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Some oscillation criteria are established for the second-order superlinear neutral differential
equations (r(t)|z′(t)|α−1z′(t))′ + f(t, x(σ(t))) = 0, t ≥ t0, where z(t) = x(t) + p(t)x(τ(t)), τ(t) ≥ t,
σ(t) ≥ t, p ∈ C([t0,∞), [0, p0]), and α ≥ 1. Our results are based on the cases

∫∞
t0
1/r1/α(t)dt = ∞ or

∫∞
t0
1/r1/α(t)dt <∞. Two examples are also provided to illustrate these results.

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order superlinear differ-
ential equation

(
r(t)
∣∣z′(t)

∣∣α−1z′(t)
)′

+ f(t, x(σ(t))) = 0, t ≥ t0, (1.1)

where α ≥ 1 is a constant, z(t) = x(t) + p(t)x(τ(t)).
Throughout this paper, we will assume the following hypotheses:

(A1) r ∈ C1([t0,∞),�),r(t) > 0 for t ≥ t0;
(A2) p ∈ C([t0,∞), [0, p0]), where p0 is a constant;

(A3) τ ∈ C1([t0,∞),�), τ ′(t) ≥ τ0 > 0, τ(t) ≥ t;
(A4) σ ∈ C([t0,∞),�), σ(t) ≥ t, τ ◦ σ = σ ◦ τ ;
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(A5) f(t, u) ∈ C([t0,∞)×�,�), and there exists a function q ∈ C([t0,∞), [0,∞)) such that

f(t, u) signu ≥ q(t)|u|α, for u/= 0, t ≥ t0. (1.2)

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),�) for some Tx ≥ t0 which has
the property that r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),�) and satisfies (1.1) on [Tx,∞). We consider
only those solutions x which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. As is customary, a
solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞), otherwise, it is
called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

We note that neutral differential equations find numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1].

In the last few years, there aremany studies that have beenmade on the oscillation and
asymptotic behavior of solutions of discrete and continuous equations; see, for example, [2–
28]. Agarwal et al. [5], Chern et al. [6], Džurina and Stavroulakis [7], Kusano and Yoshida [8],
Kusano andNaito [9], Mirzov [10], and Sun andMeng [11] observed some similar properties
between

(
r(t)
∣∣x′(t)

∣∣α−1x′(t)
)′

+ q(t)|x(σ(t))|α−1x(σ(t)) = 0 (1.3)

and the corresponding linear equations

(
r(t)x′(t)

)′ + q(t)x(t) = 0. (1.4)

Baculı́ková [12] established some new oscillation results for (1.3) when α = 1. In 1989, Philos
[13] obtained some Philos-type oscillation criteria for (1.4).

Recently, many results have been obtained on oscillation and nonoscillation of neutral
differential equations, and we refer the reader to [14–35] and the references cited therein. Liu
and Bai [16], Xu and Meng [17, 18], Dong [19], Baculı́ková and Lacková [20], and Jiang and
Li [21] established some oscillation criteria for (1.3)with neutral term under the assumptions
τ(t) ≤ t, σ(t) ≤ t,

R(t) =
∫ t

t0

1
r1/α(s)

ds −→ ∞ as t −→ ∞, (1.5)

∫∞

t0

1
r1/α(t)

dt <∞. (1.6)

Saker and O’Regan [24] studied the oscillatory behavior of (1.1) when 0 ≤ p(t) < 1,
τ(t) ≤ t and σ(t) > t.

Han et al. [26] examined the oscillation of second-order nonlinear neutral differential
equation

(
r(t)
[
x(t) + p(t)x(τ(t))

]′)′ + q(t)f(x(σ(t))) = 0, t ≥ t0, (1.7)
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where τ(t) ≤ t, σ(t) ≤ t, τ ′(t) = τ0 > 0, 0 ≤ p(t) ≤ p0 < ∞, and the authors obtained some
oscillation criteria for (1.7).

However, there are few results regarding the oscillatory problem of (1.1)when τ(t) ≥ t
and σ(t) ≥ t. Our aim in this paper is to establish some oscillation criteria for (1.1) under the
case when τ(t) ≥ t and σ(t) ≥ t.

The paper is organized as follows. In Section 2, we will establish an inequality to prove
our results. In Section 3, some oscillation criteria are obtained for (1.1). In Section 4, we give
two examples to show the importance of the main results.

All functional inequalities considered in this paper are assumed to hold eventually,
that is, they are satisfied for all t large enough.

2. Lemma

In this section, we give the following lemma, which we will use in the proofs of our main
results.

Lemma 2.1. Assume that α ≥ 1, a, b ∈ �. If a ≥ 0, b ≥ 0, then

aα + bα ≥ 1
2α−1

(a + b)α (2.1)

holds.

Proof. (i) Suppose that a = 0 or b = 0. Obviously, we have (2.1). (ii) Suppose that a > 0, b > 0.
Define the function g by g(u) = uα, u ∈ (0,∞). Then g ′′(u) = α(α − 1)uα−2 ≥ 0 for u > 0. Thus,
g is a convex function. By the definition of convex function, for λ = 1/2, a, b ∈ (0,∞), we
have

g

(
a + b
2

)
≤ g(a) + g(b)

2
, (2.2)

that is,

aα + bα ≥ 1
2α−1

(a + b)α. (2.3)

This completes the proof.

3. Main Results

In this section, we will establish some oscillation criteria for (1.1).

First, we establish two comparison theorems which enable us to reduce the problem
of the oscillation of (1.1) to the research of the first-order differential inequalities.
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Theorem 3.1. Suppose that (1.5) holds. If the first-order neutral differential inequality

[

u(t) +

(
p0
)α

τ0
u(τ(t))

]′
+

1
2α−1

Q(t)(R(σ(t)) − R(t1))αu(σ(t)) ≤ 0 (3.1)

has no positive solution for all sufficiently large t1, where Q(t) = min{q(t), q(τ(t))}, then every
solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. In view of (1.1), we obtain

(
r(t)
∣∣z′(t)

∣∣α−1z′(t)
)′

≤ −q(t)xα(σ(t)) ≤ 0, t ≥ t1. (3.2)

Thus, r(t)|z′(t)|α−1z′(t) is decreasing function. Now we have two possible cases for z′(t): (i)
z′(t) < 0 eventually, (ii) z′(t) > 0 eventually.

Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, from (3.2), we get

r(t)
∣
∣z′(t)

∣
∣α−1z′(t) ≤ r(t2)

∣
∣z′(t2)

∣
∣α−1z′(t2), t ≥ t2, (3.3)

which implies that

z(t) ≤ z(t2) − r1/α(t2)
∣∣z′(t2)

∣∣
∫ t

t2

r−1/α(s)ds. (3.4)

Letting t → ∞, by (1.5), we find z(t) → −∞, which is a contradiction. Thus

z′(t) > 0 (3.5)

for t ≥ t2.
By applying (1.1), for all sufficiently large t, we obtain

(
r(t)
(
z′(t)

)α)′ + q(t)xα(σ(t)) +
(
p0
)α
q(τ(t))xα(σ(τ(t))) +

(
p0
)α

τ ′(t)
(
r(τ(t))

(
z′(τ(t))

)α)′ ≤ 0.

(3.6)

Using inequality (2.1), (3.2), (3.5), τ ◦ σ = σ ◦ τ , and the definition of z, we conclude that

(
r(t)
(
z′(t)

)α)′ +

(
p0
)α

τ0
r(τ(t))

(
z′(τ(t))α

)′ +
1

2α−1
Q(t)zα(σ(t)) ≤ 0. (3.7)
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It follows from (3.2) and (3.5) that u(t) = r(t)(z′(t))α > 0 is decreasing and then

z(t) ≥
∫ t

t2

(
r(s)(z′(s))α

)1/α

r1/α(s)
ds ≥ u1/α(t)

∫ t

t2

1
r1/α(s)

ds = u1/α(t)(R(t) − R(t2)). (3.8)

Thus, from (3.7) and the above inequality, we find

[

u(t) +

(
p0
)α

τ0
u(τ(t))

]′
+

1
2α−1

Q(t)(R(σ(t)) − R(t2))αu(σ(t)) ≤ 0. (3.9)

That is, inequality (3.1) has a positive solution u; this is a contradiction. The proof is
complete.

Theorem 3.2. Suppose that (1.5) holds. If the first-order differential inequality

η′(t) +
τ0

2α−1
(
τ0 +

(
p0
)α)Q(t)(R(σ(t)) − R(t1))αη(σ(t)) ≤ 0 (3.10)

has no positive solution for all sufficiently large t1, where Q is defined as in Theorem 3.1, then every
solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain that u(t) = r(t)(z′(t))α is
decreasing, and it satisfies inequality (3.1). Set η(t) = u(t)+ (p0)αu(τ(t))/τ0. From τ(t) ≥ t, we
get

η(t) = u(t) +

(
p0
)α

τ0
u(τ(t)) ≤

(

1 +

(
p0
)α

τ0

)

u(t). (3.11)

In view of the above inequality and (3.1), we see that

η′(t) +
τ0

2α−1
(
τ0 +

(
p0
)α)Q(t)(R(σ(t)) − R(t1))αη(σ(t)) ≤ 0. (3.12)

That is, inequality (3.10) has a positive solution η; this is a contradiction. The proof is
complete.

Next, using Riccati transformation technique, we obtain the following results.

Theorem 3.3. Suppose that (1.5) holds. Moreover, assume that there exists ρ ∈ C1([t0,∞), (0,∞))
such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(

1 +

(
p0
)α

τ0

)
r(s)
(
ρ′+(s)

)α+1
(
ρ(s)

)α

]

ds = ∞ (3.13)
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holds, where Q is defined as in Theorem 3.1, ρ′+(t) = max{0, ρ′(t)}. Then every solution of (1.1)
oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2)–(3.7).

Define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z(t))α
, t ≥ t2. (3.14)

Thus ω(t) > 0 for t ≥ t2. Differentiating (3.14) we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z(t))α
+ ρ(t)

(
r(t)(z′(t))α

)′

(z(t))α
− αρ(t)r(t)(z

′(t))αzα−1(t)z′(t)

(z(t))2α
. (3.15)

Hence, by (3.14) and (3.15), we see that

ω′(t) =
ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′

(z(t))α
− α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t). (3.16)

Similarly, we introduce another Riccati substitution

υ(t) = ρ(t)
r(τ(t))(z′(τ(t)))α

(z(t))α
, t ≥ t2. (3.17)

Then υ(t) > 0 for t ≥ t2. From (3.2), (3.5), and τ(t) ≥ t, we have

z′(t) ≥
(
r(τ(t))
r(t)

)1/α

z′(τ(t)). (3.18)

Differentiating (3.17), we find

υ′(t) = ρ′(t)
r(τ(t))(z′(τ(t)))α

(z(t))α
+ ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− αρ(t)r(τ(t))(z

′(τ(t)))αzα−1(t)z′(t)

(z(t))2α
.

(3.19)

Therefore, by (3.17), (3.18), and (3.19), we see that

υ′(t) ≤ ρ′(t)
ρ(t)

υ(t) + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t). (3.20)
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Thus, from (3.16) and (3.20), we have

ω′(t) +

(
p0
)α

τ0
υ′(t) ≤ ρ(t)

(
r(t)(z′(t))α

)′ +
((
p0
)α
/τ0
)(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α

+
ρ′(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t) +

(
p0
)α

τ0

ρ′(t)
ρ(t)

υ(t)

−
(
p0
)α

τ0

α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t).

(3.21)

It follows from (3.5), (3.7), and σ(t) ≥ t that

ω′(t) +

(
p0
)α

τ0
υ′(t) ≤ − 1

2α−1
ρ(t)Q(t) +

ρ′+(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t)

+

(
p0
)α

τ0

ρ′+(t)
ρ(t)

υ(t) −
(
p0
)α

τ0

α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t).

(3.22)

Integrating the above inequality from t2 to t, we obtain

ω(t) −ω(t2) +
(
p0
)α

τ0
υ(t) −

(
p0
)α

τ0
υ(t2)

≤ −
∫ t

t2

1
2α−1

ρ(s)Q(s)ds +
∫ t

t2

[
ρ′+(s)
ρ(s)

ω(s) − α

ρ1/α(s)r1/α(s)
ω(α+1)/α(s)

]

ds

+
∫ t

t2

(
p0
)α

τ0

[
ρ′+(s)
ρ(s)

υ(s) − α

ρ1/α(s)r1/α(s)
υ(α+1)/α(s)

]

ds.

(3.23)

Define

A :=

[
α

ρ1/α(t)r1/α(t)

]α/(α+1)
ω(t), B :=

⎡

⎣ρ
′
+(t)
ρ(t)

α

α + 1

[
α

ρ1/α(t)r1/α(t)

]−α/(α+1)⎤

⎦

α

. (3.24)

Using inequality

α + 1
α

AB1/α −A(α+1)/α ≤ 1
α
B(α+1)/α, for A ≥ 0, B ≥ 0 are constants, (3.25)

we have

ρ′+(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t) ≤ 1

(α + 1)α+1
r(t)
(
ρ′+(t)

)α+1

ρ(t)α
. (3.26)
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Similarly, we obtain

ρ′+(t)
ρ(t)

υ(t) − α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t) ≤ 1

(α + 1)α+1
r(t)
(
ρ′+(t)

)α+1

ρ(t)α
. (3.27)

Thus, from (3.23), we get

ω(t) −ω(t2) +
(
p0
)α

τ0
υ(t) −

(
p0
)α

τ0
υ(t2)

≤ −
∫ t

t2

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(

1 +

(
p0
)α

τ0

)
r(s)
(
ρ′+(s)

)α+1

ρ(s)α

]

ds,

(3.28)

which contradicts (3.13). This completes the proof.

As an immediate consequence of Theorem 3.3 we get the following.

Corollary 3.4. Let assumption (3.13) in Theorem 3.3 be replaced by

lim sup
t→∞

∫ t

t0

ρ(s)Q(s)ds = ∞,

lim sup
t→∞

∫ t

t0

r(s)
(
ρ′+(s)

)α+1
(
ρ(s)

)α ds <∞.

(3.29)

Then every solution of (1.1) oscillates.

From Theorem 3.3 by choosing the function ρ, appropriately, we can obtain different
sufficient conditions for oscillation of (1.1), and if we define a function ρ by ρ(t) = 1, and
ρ(t) = t, we have the following oscillation results.

Corollary 3.5. Suppose that (1.5) holds. If

lim sup
t→∞

∫ t

t0

Q(s)ds = ∞, (3.30)

where Q is defined as in Theorem 3.1, then every solution of (1.1) oscillates.

Corollary 3.6. Suppose that (1.5) holds. If

lim sup
t→∞

∫ t

t0

[
sQ(s)
2α−1

− 1

(α + 1)α+1

(

1 +

(
p0
)α

τ0

)
r(s)
sα

]

ds = ∞, (3.31)

where Q is defined as in Theorem 3.1, then every solution of (1.1) oscillates.
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In the following theorem, we present a Philos-type oscillation criterion for (1.1).
First, we introduce a class of functions �. Let

� 0 = {(t, s) : t > s ≥ t0}, � = {(t, s) : t ≥ s ≥ t0}. (3.32)

The functionH ∈ C(� ,�) is said to belong to the class � (defined byH ∈ �, for short) if

(i) H(t, t) = 0, for t ≥ t0, H(t, s) > 0, for (t, s) ∈ � 0 ;

(ii) H has a continuous and nonpositive partial derivative ∂H(t, s)/∂s on D0 with
respect to s.

We assume that ς(t) and ρ(t) for t ≥ t0 are given continuous functions such that ρ(t) > 0
and differentiable and define

θ(t) =
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α, ψ(t) = ρ(t)
{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}
,

φ(t, s) =
r(s)ρ(s)

(α + 1)α+1

(
θ(s) +

∂H(t, s)/∂s
H(t, s)

)α+1
.

(3.33)

Now, we give the following result.

Theorem 3.7. Suppose that (1.5) holds and α is a quotient of odd positive integers. Moreover, let
H ∈ � be such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)
(
ψ(s) + φ(t, s)

)
]

ds = ∞ (3.34)

holds, where Q is defined as in Theorem 3.1. Then every solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2)–(3.7). Define the Riccati
substitution ω by

ω(t) = ρ(t)
[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]
, t ≥ t2 ≥ t1. (3.35)

Then, we have

ω′(t) = ρ′(t)
[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]
+ ρ(t)

[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]′

=
ρ′(t)
ρ(t)

ω(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(t)(z′(t))α

)′

(z(t))α
− αρ(t)r(t)(z

′(t))α+1

(z(t))α+1
.

(3.36)
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Using (3.35), we get

ω′(t) =
ρ′(t)
ρ(t)

ω(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(t)(z′(t))α

)′

(z(t))α
− αρ(t)
r1/α(t)

[
ω(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

.

(3.37)

Let

A =
ω(t)
ρ(t)

, B = r(t)ς(t). (3.38)

By applying the inequality (see [21, 24])

A(1+α)/α − (A − B)1+α/α ≤ B1/α
[(

1 +
1
α

)
A − 1

α
B

]
, for α =

odd
odd

≥ 1, (3.39)

we see that

[
ω(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

≥ ω(1+α)/α(t)
ρ(1+α)/α(t)

+
1
α
(r(t)ς(t))(1+α)/α − α + 1

α

(r(t)ς(t))1/α

ρ(t)
ω(t). (3.40)

Substituting (3.40) into (3.37), we have

ω′(t) ≤
[
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α
]
ω(t) + ρ(t)

{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}

+ ρ(t)

(
r(t)(z′(t))α

)′

(z(t))α
− α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t).

(3.41)

That is,

ω′(t) ≤ θ(t)ω(t) + ψ(t) + ρ(t)
(
r(t)(z′(t))α

)′

(z(t))α
− α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t). (3.42)

Next, define another Riccati transformation u by

u(t) = ρ(t)
[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]
, t ≥ t2 ≥ t1. (3.43)
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Then, we have

u′(t) = ρ′(t)
[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]
+ ρ(t)

[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]′

=
ρ′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− αρ(t)r(τ(t))(z

′(τ(t)))αz′(t)

(z(t))α+1
.

(3.44)

From (3.2), (3.5), and τ(t) ≥ t, we have that (3.18) holds. Hence, we obtain

u′(t) ≤ ρ′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)

(z(t))α
− αρ(t)

(
r(τ(t))(z′(τ(t)))α

)(1+α)/α

r1/α(t)(z(t))α+1
.

(3.45)

Using (3.43), we get

u′(t) ≤ ρ′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− αρ(t)
r1/α(t)

[
u(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

.

(3.46)

Let

A =
u(t)
ρ(t)

, B = r(t)ς(t). (3.47)

By applying the inequality (3.39), we see that

[
u(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

≥ u(1+α)/α(t)
ρ(1+α)/α(t)

+
1
α
(r(t)ς(t))(1+α)/α − α + 1

α

(r(t)ς(t))1/α

ρ(t)
u(t). (3.48)

Substituting (3.48) into (3.46), we have

u′(t) ≤
[
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α
]
u(t) + ρ(t)

{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}

+ ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− α

r1/α(t)ρ1/α(t)
u(1+α)/α(t).

(3.49)

That is,

u′(t) ≤ θ(t)u(t) + ψ(t) + ρ(t)
(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α
− α

r1/α(t)ρ1/α(t)
u(1+α)/α(t). (3.50)
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By (3.42) and (3.50), we find

ω′(t) +

(
p0
)α

τ0
u′(t) ≤

(

1 +

(
p0
)α

τ0

)

ψ(t) + ρ(t)

(
r(t)(z′(t))α

)′ +
((
p0
)α
/τ0
)(
r(τ(t))(z′(τ(t)))α

)′

(z(t))α

+ θ(t)ω(t) − α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t) +

(
p0
)α

τ0
θ(t)u(t)

−
(
p0
)α

τ0

α

r1/α(t)ρ1/α(t)
u(1+α)/α(t).

(3.51)

In view of the above inequality, (3.5), (3.7), and σ(t) ≥ t, we get

ω′(t) +

(
p0
)α

τ0
u′(t) ≤

(

1 +

(
p0
)α

τ0

)

ψ(t) − ρ(t)Q(t)
2α−1

+ θ(t)ω(t) − α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t)

+

(
p0
)α

τ0
θ(t)u(t) −

(
p0
)α

τ0

α

r1/α(t)ρ1/α(t)
u(1+α)/α(t),

(3.52)

which follows that

∫ t

t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)

ψ(s)

]

ds

≤ −
∫ t

t2

H(t, s)ω′(s)ds +
∫ t

t2

H(t, s)θ(s)ω(s)ds

−
∫ t

t2

H(t, s)
αω(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds −
(
p0
)α

τ0

∫ t

t2

H(t, s)u′(s)ds

+

(
p0
)α

τ0

∫ t

t2

H(t, s)θ(s)u(s)ds −
(
p0
)α

τ0

∫ t

t2

H(t, s)
αu(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds.

(3.53)

Using the integration by parts formula andH(t, t) = 0, we have

∫ t

t2

H(t, s)ω′(s)ds = −H(t, t2)ω(t2) −
∫ t

t2

∂H(t, s)
∂s

ω(s)ds,

∫ t

t2

H(t, s)u′(s)ds = −H(t, t2)u(t2) −
∫ t

t2

∂H(t, s)
∂s

u(s)ds.

(3.54)
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So, by (3.53), we obtain

∫ t

t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)

ψ(s)

]

ds

≤ H(t, t2)ω(t2) +

(
p0
)α

τ0
H(t, t2)u(t2)

+
∫ t

t2

H(t, s)
[
θ(s) +

∂H(t, s)/∂s
H(t, s)

]
ω(s)ds −

∫ t

t2

H(t, s)
αω(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds

+

(
p0
)α

τ0

∫ t

t2

H(t, s)
[
θ(s) +

∂H(t, s)/∂s
H(t, s)

]
u(s)ds −

(
p0
)α

τ0

∫ t

t2

H(t, s)
αu(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds.

(3.55)

Using the inequality

By −Ay(α+1)/α ≤ αα

(α + 1)α+1
Bα+1

Aα
, (3.56)

where

A =
α

r1/α(s)ρ1/α(s)
, B = θ(s) +

∂H(t, s)/∂s
H(t, s)

, (3.57)

we have

∫ t

t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)
(
ψ(s) + φ(t, s)

)
]

ds ≤ H(t, t2)ω(t2) +

(
p0
)α

τ0
H(t, t2)u(t2)

(3.58)

due to (3.55), which yields that

1
H(t, t2)

∫ t

t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)
(
ψ(s) + φ(t, s)

)
]

ds ≤ ω(t2) +
(
p0
)α

τ0
u(t2),

(3.59)

which contradicts (3.34). The proof is complete.

From Theorem 3.7, we can obtain different oscillation conditions for all solutions of
(1.1) with different choices ofH ; the details are left to the reader.

Theorem 3.8. Assume that (1.6) and (3.30) hold. Furthermore, assume that 0 ≤ p(t) ≤ p1 < 1. If

∫∞

t0

[
1

r(s)

∫ s

t0

q(u)du

]1/α
ds = ∞, (3.60)

then every solution x of (1.1) oscillates or limt→∞x(t) = 0.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2). Thus r(t)|z′(t)|α−1z′(t) is
decreasing function, and there exists a t2 ≥ t1 such that z′(t) > 0, t ≥ t2 or z′(t) < 0, t ≥ t2.

Case 1. Assume that z′(t) > 0, for t ≥ t2. Proceeding as in the proof of Theorem 3.3 and setting
ρ(t) = t, we can obtain a contradiction with (3.31).

Case 2. Assume that z′(t) < 0, for t ≥ t2. Then there exists a finite limit

lim
t→∞

z(t) = l, (3.61)

where l ≥ 0. Next, we claim that l = 0. If not, then for any ε > 0, we have l < z(t) < l + ε,
eventually. Take 0 < ε < l(1 − p1)/p1. We calculate

x(t) = z(t) − p(t)x(τ(t)) > l − p1z(τ(t)) > l − p1(l + ε) = m(l + ε) > mz(t), (3.62)

where

m =
l

l + ε
− p1 =

l
(
1 − p1

) − εp1
l + ε

> 0. (3.63)

From (3.2) and (3.62), we have

(
r(t)
(−z′(t))α)′ ≥ q(t)xα(σ(t)) ≥ (ml)αq(t). (3.64)

Integrating the above inequality from t2 to t, we get

r(t)
(−z′(t))α − r(t2)

(−z′(t2)
)α ≥ (ml)α

∫ t

t2

q(s)ds, (3.65)

which implies

z′(t) ≤ −ml
[

1
r(t)

∫ t

t2

q(s)ds

]1/α
. (3.66)

Integrating the above inequality from t2 to t, we have

z(t) ≤ z(t2) −ml
∫ t

t2

[
1

r(s)

∫ s

t2

q(u)du

]1/α
ds, (3.67)

which yields z(t) → −∞; this is a contradiction. Hence, limt→∞z(t) = 0. Note that 0 < x(t) ≤
z(t). Then, limt→∞x(t) = 0. The proof is complete.
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4. Examples

In this section, we will give two examples to illustrate the main results.

Example 4.1. Consider the following linear neutral equation:

(x(t) + 2x(t + (2n − 1)π))′′ + x(t + (2m − 1)π) = 0, for t ≥ t0, (4.1)

where n andm are positive integers.
Let

r(t) = 1, p(t) = 2, τ(t) = t + (2n − 1)π, q(t) = 1, σ(t) = t + (2m − 1)π. (4.2)

Hence, Q(t) = 1. Obviously, all the conditions of Corollary 3.5 hold. Thus by Corollary 3.5,
every solution of (4.1) is oscillatory. It is easy to verify that x(t) = sin t is a solution of (4.1).

Example 4.2. Consider the following linear neutral equation:

(
e2t
(
x(t) +

1
2
x(t + 3)

)′)′
+
(
e2t+1 +

1
2
e2t−2

)
x(t + 1) = 0, for t ≥ t0, (4.3)

where n andm are positive integers.
Let

r(t) = e2t, p(t) =
1
2
, q(t) = e2t+1 + e2t−2/2, α = 1. (4.4)

Clearly, all the conditions of Theorem 3.8 hold. Thus by Theorem 3.8, every solution of (4.3)
is either oscillatory or limt→∞x(t) = 0. It is easy to verify that x(t) = e−t is a solution of (4.3).

Remark 4.3. Recent results cannot be applied to (4.1) and (4.3) since τ(t) ≥ t and σ(t) ≥ t.

Remark 4.4. Using the method given in this paper, we can get other oscillation criteria for
(1.1); the details are left to the reader.

Remark 4.5. It would be interesting to find another method to study (1.1) when τ ◦ σ /≡σ ◦ τ .
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