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We consider the operator L generated in L2(�+) by the differential expression l(y) = −y′′
+ q(x)y,

x ∈ �+ := [0,∞) and the boundary condition y′(0)/y(0) = α0 + α1λ + α2λ2, where q is a complex-
valued function and αi ∈ � , i = 0, 1, 2 with α2 /= 0. In this paper we obtain the properties of the
principal functions corresponding to the spectral singularities of L.

1. Introduction

Let T be a nonselfadjoint, closed operator in a Hilbert spaceH . We will denote the continuous
spectrum and the set of all eigenvalues of T by σc(T) and σd(T), respectively. Let us assume
that σc(T)/= ∅.

Definition 1.1. If λ = λ0 is a pole of the resolvent of T and λ0 ∈ σc(T), but λ0 /∈ σd(T), then λ0
is called a spectral singularity of T .

Let us consider the nonselfadjoint operator L0 generated in L2(�+) by the differential
expression

l0
(
y
)
= −y′′ + q(x)y, x ∈ �+ , (1.1)

and the boundary condition y(0) = 0, where q is a complex-valued function. The spectrum
and spectral expansion of L0 were investigated by Naı̆mark [1]. He proved that the spectrum
of L0 is composed of continuous spectrum, eigenvalues, and spectral singularities. He showed
that spectral singularities are on the continuous spectrum and are the poles of the resolvent
kernel, which are not eigenvalues.
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Lyance investigated the effect of the spectral singularities in the spectral expansion in
terms of the principal functions of L0 [2, 3]. He also showed that the spectral singularities
play an important role in the spectral analysis of L0.

The spectral analysis of the non-self-adjoint operator L1 generated in L2(�+) by (1.1)
and the boundary condition

∫∞

0
K(x)y(x)dx + αy′(0) − βy(0) = 0, (1.2)

in which K ∈ L2(�+) is a complex valued function and α, β ∈ � , was investigated in detail by
Krall [4–8] In [4] he obtained the adjoint L∗

1 of the operator L1. Note that L∗
1 deserves special

interest, since it is not a purely differential operator. The eigenfunction expansions of L1 and
L∗
1 were investigated in [5].

In [9] the results of Naimark were extended to the three-dimensional Schrödinger
operators.

The Laurent expansion of the resolvents of the abstract non-self-adjoint operators in
the neighborhood of the spectral singularities was studied in [10].

Using the boundary uniqueness theorems of analytic functions, the structure of
the eigenvalues and the spectral singularities of a quadratic pencil of Schrödinger, Klein-
Gordon, discrete Dirac, and discrete Schrödinger operators was investigated in [11–20]. By
regularization of a divergent integral, the effect of the spectral singularities in the spectral
expansion of a quadratic pencil of Schrödinger operators was obtained in [13]. In [19, 20] the
spectral expansion of the discrete Dirac and Schrödinger operators with spectral singularities
was derived using the generalized spectral function (in the sense of Marchenko [21]) and the
analytical properties of the Weyl function.

Let L denote the operator generated in L2(�+) by the differential expression

l
(
y
)
= −y′′ + q(x)y, x ∈ �+ (1.3)

and the boundary condition

y′(0)
y(0)

= α0 + α1λ + α2λ2, (1.4)

where q is a complex-valued function and αi ∈ � , i = 0, 1, 2with α2 /= 0. In this work we obtain
the properties of the principal functions corresponding to the spectral singularities of L.

2. The Jost Solution and Jost Function

We consider the equation

−y′′ + q(x)y = λ2y, x ∈ �+ (2.1)

related to the operator L.



Abstract and Applied Analysis 3

Now we will assume that the complex valued function q is almost everywhere
continuous in �+ and satisfies the following:

∫∞

0
x
∣∣q(x)

∣∣dx <∞. (2.2)

Let ϕ(x, λ) and e(x, λ) denote the solutions of (2.1) satisfying the conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = α0 + α1λ + α2λ2,

lim
x→∞

e(x, λ)e−iλx = 1, λ ∈ � +,
(2.3)

respectively. The solution e(x, λ) is called the Jost solution of (2.1). Note that, under the
condition (2.2), the solution ϕ(x, λ) is an entire function of λ and the Jost solution is an
analytic function of λ in � + := {λ : λ ∈ � , Im λ > 0} and continuous in � + = {λ : λ ∈
� , Im λ ≥ 0}.

In addition, Jost solution has a representation ([22])

e(x, λ) = eiλx +
∫∞

x

K(x, t)eiλtdt, λ ∈ � +, (2.4)

where the kernelK(x, t) satisfies

K(x, t) =
1
2

∫∞

(x+t)/2
q(s)ds +

1
2

∫ (x+t)/2

x

∫ t+s−x

t+x−s
q(s)K(s, u)duds

+
1
2

∫∞

(x+t)/2

∫ t+s−x

s

q(s)K(s, u)duds

(2.5)

and K(x, t) is continuously differentiable with respect to its arguments. We also have

|K(x, t)| ≤ cw
(
x + t
2

)
, (2.6)

|Kx(x, t)|, |Kt(x, t)| ≤ 1
4

∣∣
∣∣q
(
x + t
2

)∣∣
∣∣ + cw

(
x + t
2

)
, (2.7)

where w(x) =
∫∞
x
|q(s)|ds and c > 0 is a constant.

Let ê±(x, λ) denote the solutions of (2.1) subject to the conditions

lim
x→∞

e±iλxê±(x, λ) = 1, lim
x→∞

e±iλxê±x(x, λ) = ±iλ, λ ∈ � ±. (2.8)

Then

W
[
e(x, λ), ê±(x, λ)

]
= ∓2iλ, λ ∈ � ± ,

W[e(x, λ), e(x,−λ)] = −2iλ, λ ∈ � = (−∞,∞),
(2.9)

whereW[f1, f2] is the Wronskian of f1 and f2, ([23]).
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We will denote the Wronskian of the solutions ϕ(x, λ) with e(x, λ) and e(x,−λ) by
E+(λ) and E−(λ), respectively, where

E+(λ) := e′(0, λ) −
(
α0 + α1λ + α2λ2

)
e(0, λ), λ ∈ � +,

E−(λ) := e′(0,−λ) −
(
α0 + α1λ + α2λ2

)
e(0,−λ), λ ∈ � −,

(2.10)

and � − = {λ : λ ∈ � , Im λ ≤ 0}. Therefore E+ and E− are analytic in � + and � − = {λ : λ ∈
� , Im λ < 0}, respectively, and continuous up to real axis.

The functions E+ and E− are called Jost functions of L.

3. Eigenvalues and Spectral Singularities of L

Let

G(x, t; λ) =

⎧
⎨

⎩

G+(x, t; λ), λ ∈ � + ,

G−(x, t; λ), λ ∈ � −
(3.1)

be the Green function of L (obtained by the standard techniques), where

G+(x, t; λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ϕ(t, λ)e(x, λ)
E+(λ)

, 0 ≤ t ≤ x

−ϕ(x, λ)e(t, λ)
E+(λ)

, x ≤ t <∞

G−(x, t; λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ϕ(t, λ)e(x,−λ)
E−(λ)

, 0 ≤ t ≤ x

−ϕ(x, λ)e(t,−λ)
E−(λ)

, x ≤ t < ∞.

(3.2)

We will denote the set of eigenvalues and spectral singularities of L by σd(L) and σss(L),
respectively. From (3.1)–(3.2)

σd(L) = {λ : λ ∈ � + , E
+(λ) = 0} ∪ {λ : λ ∈ � − , E−(λ) = 0

}
,

σss(L) = {λ : λ ∈ �∗ , E+(λ) = 0} ∪ {λ : λ ∈ �∗ , E−(λ) = 0
}
,

(3.3)

where �∗ = � \ {0}.
From (3.3) we obtain that to investigate the structure of the eigenvalues and the

spectral singularities of L, we need to discuss the structure of the zeros of the functions E+

and E− in � + and � −, respectively.

Definition 3.1. The multiplicity of zero of the function E+(or E−) in � +(or � −) is called the
multiplicity of the corresponding eigenvalue and spectral singularity of L.
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We see from (2.9) that the functions

ψ+(x, λ) =
Ê+(λ)
2iλ

e(x, λ) − E+(λ)
2iλ

ê+(x, λ), λ ∈ � + ,

ψ−(x, λ) =
Ê−(λ)
2iλ

e(x,−λ) − E−(λ)
2iλ

ê−(x, λ), λ ∈ � − ,

ψ(x, λ) =
E+(λ)
2iλ

e(x,−λ) − E−(λ)
2iλ

e(x, λ), λ ∈ �∗

(3.4)

are the solutions of the boundary value problem

−y′′ + q(x)y = λ2y, x ∈ �+ ,

y′(0)
y(0)

= α0 + α1λ + α2λ2,
(3.5)

where

Ê±(λ) = ê±
′
(0, λ) −

(
α0 + α1λ + α2λ2

)
ê±(0, λ). (3.6)

Now let us assume that

q ∈ AC(�+), lim
x→∞

q(x) = 0, sup
x∈�+

[
eε

√
x
∣∣q′(x)

∣∣
]
<∞, ε > 0. (3.7)

Theorem 3.2 (see [24]). Under the condition (3.7) the operator L has a finite number of eigenvalues
and spectral singularities, and each of them is of a finite multiplicity.

4. Principal Functions of L

In this section we assume that (3.7) holds. Let λ1, . . . , λj and λj+1, . . . , λk denote the zeros of
E+ in � + and E− in � − (which are the eigenvalues of L) with multiplicities m1, . . . , mj and
mj+1, . . . , mk, respectively. It is obvious that from definition of the Wronskian

{
dn

dλn
W
[
ψ+(x, λ), e(x, λ)

]}

λ=λp
=
{
dn

dλn
E+(λ)

}

λ=λp
= 0 (4.1)

for n = 0, 1, . . . , mp − 1, p = 1, 2, . . . , j, and

{
dn

dλn
W
[
ψ−(x, λ), e(x,−λ)]

}

λ=λp
=
{
dn

dλn
E−(λ)

}

λ=λp
= 0 (4.2)

for n = 0, 1, ..., mp − 1, p = j + 1, ..., k.
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Theorem 4.1. The fallowing formulae:

{
∂n

∂λn
ψ+(x, λ)

}

λ=λp
=

n∑

m=0

Am

(
λp
)
{
∂m

∂λm
e(x, λ)

}

λ=λp
, (4.3)

n = 0, 1, . . . , mp − 1, p = 1, 2, . . . , j, where

Am

(
λp
)
=

(
n

m

){
∂n−m

∂λn−m
Ê+(λ)

}

λ=λp
, (4.4)

{
∂n

∂λn
ψ−(x, λ)

}

λ=λp
=

n∑

m=0

Bm
(
λp
){ ∂m

∂λm
e(x,−λ)

}

λ=λp
, (4.5)

n = 0, 1, . . . , mp − 1, p = j + 1, . . . , k, where

Bm
(
λp
)
=

(
n

m

){
∂n−m

∂λn−m
Ê−(λ)

}

λ=λp
(4.6)

holds.

Proof. We will proceed by mathematical induction, we prove first (4.3). Let n = 0. From (4.1)
we get

ψ+(x, λp
)
= a0

(
λp
) · e(x, λp

)
, (4.7)

where a0(λp)/= 0. Let us assume that for 1 ≤ n0 ≤ mp − 2, (4.3) holds; that is,

{
∂n0

∂λn0
ψ+(x, λ)

}

λ=λp
=

n0∑

m=0

Am

(
λp
){ ∂m

∂λm
e(x, λ)

}

λ=λp
. (4.8)

Now we will prove that (4.3) holds for n0 + 1. If y(x, λ) is a solution of (2.1), then
(∂n/∂λn)y(x, λ) satisfies

[

− d2

dx2
+ q(x) − λ2

]
∂n

∂λn
y(x, λ) = 2λn

∂n−1

∂λn−1
y(x, λ) + n(n − 1)

∂n−2

∂λn−2
y(x, λ). (4.9)

Writing (4.9) for ψ+(x, λ) and e(x, λ), and using (4.8), we find

[

− d2

dx2
+ q(x) − λ2

]

fn0+1
(
x, λp

)
= 0, (4.10)
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where

fn0+1
(
x, λp

)
=

{
∂n0+1

∂λn0+1
ψ+(x, λ)

}

λ=λp

−
n0+1∑

m=0

Am

(
λp
)
{
∂m

∂λm
e(x, λ)

}

λ=λp
. (4.11)

From (4.1) we have

W
[
fn0+1

(
x, λp

)
, e
(
x, λp

)]
=

{
dn0+1

dλn0+1
W
[
ψ+(x, λ), e(x, λ)

]
}

λ=λp

= 0. (4.12)

Hence there exists a constant an0+1(λp) such that

fn0+1
(
x, λp

)
= an0+1

(
λp
)
e
(
x, λp

)
. (4.13)

This shows that (4.3) holds for n = n0 + 1.
Similarly we can prove that (4.5) holds.

Definition 4.2. Let λ = λ0 be an eigenvalue of L. If the functions

y0(x, λ0), y1(x, λ0), . . . , ys(x, λ0) (4.14)

satisfy the equations

l
(
y0
) − λ0y0 = 0, l

(
yj
) − λ0yj − yj−1 = 0, j = 1, 2, . . . , s, (4.15)

then the function y0(x, λ0) is called the eigenfunction corresponding to the eigenvalue λ = λ0
of L. The functions y1(x, λ0), . . . , ys(x, λ0) are called the associated functions corresponding
λ = λ0. The eigenfunctions and the associated functions corresponding to λ = λ0 are called
the principal functions of the eigenvalue λ = λ0.

The principal functions of the spectral singularities of L are defined similarly.

Now using (4.3) and (4.5) define the functions

Un,p(x) =
{
∂n

∂λn
ψ+(x, λ)

}

λ=λp
=

n∑

m=0

Am

(
λp
)
{
∂m

∂λm
e(x, λ)

}

λ=λp
, (4.16)

n = 0, 1, . . . , mp − 1, . . . p = 1, 2, . . . , j
and

Un,p(x) =
{
∂n

∂λn
ψ−(x, λ)

}

λ=λp
=

n∑

m=0

Bm
(
λp
){ ∂m

∂λm
e(x,−λ)

}

λ=λp
, (4.17)

n = 0, 1, . . . , mp − 1, p = j + 1, . . . , k.
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Then for λ = λp, p = 1, 2, . . . , j, j + 1, . . . , k,

l
(
U0,p
)
= 0,

l
(
U1,p

)
+

1
1!

∂

∂λ
l
(
U0,p
)
= 0,

l
(
Un,p

)
+

1
1!

∂

∂λ
l
(
Un−1,p

)
+

1
2!

∂2

∂λ2
l
(
Un−2,p

)
= 0,

(4.18)

n = 2, 3, . . . , mp − 1,
hold, where l(u) = −u′′ + q(x)u − λ2u and (∂m/∂λm)l(u) denotes the differential

expressions whose coefficients are the m-th derivatives with respect to λ of the corresponding
coefficients of the differential expression l(u). Equation (4.18) shows that U0,p is the
eigenfunction corresponding to the eigenvalue λ = λp;U1,p, U2,p, . . . , Ump−1,p are the
associated functions of U0,p ([25, 26]).

U0,p, U1,p, . . . , Ump−1,p, p = 1, 2, . . . , j, j + 1, . . . , k are called the principal functions
corresponding to the eigenvalue λ = λp, p = 1, 2, . . . , j, j + 1, . . . , k of L.

Theorem 4.3. One has

Un,p ∈ L2(�+), n = 0, 1, . . . , mp − 1, p = 1, 2, . . . , j, j + 1, . . . , k. (4.19)

Proof. Let 0 ≤ n ≤ mp − 1 and 1 ≤ p ≤ j. Using (2.6) and (3.7) we obtain that

|K(x, t)| ≤ ce−ε
√

(x+t)/2. (4.20)

From (2.4) we get

∣∣
∣∣∣

{
∂n

∂λn
e(x, λ)

}

λ=λp

∣∣
∣∣∣
≤ xne−x Imλp + c

∫∞

x

tne−ε
√

(x+t)/2e−t Imλpdt, (4.21)

where c > 0 is a constant. Since Imλp > 0 for the eigenvalues λp, p = 1, . . . , j, of L, (4.21)
implies that

{
∂n

∂λn
e(x, λ)

}

λ=λp
∈ L2(�+ ), n = 0, 1, . . . , mp − 1, p = 1, 2, . . . , j. (4.22)

The proof of theorem is obtained from (4.16) and (4.22). In a similar way using (4.17)wemay
also prove the results for 0 ≤ n ≤ mp − 1 and j + 1 ≤ p ≤ k.

Let μ1, . . . , μv, and μv+1, . . . , μl be the zeros of E+ and E− in �∗ = � \ {0} (which are the
spectral singularities of L) with multiplicities n1, . . . , nv and nv+1, . . . , nl, respectively.
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Similar to (4.3) and (4.5) we can show the following:

{
∂n

∂λn
ψ(x, λ)

}

λ=μp
=

n∑

m=0

Cm

(
μp
)
{
∂m

∂λm
e(x, λ)

}

λ=μp
, (4.23)

n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v,
where

Cm

(
μp
)
= −
(
n

m

){
∂n−m

∂λn−m
E−(λ)

}

λ=μp
,

{
∂n

∂λn
ψ(x, λ)

}

λ=μp
=

n∑

m=0

Dm

(
μp
)
{
∂m

∂λm
e(x,−λ)

}

λ=μp
,

(4.24)

n = 0, 1, . . . , np − 1, p = v + 1, . . . , l,
where

Dm

(
μp
)
=

(
n

m

){
∂n−m

∂λn−m
E+(λ)

}

λ=μp
. (4.25)

Now define the generalized eigenfunctions and generalized associated functions correspond-
ing to the spectral singularities of L by the following:

υn,p(x) =
{
∂n

∂λn
ψ(x, λ)

}

λ=μp
=

n∑

m=0

Cm

(
μp
){ ∂m

∂λm
e(x, λ)

}

λ=μp
, (4.26)

n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v,

υn,p(x) =
{
∂n

∂λn
ψ(x, λ)

}

λ=μp
=

n∑

m=0

Dm

(
μp
)
{
∂m

∂λm
e(x,−λ)

}

λ=μp
, (4.27)

n = 0, 1, . . . , np − 1, p = v + 1, . . . , l.
Then υn,p, n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v, v + 1, . . . , l, also satisfy the equations

analogous to (4.18).
υ0,p, υ1,p, . . . , υnp−1,p, p = 1, 2, . . . , v, v + 1, . . . , l are called the principal functions

corresponding to the spectral singularities λ = μp, p = 1, 2, . . . , v, v + 1, . . . , l of L.

Theorem 4.4. One has

υn,p /∈ L2(�+), n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v, v + 1, . . . , l. (4.28)

Proof. If we consider (4.21) for the principal functions corresponding to the spectral
singularities λ = μp, p = 1, 2, . . . , v, v + 1, . . . , l, of L and consider that Imλp = 0 for the spectral
singularities, then we have (4.28), by (4.26) and (4.27).
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Now introduce the Hilbert spaces

Hn =
{
f :
∫∞

0
(1 + x)2n

∣∣f(x)
∣∣2dx <∞

}
, n = 1, 2, . . . ,

H−n =
{
g :
∫∞

0
(1 + x)−2n

∣
∣g(x)

∣
∣2dx <∞

}
, n = 1, 2, . . . ,

(4.29)

with
∥∥f
∥∥2
n =
∫∞

0
(1 + x)2n

∣∣f(x)
∣∣2dx;

∥∥g
∥∥2
−n =

∫∞

0
(1 + x)−2n

∣∣g(x)
∣∣2dx, (4.30)

respectively. Then

Hn+1 � Hn � L2(�+) � H−n � H−(n+1), n = 1, 2, . . . , (4.31)

andH−n is isomorphic to the dual ofHn.

Theorem 4.5. One has

υn,p ∈ H−(n+1), n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v, v + 1, . . . , l. (4.32)

Proof. From (2.4) we have

∫∞

0
(1 + x)−2(n+1)

∣∣
∣(ix)neiμpx

∣∣
∣
2
dx <∞,

∫∞

0
(1 + x)−2(n+1)

∣∣
∣∣

∫∞

x

(it)nK(x, t)eiμptdt
∣∣
∣∣

2

dx < ∞.

(4.33)

Using (4.26), (4.33) we obtain

υn,p ∈ H−(n+1), n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v. (4.34)

In a similar way, we find

υn,p ∈H−(n+1), n = 0, 1, . . . , np − 1, p = v + 1, . . . , l. (4.35)

Let us choose n0 so that

n0 = max{n1, n2 . . . , nv, nv+1, . . . , nl}. (4.36)

By Theorem 4.5 and (4.31) we get following theorem

Theorem 4.6. One has

υn,p ∈ H−n0 , n = 0, 1, . . . , np − 1, p = 1, 2, . . . , v, v + 1, . . . , l. (4.37)
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