s, ·) ∗ ∂x
(
uφv

)
(s, ·)

∥∥
L2(R) ds

≤
∫ t

0
‖∂xK(t − s, ·)‖L2(R)‖v∂xv(s, ·)‖L1(R) ds

+
∫ t

0
‖∂xK(t − s, ·)‖L1(R)

∥∥∂x(uφv)(s, ·)∥∥L2(R) ds

≤ ‖v‖C([0,T];L2(R))

∫ t

0
K0(t − s)−3/4s−1/2ds sup

s∈(0,T]
s1/2‖∂xv(s, .)‖L2(R)

+
∫ t

0
K1(t − s)−1/2s−1/2ds sup

s∈(0,T]
s1/2

∥∥∂x(uφv)(s, ·)∥∥L2(R).

(4.10)

We then obtain

‖∂xw(t, ·)‖L2(R) ≤ K0I‖v‖C([0,T];L2(R))T
−1/4 sup

s∈(0,T]
s1/2‖∂xv(s, ·)‖L2(R)

+K1J sup
s∈(0,T]

s1/2
∥∥∂x(uφv)(s, ·)∥∥L2(R),

(4.11)

where I = B(1/2, 1/4) and J = B(1/2, 1/2) = π , B being the beta function defined by

B
(
x, y

)
:=

∫1

0
tx−1(1 − t)y−1dt. (4.12)

As ‖|v‖| <∞ then

sup
s∈(0,T]

s1/2‖∂xv(s, ·)‖L2(R) <∞, sup
s∈(0,T]

s1/2
∥∥∂x(uφv)(s, ·)∥∥L2(R) <∞. (4.13)
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We then deduce that ∂xw(t, ·) is in L2 and so ∂xΘv(t, ·) ∈ L2(R) for all t ∈ (0, T].
Let us now prove that ∂xw is continuous on (0, T] with values in L2. For δ > 0 and

t ∈ (0, T], we define

(∂xw)δ(t, ·) : =
∫ t

0
∂xK(t − s, ·) ∗ 1{s>δ}(v∂xv)(s, ·)ds

+
∫ t

0
∂xK(t − s, ·) ∗ 1{s>δ}∂x

(
uφv

)
(s, ·)ds.

(4.14)

Since 1{s>δ}(v∂xv)(s, ·) ∈ L∞([0, T];L1(R)) and 1{s>δ}∂x(uφv)(s, ·) ∈ L∞([0, T];L2(R)) then
Proposition 2.9 implies that (∂xw)δ : [0, T] → L2(R) is continuous. Moreover, we have for
any t ∈ (0, T] and δ ≤ t,

‖∂xw(t, ·) − (∂xw)δ(t, ·)‖L2 ≤ K0

∫δ

0
(t − s)−3/4s−1/2 ds‖v‖C([0,T];L2) sup

s∈(0,T]
s1/2‖∂xv(s, ·)‖L2

+K1

∫δ

0
(t − s)−1/2s−1/2ds sup

s∈(0,T]
s1/2

∥∥∂x(uφv)(s, ·)∥∥L2 .

(4.15)

It then follows that

sup
t∈(0,T]

‖∂xw(t, ·) − (∂xw)δ(t, ·)‖L2(R) −→ 0 as δ −→ 0. (4.16)

We next infer that ∂xw ∈ C((0, T];L2(R)) because it is a local uniform limit of continuous
functions. Hence, we have established thatΘv ∈ C([0, T];L2(R))∩C((0, T];H1(R)). To prove
that Θv ∈ X, it remains to show that ‖|Θv‖| < +∞. Using (4.7) and (4.11), we have

sup
t∈(0,T]

t1/2‖∂xΘv(t, ·)‖L2 ≤ K1‖v0‖L2 +K0IT
1/4 sup

s∈(0,T]
s1/2‖∂xv(s, ·)‖L2‖v‖C([0,T];L2)

+K1JT
1/2 sup

s∈(0,T]
s1/2

∥∥∂x(uφv)(s, ·)∥∥L2 .
(4.17)

Finally, we have Θ : X → X.

Step 2. We begin by considering a ball of X of radius R centered at the origin

BR := {v ∈ X/|‖v‖| ≤ R}, (4.18)

where R > ||v0||L2(R) + K1||v0||L2(R). Take v ∈ BR and let us now prove that Θ maps BR into
itself. We have

‖Θv(t, ·)‖L2(R) ≤ ‖K(t, ·) ∗ v0‖L2(R) +
∫ t

0

∥∥∥∥∥∂xK(t − s, ·) ∗
(
v2

2
+ uφv

)
(s, ·)

∥∥∥∥∥
L2(R)

ds. (4.19)
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By Remark 2.4, we get

‖K(t, ·) ∗ v0‖L2(R) ≤ eα0T‖v0‖L2(R), (4.20)

where α0 = −min Re(ψI) > 0. Moreover, since ||v2||L∞((0,T);L1(R)) = ||v||2
L∞((0,T);L2(R)) and with

the help of Proposition 2.2, we get

‖Θv(t, ·)‖L2(R) ≤ eα0T‖v0‖L2(R) + 2K0T
1/4R2 + 2K1T

1/2∥∥uφ∥∥C1
b
(R)R. (4.21)

Using (4.17) and (4.21), we deduce that

|‖Θv‖| ≤ eα0T‖v0‖L2(R) +K1‖v0‖L2(R) + (2 + I)K0T
1/4R2 + (2 + J)RK1T

1/2∥∥uφ∥∥C1
b
(R)

+K1J
∥∥uφ∥∥C1

b
(R)RT.

(4.22)

Therefore, for T > 0 sufficiently small such that

eα0T‖v0‖L2(R) +K1‖v0‖L2(R) + (2 + I)K0T
1/4R2 + (2 + J)RK1T

1/2∥∥uφ∥∥C1
b
(R)

+K1J
∥∥uφ∥∥C1

b
(R)RT ≤ R,

(4.23)

we get that |‖Θv‖| ≤ R.
To finish with, we are going to prove that Θ is a contraction.
For v,w ∈ BR, we have for any t ∈ (0, T)

‖Θv(t, ·) −Θw(t, ·)‖L2(R) ≤
1
2

∫ t

0
‖∂xK(t − s, ·)‖L2(R)

∥∥∥(v2 −w2
)
(s, ·)

∥∥∥
L1(R)

ds

+
∫ t

0
‖∂xK(t − s, ·)‖L1(R)

∥∥uφ(v −w)(s, ·)
∥∥
L2(R)ds

≤ 2K0t
1/4

∥∥∥v2 −w2
∥∥∥
C([0,T];L1(R))

+ 2K1t
1/2∥∥uφ∥∥C1

b
(R)‖v −w‖C([0,T];L2(R)),

(4.24)

and since,

∥∥∥v2 −w2
∥∥∥
C([0,T];L1(R))

≤
(
‖v‖C([0,T];L2(R)) + ‖w‖C([0,T];L2(R))

)
‖v −w‖C([0,T];L2(R))

≤ 2R‖v −w‖C([0,T];L2(R)),

(4.25)

we get

‖Θv(t, ·) −Θw(t, ·)‖L2(R) ≤
(
4RK0t

1/4 + 2K1t
1/2∥∥uφ∥∥C1

b
(R)

)
‖v −w‖C([0,T];L2(R)). (4.26)
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Moreover

‖∂x(Θv −Θw)(t, ·)‖L2(R) ≤
1
2

∫ t

0

∥∥∥∂xK(t − s, ·) ∗ ∂x
(
v2 −w2

)
(s, ·)

∥∥∥
L2(R)

ds

+
∫ t

0

∥∥∂xK(t − s, ·) ∗ ∂x
(
uφ(v −w)

)
(s, ·)

∥∥
L2(R)ds

≤ K0It
−1/4 sup

s∈(0,T]
s1/2‖(v∂xv −w∂xw)(s, ·)‖L1(R)

+K1J sup
s∈(0,T]

s1/2
∥∥∂x(uφ(v −w)

)
(s, ·)

∥∥
L2(R).

(4.27)

And since

‖(v∂xv −w∂xw)(t, ·)‖L1 ≤ ‖∂xw(t, ·)‖L2‖(v −w)(t, ·)‖L2 + ‖v(t, ·)‖L2‖∂x(v −w)(t, ·)‖L2 ,
(4.28)

then

t1/2‖(v∂xv −w∂xw)(t, ·)‖L1 ≤ ‖(v −w)(t, ·)‖L2 |‖w‖| + |‖v‖|t1/2‖∂x(v −w)(t, ·)‖L2

≤ 2R|‖v −w‖|.
(4.29)

Therefore, we obtain

‖∂x(Θv −Θw)(t, ·)‖L2(R) ≤ 2K0It
−1/4R|‖v −w‖| +K1J

∥∥uφ∥∥C1
b
(R)T

1/2|‖v −w‖|

+K1J
∥∥uφ∥∥C1

b
(R)|‖v −w‖|.

(4.30)

Finally, using (4.26) and (4.30), we get

|‖Θv−Θw‖| ≤
[
(2+I)2RK0T

1/4+(2+J)
∥∥uφ∥∥C1

b
(R)K1T

1/2+K1JT
∥∥uφ∥∥C1

b
(R)

]
‖|v−w‖|. (4.31)

Step 3 (conclusion). For any T∗ > 0 sufficiently small such that (4.23) holds true and

(2 + I)2RK0T
1/4
∗ + (2 + J)

∥∥uφ∥∥C1
b
(R)K1T

1/2
∗ +K1JT∗

∥∥uφ∥∥C1
b
(R) < 1, (4.32)

Θ is a contraction from BR into itself. The Banach fixed point theorem then implies that Θ
admits a unique fixed point v ∈ C([0, T∗];L2(R)) ∩ C((0, T∗];H1(R)) which is a mild solution
to (1.6).
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Lemma 4.2 (regularity H2 of v(t, ·)). Let v0 ∈ L2(R) and φ ∈ C2
b(R). There exists T ′

∗ > 0
that only depends on ‖v0‖L2(R) and ||uφ||C2

b
(R) such that (1.6) admits a unique mild solution v ∈

C([0, T ′
∗];L

2(R)) ∩ C((0, T ′
∗];H

2(R)). Moreover, v satisfies

sup
t∈(0,T ′

∗]
t1/2‖∂xv(t, ·)‖L2(R) < +∞, sup

t∈(0,T ′
∗]
t
∥∥∥∂2xxv(t, ·)∥∥∥

L2(R)
< +∞. (4.33)

Proof. To prove this result, we use again a contracting fixed point theorem. But this time, it is
the gradient of the solution v which is searched as a fixed point.

From Proposition 4.1, there exists T∗ > 0 which depends on ‖v0‖L2(R) and ‖uφ‖C1(R)

such that v ∈ C([0, T∗];L2(R)) ∩ C((0, T∗];H1(R)) is a mild solution to (1.6). Since v ∈
C((0, T∗];H1(R)), we can consider the gradient of v(t, ·) for any t ∈ (0, T∗]. Let then t0 ∈ (0, T∗)
and T ′

∗ ∈ (0, T∗ − t0]. We consider the same complete metric space X defined in the proof of
Proposition 4.1 and we take the norm |‖ · ‖| defined in (4.2):

X :=
{
w ∈ C

([
0, T ′

∗
]
;L2(R)

)
∩ C

((
0, T ′

∗
]
;H1(R)

)
s.t. w(0, ·) = w0, |‖w‖| < +∞

}
, (4.34)

with the initial data w0 = ∂xv(t0, ·).
We now wish to apply the fixed point theorem at the following function:

Θw : t ∈
[
0, T ′

∗
]
−→ K(t, ·) ∗w0 −

∫ t

0
∂xK(t − s, ·) ∗ (vw)(s, ·)ds

−
∫ t

0
∂xK(t − s, ·) ∗

(
∂x

(
uφ

)
v
)
(s, ·)ds

−
∫ t

0
∂xK(t − s, ·) ∗

(
uφw

)
(s, ·)ds,

(4.35)

where v(t, ·) := v(t0 + t, ·). First, we leave the reader to verify that Θ maps X into itself. The
proof is similar to the one given in Proposition 4.1.

For any w ∈ X, we have from Young inequalities and Remark 2.4

‖Θw(t, ·)‖L2(R) ≤ eα0T
′
∗ ‖w0‖L2(R) + ‖v‖C([t0,T ′

∗];H1(R))|‖w‖|
∫ t

0
‖∂xK(t − s, ·)‖L2(R)ds

+
∥∥uφ∥∥C1

b
(R)‖v‖C([t0,T ′

∗];H1(R))

∫ t

0
‖∂xK(t − s, ·)‖L1(R)ds

+
∥∥uφ∥∥C1

b
(R)|‖w‖|

∫ t

0
‖∂xK(t − s, ·)‖L1(R)ds,

(4.36)

and from Proposition 2.2, we get

‖Θw(t, ·)‖L2 ≤ eα0T
′
∗ ‖w0‖L2 + 4K0T

′1/4
∗ ‖v‖C([t0,T ′

∗];H1)|‖w‖|

+ 2K1T
′1/2
∗

∥∥uφ∥∥C1
b
‖v‖C([t0,T ′

∗];H1) + 2K1T
′1/2
∗

∥∥uφ∥∥C1
b
|‖w‖|.

(4.37)
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Differentiating Θv(t, ·)with respect to the space variable, we obtain

∂xΘv(t, ·) = ∂xK(t, ·) ∗w0 −
∫ t

0
∂xK(t − s, ·) ∗ ∂x(vw)(s, ·)ds

−
∫ t

0
∂xK(t − s, ·) ∗ ∂x

(
∂x

(
uφ

)
v
)
(s, ·)ds −

∫ t

0
∂xK(t − s, ·) ∗ ∂x

(
uφw

)
(s, ·)ds,

(4.38)

and developing, we get

∂xΘv(t, ·) = ∂xK(t, ·) ∗w0 −
∫ t

0
∂xK(t − s, ·) ∗ [w∂xv + v∂xw](s, ·)ds

−
∫ t

0
∂xK(t − s, ·) ∗

[
∂2x

(
uφ

)
v + ∂x

(
uφ

)
∂xv

]
(s, ·)ds

−
∫ t

0
∂xK(t − s, ·) ∗

[
∂x

(
uφ

)
w + uφ∂xw

]
(s, ·)ds.

(4.39)

Now, from Young inequalities, we have

‖∂xΘv(t, ·)‖L2 ≤ ‖∂xK(t, ·)‖L1‖w0‖L2 +
∫ t

0
‖∂xK(t − s, ·)‖L2‖w∂xv(s, ·)‖L1ds

+
∫ t

0
‖∂xK(t − s, ·)‖L2‖v∂xw(s, ·)‖L1ds

+
∫ t

0
‖∂xK(t − s, ·)‖L1

[∥∥∥∂2x(uφ)v(s, ·)∥∥∥
L2

+
∥∥∂x(uφ)∂xv(s, ·)∥∥L2

]
ds

+
∫ t

0
‖∂xK(t − s, ·)‖L1

[∥∥∂x(uφ)w(s, ·)
∥∥
L2 +

∥∥uφ∂xw(s, ·)
∥∥
L2

]
ds.

(4.40)

Finally, from Proposition 2.2, we obtain

‖∂xΘv(t, ·)‖L2 ≤ t−1/2K1‖w0‖L2 + 4t1/4K0‖v‖C([t0;T ′
∗];H1)|‖w‖|

+
∫ t

0
K0(t − s)−3/4s−1/2ds‖v‖C([t0;T ′

∗];H1) sup
s∈(0,T ′

∗]
s1/2‖∂xw(s, ·)‖L2

+ 4K1t
1/2∥∥uφ∥∥C2

b
‖v‖C([t0;T ′

∗];H1) + 2K1t
1/2∥∥uφ∥∥C1

b
|‖w‖|

+
∫ t

0
K1(t − s)−1/2s−1/2ds

∥∥uφ∥∥C2
b

sup
s∈(0,T ′

∗]
s1/2‖∂xw(s, ·)‖L2 .

(4.41)
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In other words, we have for all t ∈ (0, T ′
∗]

t1/2‖∂xΘv(t, ·)‖L2 ≤ K1‖w0‖L2 + 4 T
′3/4
∗ K0‖v‖C([t0;T ′

∗];H1)|‖w‖|

+K0IT
′1/4
∗ ‖v‖C([t0;T ′

∗];H1)‖|w|‖ + 4K1T
′
∗
∥∥uφ∥∥C2

b
‖v‖C([t0;T ′

∗];H1)

+ 2K1πT
′
∗
∥∥8φ∥∥C1

b
|‖w‖| +K1T

′1/2
∗

∥∥uφ∥∥C2
b
|‖w‖|,

(4.42)

where I = B(1/2, 1/4). Hence, using (4.37) and (4.42), we get

|‖Θw‖| ≤ eα0T ′
∗ ‖w0‖L2(R) +K1‖w0‖L2(R) + 2K1

∥∥uφ∥∥C2
b
(R)‖v‖C([t0;T ′

∗];H1(R))

(
2T ′

∗ + T
′1/2
∗

)

+ C|‖w‖|
(
T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗

)
,

(4.43)

for some positive constant C which depends on K0, K1, ‖v‖C([t0;T ′
∗];H1(R)) and ‖uφ‖C2

b
(R).

We next leave reader to verify that: for any w1, w2 ∈ X,

‖|Θw1 −Θw2|‖ ≤ C′
(
T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗

)
|‖w1 −w2‖|, (4.44)

where C′ is a positive constant which depends on K0, K1, ‖v‖C([t0;T ′
∗];H1(R)) and ‖uφ‖C2

b
(R).

Then, if T ′
∗ > 0 satisfies

eα0T
′
∗ ‖w0‖L2(R) +K1‖w0‖L2(R) + 2K1

∥∥uφ∥∥C1
b
(R)‖v‖C([t0;T ′];H1(R))

(
2T ′

∗ + T
′1/2
∗

)
+ CR

(
T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗

)
≤ R,

C′
(
T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T∗

)
< 1,

(4.45)

Θ : BR(X) → BR(X) is a contraction, where BR(X) is ball of X of radius R centered at the
origin. Using a contracting point fixed theorem, there exists a unique fixed point, which we
denote byw. But it is easy to see that Θ∂xv = ∂xv taking into account the space derived from
the Duhamel formulation (2.1). Thanks to a uniqueness argument, we deduce that w = ∂xv
and thus that v ∈ C((0, T ′

∗];H
2(R)), which completes the proof of this lemma.

Let us now prove the global-in-time existence of mild solution v.

Proposition 4.3 (global-in-time existence). Let v0 ∈ L2(R), φ ∈ C2
b(R) and T > 0. Then, there

exists a (unique) mild solution v ∈ C([0, T];L2(R))∩C((0, T];H2(R)) to (1.6). Moreover, v satisfies
the PDE (1.6) in the distribution sense.
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Proof.

Step 1 (v is a distribution solution). Taking the Fourier transform with respect to the space
variable in (2.1), we get for all t ∈ [0, T] and all ξ ∈ R,

F(v(t, ·))(ξ) = e−tψI(ξ)Fv0(ξ) −
∫ t

0
iπξe−(t−s)ψI(ξ)F

(
v2(s, ·)

)
(ξ)ds

−
∫ t

0
2iπξe−(t−s)ψI(ξ)F

(
uφv(s, ·)

)
(ξ)ds.

(4.46)

Define

G(t, ξ) = −
∫ t

0
2iπξe−(t−s)ψI(ξ)F

(
v2

2
+ uφv

)
(s, ·)(ξ)ds. (4.47)

Classical results on ODE imply that G is differentiable with respect to the time with

∂tG(t, ξ) + ψI(ξ)G(t, ξ) = −iπξF
(
v2(t, ·)

)
(ξ) − 2iπξF

((
uφv

)
(t, ·)

)
(ξ)

= −F
(
∂x

(
v2

2

)
(t, ·)

)
(ξ) − F

(
∂x

(
uφv

)
(t, ·)

)
(ξ).

(4.48)

Let us now prove that all terms in (4.48) are continuous with values in L2. Since, v ∈
C((0, T];H1(R)) then ∂x(v2), ∂x(uφv) ∈ C((0, T];L2(R)). We thus deduce that F(∂x(v2/2))
and F(∂x(uφv)) are continuous with values in L2(R). Moreover, (4.46) implies that

ψIG(t, ·) = ψI
(
F(v(t, ·)) − e−tψIFv0

)
, (4.49)

and so ψIG(t, ·) is continuous with values in L2. Indeed,

∫
R

∣∣ψI(ξ)G(t, ξ)
∣∣2dξ = ∫1

−1

∣∣ψI(ξ)G(t, ξ)
∣∣2dξ + ∫

R\(−1,1)

∣∣ψ(ξ)G(t, ξ)∣∣2 dξ

≤ sup
ξ∈[−1,1]

∣∣ψI(ξ)
∣∣2‖G(t, ·)‖2L2(R) + C

∫
R\(−1,1)

∣∣∣ξ2G(t, ξ)∣∣∣2dξ
≤ sup

ξ∈[−1,1]

∣∣ψI(ξ)
∣∣2‖G(t, ·)‖2L2(R)

+ C
∫

R\(−1,1)

∣∣∣F(
∂2xxv(t, ·)

)
− ξ2e−tψI(ξ)Fv0

∣∣∣2dξ
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≤ sup
ξ∈[−1,1]

∣∣ψI(ξ)
∣∣2‖G(t, ·)‖2L2(R) + C̃‖v(t, ·)‖

2
H2(R)

+ C̃‖v0‖2L2(R) + C‖v(t, ·)‖H2‖v0‖L2

<∞,

(4.50)

because ψI behaves at infinity as | · |2. C, C̃ are two positive constants. Hence, we have that
the function t → ψIG(t, ·) ∈ L2(R,C) is continuous. Finally, we have proved that all the
terms in (4.48) are continuous with values in L2. Therefore, from (4.48), we get that G ∈
C1([0, T];L2(R,C)) and then

d

dt
(G(t, ·)) + ψIG(t, ·) = −F

(
∂x

(
v2

2

)
(t, ·)

)
− F

(
∂x

(
uφv

)
(t, ·)

)
. (4.51)

Moreover, t ∈ [0, T] → e−tψIFv0 ∈ L2(R,C) is C1 with

d

dt

(
e−tψIFv0

)
+ ψIe

−tψIFv0 = 0. (4.52)

From (4.46), we infer that Fv is C1 on [0, T]with values in L2 with

d

dt
F(v(t, ·)) = −ψIF(v(t, ·)) − F

(
∂x

(
v2

2

)
(t, ·)

)
− F

(
∂x

(
uφv

)
(t, ·)

)
. (4.53)

Since F is an isometry of L2, we deduce that v ∈ C1([0, T];L2(R)) and by (1.3), we get

d

dt
(v(t, ·)) = −F−1(ψIF(v(t, ·))

)
− ∂x

(
v2

2

)
(t, ·) − ∂x

(
uφv

)
(t, ·)

= −I[v(t, ·)] + ∂2xxv(t, ·) − ∂x

(
v2

2

)
(t, ·) − ∂x

(
uφv

)
(t, ·).

(4.54)

We are now going to prove that v satisfies the PDE (1.6) in the distribution sense. Let us note

w(t, ·) := −I[v(t, ·)] + ∂2xxv(t, ·) − ∂x

(
v2

2

)
(t, ·) − ∂x

(
uφv

)
(t, ·), (4.55)

and let us show that

∂tv = w in D′((0, T) × R). (4.56)
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By definition, we have for any ϕ ∈ D(0, T) and ψ ∈ D(R):

〈
∂tv, ϕψ

〉
= −

∫T

0

∫
R

v(t, x)
dϕ

dt
ψ(x)dt dx

= −
∫T

0

(∫
R

v(t, x)ψ(x)dx
)
dϕ(t)
dt

dt.

(4.57)

Therefore, it is enough to prove that

∫T

0

(∫
R

w(t, x)ψ(x)dx
)
ϕ(t)dt = −

∫T

0

(∫
R

v(t, x)ψ(x)dx
)
ϕ′(t)dt, (4.58)

that is,

d

dt

∫
R

v(t, x)ψ(x)dx =
∫

R

w(t, x)ψ(x)dx, (4.59)

in the sense of D′(0, T). But by (4.54), we have that the function

t ∈ (0, T) �−→
∫

R

v(t, x)ψ(x)dx ∈ R (4.60)

is C1 and

d

dt

∫
R

v(t, x)ψ(x)dx =
∫

R

w(t, x)ψ(x)dx (4.61)

in the classical sense, which proves that the mild solution v is a distribution solution of (1.6).

Step 2 (priori estimate). By Step 1, we have

∂tv + ∂x

(
v2

2
+ uφv

)
+ I[v] − ∂2xxv = 0 (4.62)

in the distribution sense. Therefore, multiplying this equality by v and integrating with
respect to the space variable, we get:

∫
R

vtv dx +
∫

R

(I[v] − vxx)v dx +
∫

R

(
uφv

)
x
v dx = 0, (4.63)

because the nonlinear term is zero. Indeed, integrating by parts, we have

∫
R

∂x

(
v2

2

)
v dx = −

∫
R

v2

2
∂xv dx = −1

2

∫
R

∂x

(
v2

2

)
v dx. (4.64)
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There is no boundary term from the infinity because for all t ∈ (0, T], v(t, ·) ∈ H2(R). Using
(1.3) and the fact that

∫
R
(I[v] − ∂2xxv)v dx is real, we get

∫
R

(
I[v] − ∂2xxv

)
v dx =

∫
R

F−1(ψIFv
)
v dx =

∫
R

ψI|Fv|2dξ =
∫

R

Re
(
ψI

)
|Fv|2dξ. (4.65)

Moreover, since uφv ∈ H1(R) we have

∫
R

(
uφv

)
x
v dx = −

∫
R

uφvvx dx = −
∫

R

uφ

(
v2

2

)
x

dx =
∫

R

(
∂xuφ

)v2

2
dx. (4.66)

Using (4.63), (4.65), and (4.66), we obtain

1
2
d

dt
‖v(t, ·)‖2L2 ≤

(
α0 + Cφ

)
‖v(t, ·)‖2L2 , (4.67)

where α0 = −min Re(ψI) > 0 and Cφ = (1/2)||uφ||C1
b
. Finally, we get for all t ∈ [0, T] the

following estimate:

‖v(t, ·)‖L2(R) ≤ e(α0+Cφ)t‖v0‖L2(R). (4.68)

Step 3 (global-in-time existence). Up to this point, we know thanks to Proposition 4.1 and
Lemma 4.2 that there exists T∗ = T∗(||v0||L2(R), ||uφ||C2

b
(R)) > 0 such that v ∈ C([0, T∗];L2(R)) ∩

C((0, T∗];H2(R)) is a mild solution of (1.6) on (0, T∗]. Let us define

t0 := sup{t > 0/there exists a mild solution of (1.6) on (0, t) with initial condition v0}.
(4.69)

To prove the global-in-time existence of a mild solution, we have to prove that t0 ≥ T , where
T is any positive constant. Assume by contradiction that t0 < T . With again the help of
Proposition 4.1, there exists T ′

∗ > 0 such that for any initial data w0 that satisfy

‖w0‖L2(R) ≤ e(α0+Cφ)t0‖v0‖L2(R), (4.70)

it exists a mild solution w on (0, T ′
∗]. Using (4.68), we have that w0 := v(t0 − T ′

∗/2, ·) satisfies
(4.70). Therefore, using an argument of uniqueness, we deduce that v(t0 − T ′

∗/2+ t, ·) = w(t, ·)
for all t ∈ [0, T ′

∗/2). To finish with, we define ṽ by ṽ = v on [0, t0) and ṽ(t0−T ′
∗/2+ t, ·) = w(t, ·)

for t ∈ [T ′
∗/2, T

′
∗]. Hence, ṽ is a mild solution on [0, t0 + T ′

∗/2] with initial datum v0, which
gives us a contradiction.

5. Regularity of the Solution

This section is devoted to the proof of the existence of classical solutions v to (1.6).
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Proposition 5.1 (Solution in the classical sense). Let v0 ∈ L2(R), φ ∈ C2
b(R) and T > 0. The

unique mild solution v ∈ C([0, T];L2(R)) ∩ C((0, T];H2(R)) of (1.6) belongs to C1,2((0, T] × R)
and satisfies

∂tv + ∂x

(
v2

2
+ uφv

)
+ I[v] − ∂2xxv = 0, (5.1)

on (0, T] × R in the classical sense.

Proof.

Step 1 (C2-regularity in space). Let us take any t0 ∈ (0, T] as initial time and let T ′ ∈ (0, T − t0].
Differentiating the Duhamel formulation (2.1) two times with respect to the space, we get for
any t ∈ [0, T ′],

∂2xxv(t + t0, ·) = K(t, ·) ∗ ∂2xxv(t0, ·) −
∫ t

0
∂xK(t − s, ·) ∗ (u1 + u2)(t0 + s, ·)ds, (5.2)

where u1 := (∂xv)
2 + v∂2xxv and u2 := v∂2xuφ + 2∂xuφ∂xv + uφ∂2xxv. Since v ∈ C((0, T];H2(R))

then u2 ∈ C((0, T];L2(R)) and from the Sobolev embedding H2(R) ↪→ C1
b(R), we get that

u1 ∈ C((0, T];L1(R) ∩ L2(R)). Let us now define the following functions:

Fi(t, x) :=
∫ t

0
∂xK(t − s, ·) ∗ ui(t0 + s, ·)(x)ds, for i = 1, 2. (5.3)

For all x, y ∈ R, we have thanks to Cauchy-Schwartz inequality

∣∣∂xK(t − s, ·) ∗ ui(t0 + s, ·)(x) − ∂xK(t − s, ·) ∗ ui(t0 + s, ·)
(
y
)∣∣

≤
∫

R

|∂xK(t − s, z)|
∣∣ui(t0 + s, x − z) − ui

(
t0 + s, y − z

)∣∣dz
≤
∥∥T(x−y)(ui(t0 + s, ·)) − ui(s + t0, ·)

∥∥
L2(R)‖∂xK(t − s, ·)‖L2(R),

(5.4)

where Tzϕ denotes the translated function x → ϕ(x + z).
Therefore, for all x, y ∈ R and all t ∈ [0, T ′], we deduce that

∣∣Fi(t, x) − Fi(t, y)∣∣ ≤
∫ t

0
K0(t − s)−3/4

∥∥T(x−y)(ui(t0 + s, ·)) − ui(t0 + s, ·)
∥∥
L2(R)ds

≤ 4K0T
′1/4 sup

s∈[0,T′]

∥∥T(x−y)(ui(s, ·)) − ui(s, ·)
∥∥
L2(R),

(5.5)
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where ui(s, ·) = ui(t0+s, ·). Then, ui is uniformly continuous with values in L2 as a continuous
function on a compact set [0, T ′]. Therefore, for any ε > 0, there exists a finite sequence 0 =
s0 < s1 < · · · < sN = T ′ such that for any s ∈ [0, T ′], there exists j ∈ {0, . . . ,N − 1} such that

∥∥ui(s, ·) − ui(sj , ·)∥∥L2(R) ≤ ε. (5.6)

Therefore, using (5.5) we have

∣∣Fi(t, x) − Fi(t, y)∣∣ ≤ 4K0T
′1/4 sup

s∈[0,T ′]

∥∥T(x−y)(ui(s, ·)) − T(x−y)
(
ui
(
sj , ·

))∥∥
L2

+ 4K0T
′1/4

{∥∥T(x−y)
(
ui
(
sj , ·

))
−ui

(
sj , ·

)∥∥
L2+ sup

s∈[0,T]

∥∥ui(s, ·)−ui(sj , ·)∥∥L2

}
.

(5.7)

And since ‖T(x−y)(ui(s, ·)) − T(x−y)(ui(sj , ·))‖L2(R) = ‖ui(s, ·) − ui(sj , ·)‖L2(R), we get

∣∣Fi(t, x) − Fi(t, y)∣∣ ≤ 4K0T
′1/4

{∥∥T(x−y)
(
ui
(
sj , ·

))
− ui

(
sj , ·

)∥∥
L2(R) + 2ε

}
. (5.8)

And since the translated function is continuous in L2(R), we have

∥∥T(x−y)
(
ui
(
sj , ·

))
− ui

(
sj , ·

)∥∥
L2(R) −→ 0, (5.9)

as (x − y) → 0. Hence,

lim sup
(x−y)→ 0

∣∣Fi(t, x) − Fi(t, y)∣∣ ≤ 2ε. (5.10)

Taking the infimum with respect to ε > 0, we infer that Fi is continuous with respect
to the variable x. Moreover, arguing as the proof of Proposition 2.9, we get that Fi ∈
C([0, T ′];L2(R)). From classical results, we then deduce that Fi is continuous with respect
to the couple (t, x) on [0, T ′] × R.

Moreover, since v(t0, ·) ∈ H2(R), we can easily check that (t, x) → K(t, ·)∗∂2xxv(t0, ·)(x)
is continuous on (0, T] × R. Finally, we get that ∂2xxv ∈ C([t0, T] × R) and since t0 is arbitrary
in (0, T], we conclude that ∂2xxv ∈ C((0, T] × R).

Step 2 (C1-regularity in time). From Proposition 4.3, we know that the terms ∂tv and
−∂x(v2/2 + uφv) + ∂2xxv − I[v] have the same regularity. Moreover, by the Step 1 of this
proposition, we have that ∂2xxv ∈ C((0, T] × R), and from Sobolev embeddings and
Remark 2.8, we deduce that ∂x(v2/2 + uφv) and I[v] belong to C((0, T] × R). Finally, we
obtain that ∂tv ∈ C((0, T] × R) and thus v ∈ C1,2((0, T] × R). The proof of this proposition is
now complete.
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