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By using the fixed point theorem, existence of positive solutions for fractional differential equation
with nonlocal boundary condition Dα

0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) =∑∞
i=1αiu(ξi) is considered, where 1 < α ≤ 2 is a real number, Dα

0+ is the standard Riemann-Liouville
differentiation, and ξi ∈ (0, 1), αi ∈ [0,∞) with

∑∞
i=1αiξ

α−1
i < 1, a(t) ∈ C([0, 1], [0,∞)), f(t, u) ∈

C([0, 1] × [0,∞), [0,∞)).

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by
the intensive development of the theory of fractional calculus itself and by the applications
of such constructions in various sciences such as physics, mechanics, chemistry, and
engineering. For details, see [1–6] and references therein.

It should be noted that most of papers and books on fractional calculus are devoted to
the solvability of linear initial fractional differential equations in terms of special functions [6–
8]. Recently, there are some papers that deal with the existence andmultiplicity of solution (or
positive solution) of nonlinear initial fractional differential equation by the use of techniques
of nonlinear analysis (fixed-point theorems, Leray-Shauder theory, etc.); see [9–17].

Recently, Bai and Lü [15] studied the existence of positive solutions of nonlinear
fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)
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where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville differentiation, and

f : [0, 1] × [0,∞) → [0,∞) is continuous.
In this paper, we study the existence of positive solutions for fractional differential

equation with nonlocal boundary condition

Dα
0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi),
(1.2)

where 1 < α ≤ 2 is a real number, Dα
0+ is the standard Riemann-Liouville differentiation,

and ξi ∈ (0, 1), αi ∈ [0,∞) with
∑∞

i=1αiξ
α−1
i < 1, a(t) ∈ C([0, 1], [0,∞)), f(t, u) ∈ C([0, 1] ×

[0,∞), [0,∞)).
We assume the following conditions hold throughout the paper:

(H1) ξi ∈ (0, 1), αi ∈ [0,∞) is both constants with
∑∞

i=1αiξ
α−1
i < 1,

(H2) a(t) ∈ C([0, 1], [0,∞)), a(t)/≡ 0 on [a, b] ⊂ (0, 1),

(H3) f(t, u) ∈ C([0, 1] × [0,∞), [0,∞)).

Remark 1.1. To our knowledge, there are no results about the existence of positive solutions
for problem (1.2).

2. The Preliminary Lemmas

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided the right side is pointwise defined on (0,∞).

Definition 2.2. The fractional derivative of order α > 0 of a function y : (0,∞) → R is given
by

Dα
0+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds, (2.2)

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

Definition 2.3. The map θ is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E, provided that θ : P → [0,∞) is continuous and

θ
(
tx + (1 − t)y

) ≥ tθ(x) + (1 − t)θ
(
y
)
, (2.3)

for all x, y ∈ P and 0 ≤ t ≤ 1.
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Remark 2.4. As a basic example, we quote for λ > −1,

Dα
0+t

λ =
Γ(λ + 1)

Γ(λ − α + 1)
tλ−α, (2.4)

giving in particularDα
0+t

α−m = 0, m = 1, 2, . . . ,N, whereN is the smallest integer greater than
or equal to α.

From Definition 2.2 and Remark 2.4, we then obtain the following.

Lemma 2.5. Let α > 0. If one assumes u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential equation

Dα
0+u(t) = 0 (2.5)

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CNtα−N, Ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer
greater than or equal to α, as unique solutions.

Lemma 2.6. Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that
belongs to u ∈ C(0, 1) ∩ L(0, 1). Then,

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (2.6)

for some Ci ∈ R, i = 1, 2, . . . ,N.

Lemma 2.7 (see [15]). Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u(1) = 0
(2.7)

is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.8)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.9)

Lemma 2.8. Suppose (H1) holds. Given y ∈ C[0, 1] and 1 < α ≤ 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi)
(2.10)
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is

u(t) =
∫1

0
G(t, s)y(s)ds + B

(
y
)
tα−1, (2.11)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[t(1 − s)]α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1 − s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

B
(
y
)
=

∑∞
i=1αi

∫1
0 G(ξi, s)y(s)ds

1 −∑∞
i=1αiξ

α−1
i

.

(2.12)

Proof. By applying Lemmas 2.6 and 2.7, we have

u(t) =
∫1

0
G(t, s)y(s)ds + C1t

α−1 + C2t
α−2. (2.13)

Because

∞∑

i=1

αi

∫1

0
G(ξi, s)ds =

∑∞
i=1αiξ

α−1
i (1 − ξi)

αΓ(α)
, αiξ

α−1
i (1 − ξi) < αiξ

α−1
i , (2.14)

by (H1),
∑∞

i=1αiξ
α−1
i (1 − ξi) is converge. Therefore,

∑∞
i=1αi

∫1
0 G(ξi, s)ds is converge. y(t) is

continuous function on [0, 1], so
∑∞

i=1αi

∫1
0 G(ξi, s)y(s)ds is converge.

By u(0) = 0, u(1) =
∑∞

i=1αiu(ξi), there are C2 = 0, C1 = (
∑∞

i=1αi

∫1
0 G(ξi, s)y(s)ds)/(1 −∑∞

i=1αiξ
α−1
i ). Therefore,

u(t) =
∫1

0
G(t, s)y(s)ds + B

(
y
)
tα−1,

B
(
y
)
=

∑∞
i=1αi

∫1
0 G(ξi, s)y(s)ds

1 −∑∞
i=1αiξ

α−1
i

.

(2.15)

Lemma 2.9 (see [15]). The function G(t, s) defined by (2.9) satisfies the following conditions:

(1) G(t, s) > 0, for t, s ∈ (0, 1),

(2) there exists a positive function γ ∈ C(0, 1) such that

min
(1/4)≤t≤(3/4)

G(t, s) ≥ γ(s)max
0≤t≤1

G(t, s) = γ(s)G(s, s), 0 < s < 1. (2.16)
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Lemma 2.10 (see [18]). Let E be a Banach space, P ⊆ E a cone andΩ1, Ω2 two bounded open sets of
E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose thatA : P ∩ (Ω2 \Ω1) → P is a completely continuous operator
such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2

holds. Then, A has a fixed point in P ∩ (Ω2 \Ω1).

Lemma 2.11 (see [19]). Let P be a cone in real Banach space E, Pc = {x ∈ P | ‖x‖ ≤ c}, θ
a nonnegative continuous concave functional on P such that θ(x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ, b, d) = {x ∈ P | b ≤ θ(x), ‖x‖ ≤ d}. Suppose that A : Pc → Pc is completely continuous, and
there exist constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P(θ, b, d) | θ(x) > b}/= ∅, and θ(Ax) > b, x ∈ P(θ, b, d),

(C2) ‖Ax‖ ≤ a, for x ≤ a,

(C3) θ(Ax) > b for x ∈ P(θ, b, c) with ‖Ax‖ > d.

Then, A has at least three fixed points x1, x2, x3 with

‖x1‖ < a, b < θ(x2), a < ‖x3‖, θ(x3) < b. (2.17)

Remark 2.12. If there holds d = c, then condition (C1) of Lemma 2.11 implies condition (C3)
of Lemma 2.11.

3. The Main Results

Let E = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [0, 1], and the
maximum norm, ‖u‖ = max0≤t≤1|u(t)|. Define the cone P ⊂ E by P = {u ∈ E | u(t) ≥ 0}.

Let the nonnegative continuous concave functional θ on the cone P be defined by
θ(u) = min(1/4)≤t≤(3/4)|u(t)|.

Lemma 3.1 (see [15]). Let T : P → E be the operator defined by Tu(t) :=
∫1
0 G(t, s)f(s, u(s))ds,

then T : P → P is completely continuous.

Lemma 3.2. Let A : P → E be the operator defined by

Au(t) :=
∫1

0
G(t, s)a(s)f(s, u(s))ds + B

(
a(·)f(·, u(·)))tα−1, (3.1)

then A : P → P is completely continuous.
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Proof. The proof is similar to Lemma 3.1, so we omit.
Denote

M =

⎛

⎝
∫1

0
G(s, s)a(s)ds +

∑∞
i=1αi

∫1
0 G(ξi, s)a(s)ds

1 −∑∞
i=1αiξ

α−1
i

⎞

⎠

−1

,

N =

(∫3/4

1/4
γ(s)G(s, s)a(s)ds

)−1
.

(∗)

Theorem 3.3. Assume (H1)–(H3) hold, and there exist two positive constants r2 > r1 > 0 such that

(1) f(t, u) ≤ Mr2, for all t ∈ [0, 1], u ∈ [0, r2],
(2) f(t, u) ≥ Nr1, for all t ∈ [0, 1], u ∈ [0, r1], whereM,N is defined in (∗),

then problem (1.2) has at least one positive solution u such that r1 ≤ ‖u‖ ≤ r2.

Proof. By Lemmas 2.8 and 3.2, we know A : P → P is completely continuous, and problem
(1.2) has a solution u = u(t) if and only if u solves the operator equation u = Au. In order to
apply Lemma 2.10, we separate the proof into the following two steps.

Step 1. Let Ω2 = {u ∈ P | ‖u‖ ≤ r2}. For u ∈ ∂Ω2, we have 0 ≤ u(t) ≤ r2 for all t ∈ [0, 1]. It
follows from (1) that for t ∈ [0, 1],

‖Au‖ ≤
∫1

0
G(s, s)a(s)f(s, u(s))ds +

∑∞
i=1αi

∫1
0 G(ξi, s)a(s)f(s, u(s))ds

1 −∑∞
i=1αiξ

α−1
i

≤ Mr2

⎡

⎣

∫1

0
G(s, s)a(s)ds +

∑∞
i=1αi

∫1
0 G(ξi, s)a(s)ds

1 −∑∞
i=1αiξ

α−1
i

⎤

⎦

= r2 = ‖u‖.

(3.2)

Therefore,

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.3)

Step 2. Let Ω1 = {u ∈ P | ‖u‖ ≤ r1}. For u ∈ ∂Ω1, we have 0 ≤ u(t) ≤ r1 for all t ∈ [0, 1]. By
assumption (2), for t ∈ [1/4, 3/4], there is

(Au)(t) =
∫1

0
G(t, s)a(s)f(s, u(s))ds +

tα−1
∑∞

i=1αi

∫1
0 G(ξi, s)a(s)f(s, u(s))ds

1 −∑∞
i=1αiξ

α−1
i

≥
∫1

0
γ(s)G(s, s)a(s)f(s, u(s))ds

≥ Nr

∫3/4

1/4
γ(s)G(s, s)a(s)ds

= r1 = ‖u‖.

(3.4)
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So,

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.5)

Therefore, by (ii) of Lemma 2.10, we complete the proof.

Example 3.4. Consider the problem

D3/2
0+ u(t) + u2 +

sin t
4

+
1
5
= 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi),

(3.6)

where
∑∞

i=1αiξ
1/2
i = 1/5.

A simple computation showed M ≥ 1.4,N ≈ 13.6649. Choosing r1 = (1/70), r2 =
(9/10), we have

f(t, u) = u2 +
sin t
4

+
1
5
≤ 1.2207 ≤ Mr2, (t, u) ∈ [0, 1] ×

[

0,
9
10

]

,

f(t, u) = u2 +
sin t
4

+
1
5
≥ 1

5
≥ Nr1, (t, u) ∈ [0, 1] ×

[

0,
1
70

]

.

(3.7)

With the use of Theorem 3.3, problem (3.6) has at least one positive solutions u such
that (1/70) ≤ ‖u‖ ≤ (9/10).

Theorem 3.5. Assume (H1)–(H3) hold, and there exist constants 0 < a < b < c such that the
following assumptions hold:

(A1) f(t, u) < Ma for (t, u) ∈ [0, 1] × [0, a],

(A2) f(t, u) ≥ Nb for (t, u) ∈ [1/4, 3/4] × [b, c],

(A3) f(t, u) ≤ Mc for (t, u) ∈ [0, 1] × [0, c], whereM,N is defined in (∗).

Then, the boundary value problem (1.2) has at least three positive solutions u1, u2, u3 with

‖u1‖ < a, b < min
(1/4)≤t≤(3/4)

|u2| < ‖u2‖ ≤ c,

a < ‖u3‖ ≤ c, min
(1/4)≤t≤(3/4)

|u3| < b.
(3.8)
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Proof. We show that all the conditions of Lemma 2.9 are satisfied.
If u ∈ Pc, then ‖u‖ ≤ c. Assumption (A3) implies f(t, u(t)) ≤ Mc for 0 ≤ t ≤ 1.

Consequently,

‖Au‖ = max
0≤t≤1

∣
∣
∣
∣
∣
∣

∫1

0
G(t, s)a(s)f(s, u(s))ds +

tα−1
∑∞

i=1αi

∫1
0 G(ξi, s)a(s)f(s, u(s))ds

1 −∑∞
i=1αiξ

α−1
i

∣
∣
∣
∣
∣
∣

≤
∫1

0
G(s, s)a(s)f(s, u(s))ds +

tα−1
∑∞

i=1αi

∫1
0 G(ξi, s)a(s)f(s, u(s))ds

1 −∑∞
i=1αiξ

α−1
i

≤
⎡

⎣

∫1

0
G(s, s)a(s)ds +

∑∞
i=1αi

∫1
0 G(ξi, s)a(s)ds

1 −∑∞
i=1αiξ

α−1
i

⎤

⎦‖u‖

≤ ‖u‖.

(3.9)

Hence, A : Pc → Pc. In the same way, if u ∈ Pa, then assumption (A1) yields f(t, u(t)) <
Ma, 0 ≤ t ≤ 1. Therefore, condition (C2) of Lemma 2.11 is satisfied.

To check condition (C1) of Lemma 2.11, we choose u(t) = (b + c)/2, 0 ≤ t ≤ 1. It is
easy to see that u(t) = (b + c)/2 ∈ P(θ, b, c), θ(u) = (θ(b + c))/2 > b, and consequently,
{u ∈ P(θ, b, d) | θ(u) > b}/= ∅ Hence, if u ∈ P(θ, b, c), then b ≤ u(t) ≤ c for (1/4) ≤ t ≤ (3/4).
From assumption (A2), we have f(t, u(t)) ≥ Nb for (1/4) ≤ t ≤ (3/4). So,

θ(Au) = min
(1/4)≤t≤(3/4)

|(Au)(t)|

≥
∫1

0
γ(s)G(s, s)a(s)f(s, u(s))ds

> Nb

∫3/4

1/4
γ(s)G(s, s)a(s)ds

= b = ‖u‖

(3.10)

θ(Au) > b, for all u ∈ P(θ, b, c).
This shows that condition (C1) of Lemma 2.11 is also satisfied.
By Lemma 2.11 and Remark 2.12, the boundary value problem (1.2) has at least three

positive solutions u1, u2, and u3 with

‖u1‖ < a, b < min
(1/4)≤t≤(3/4)

|u2|,

a < ‖u3‖, min
(1/4)≤t≤(3/4)

|u3| < b.
(3.11)

The proof is complete.
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Example 3.6. Consider the problem

D3/2
0+ u(t) + f(t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∞∑

i=1

αiu(ξi),
(3.12)

where
∑∞

i=1αiξ
1/2
i = (1/5),

f(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
t

40

)

+ 14u2, u ≤ 1,

13 +
(

t

40

)

+ u, u > 1.
(3.13)

We have M ≥ 1.4,N ≈ 13.6649. Choosing a = (1/14), b = 1, c = 36, there hold

f(t, u) =
t

40
+ 14u2 ≤ 0.097 ≤ Ma, (t, u) ∈ [0, 1] ×

[

0,
1
14

]

,

f(t, u) = 13 +
t

40
+ u ≥ 14.025 ≥ Nb ≈ 13.7, (t, u) ∈

[
1
4
,
3
4

]

× [1, 36],

f(t, u) ≤ 13 +
t

40
+ u ≤ 48.025 ≤ Mc ≈ 50.4, (t, u) ∈ [0, 1] × [0, 36].

(3.14)

With the use of Theorem 3.5, problem (3.12) has at least three positive solutions u1, u2, and
u3 with

max
0≤t≤1

|u1(t)| < 1
14

, 1 < min
(1/4)≤t≤(3/4)

|u2(t)| < max
0≤t≤1

|u2(t)| ≤ 36,

1
14

< max
0≤t≤1

|u3(t)| ≤ 36, min
(1/4)≤t≤(3/4)

|u3(t)| < 1.

(3.15)
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