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We consider a thermoelastic diffusion problem in one space dimension with second sound. The
thermal and diffusion disturbances aremodeled by Cattaneo’s law for heat and diffusion equations
to remove the physical paradox of infinite propagation speed in the classical theory within
Fourier’s law. The system of equations in this case is a coupling of three hyperbolic equations. It
poses some new analytical and mathematical difficulties. The exponential stability of the slightly
damped and totally hyperbolic system is proved. Comparison with classical theory is given.

1. Introduction

The classical model for the propagation of heat turns into the well-known Fourier’s law

q + k∇θ = 0, (1.1)

where θ is temperature (difference to a fixed constant reference temperature), q is the
heat conduction vector, and k is the coefficient of thermal conductivity. The model using
classic Fourier’s law inhibits the physical paradox of infinite propagation speed of signals.
To eliminate this paradox, a generalized thermoelasticity theory has been developed
subsequently. The development of this theory was accelerated by the advent of the second
sound effects observed experimentally inmaterials at a very low temperature. In heat transfer
problems involving very short time intervals and/or very high heat fluxes, it has been
revealed that the inclusion of the second sound effects to the original theory yields results
which are realistic and very much different from those obtained with classic Fourier’s law.
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The first theory was developed by Lord and Shulman [1]. In this theory, a modified law of
heat conduction, the Cattaneo’s law,

τ0qt + q + k∇θ = 0 (1.2)

replaces the classic Fourier’s law. The heat equation associated with this a hyperbolic one
and, hence, automatically eliminates the paradox of infinite speeds. The positive parameter
τ0 is the relaxation time describing the time lag in the response of the heat flux to a gradient
in the temperature.

The development of high technologies in the years before, during, and after the second
world war pronouncedly affected the investigations in which the fields of temperature and
diffusion in solids cannot be neglected. The problems connected with the diffusion of matter
in thermoelastic bodies and the interaction of mechanodiffusion processes have become the
subject of research by many authors. At elevated and low temperatures, the processes of heat
and mass transfer play a decisive role in many satellite problems, returning space vehicles,
and landing on water or land. These days, oil companies are interested in the process of
thermodiffusion for more efficient extraction of oil from oil deposits.

Nowacki [2] developed the classic theory of thermoelastic diffusion under Fourier’s
law. Sherief et al. [3] derived the theory of thermoelastic diffusionwith second sound. Aouadi
[4] derived the theory of micropolar thermoelastic diffusion under Cattaneo’s law. Recently,
Aouadi [5–7] derived the general equations of motion and constitutive equations of the
linear thermoelastic diffusion theory in the context of different media, with uniqueness and
existence theorems.

In recent years, a relevant task has been developed to obtain exponential stability of
solutions in thermoelastic theories. The classical theory was first considered by Dafermos
[8] and Slemrod [9] and it has been studied in the book of Jiang and Racke [10] and the
contribution of Lebeau and Zuazua [11]. One should mention a paper by Sherief [12], where
the stability of the null solution also in higher dimension is proved.Wemention also the work
of Tarabek [13]who studied even one dimensional nonlinear systems and obtained the strong
convergence of derivatives of solutions to zero. Racke [14] proved the exponential decay of
linear and nonlinear thermoelastic systems with second sound in one dimension for various
boundary conditions. Messaoudi and Said-Houari [15] proved the exponential stability in
one-dimensional nonlinear thermoelasticity with second sound. Soufyane [16] established
an exponential and polynomial decay results of porous thermoelasticity including a memory
term.

Recently, Aouadi and Soufyane [17] proved the polynomial and exponential stability
for one-dimensional problem in thermoelastic diffusion theory under Fourier’s law. To the
author’s knowledge, no work has been done regarding the exponential stability of the
thermoelastic diffusion theory with second sound though similar research in thermoelasticity
has been popular in recent years. This paper will devote to study the exponential stability of
the solution of the one-dimensional thermoelastic diffusion theory under Cattaneo’s law. The
model that we consider is interesting not only because we take into account the thermal-
diffusion effect, but also because Cattaneo’s law is physically more realistic than Fourier’s
law. In this case, the governing equations corresponds to the coupling of three hyperbolic
equations. This question is new in thermoelastic theories and poses new analytical and math-
ematical difficulties. This kind of coupling has not been considered previously, and we have
a few results concerning the existence, uniqueness, and exponential decay. For this reason,
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the exponential decay of the solution is very interesting and also very difficult. We obtain the
exponential decay by the multiplier method and constructing generalized Lyapunov func-
tional.

The remaining part of this paper is organized as follows: in Section 2, we give basic
equations, and for completeness, we discuss the well-posedness of the initial boundary value
problem in a semigroup setting. In Section 3, we derive the various energy estimates, and we
state the exponential decay of the solution. In Section 4, we provide arguments for showing
that the two systems, either τ0 > 0, τ > 0 or τ0 = τ = 0, are close to each other, in the sense of
energy estimates, of order τ20 and τ2.

2. Basic Equations and Preliminaries

The governing equations for an isotropic, homogenous thermoelastic diffusion solid are as
follows (see [3]):

(i) the equation of motion

σij,j = ρüi, (2.1)

(ii) the stress-strain-temperature-diffusion relation

σij = 2μeij + δij
(
λekk − β1θ − β2C

)
, (2.2)

(iii) the displacement-strain relation

eij =
1
2
(
ui,j + uj,i

)
, (2.3)

(iv) the energy equation

qi,i = −ρT0Ṡ, (2.4)

(v) the Cattaneo’s law for temperature

−kθ,i = qi + τ0q̇i, (2.5)

(vi) the entropy-strain-temperature-diffusion relation

ρT0S = β1T0ekk + ρcEθ + aT0C, (2.6)

(vii) the equation of conservation of mass

ηi,i = −Ċ, (2.7)
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(viii) the Cattaneo’s law for chemical potential

−�P,i = ηi + τη̇i, (2.8)

(ix) the chemical-strain-temperature-diffusion relation

P = −β2ekk − aθ + bC, (2.9)

where β1 = (3λ + 2μ)αt and β2 = (3λ + 2μ)αc, αt, and αc are, respectively, the
coefficients of linear thermal and diffusion expansion and λ and μ are Lamé’s
constants. θ = T − T0 is small temperature increment, T is the absolute temperature
of the medium, and T0 is the reference uniform temperature of the body chosen
such that |θ/T0| � 1. qi is the heat conduction vector, k is the coefficient of thermal
conductivity, and cE is the specific heat at constant strain. σij are the components
of the stress tensor, ui are the components of the displacement vector, eij are the
components of the strain tensor, S is the entropy per unit mass, P is the chemical
potential per unit mass, C is the concentration of the diffusive material in the elastic
body, � is the diffusion coefficient, ηi denotes the flow of the diffusing mass vector,
“a” is a measure of thermodiffusion effect, “b” is a measure of diffusive effect, and ρ
is the mass density. τ0 is the thermal relaxation time, which will ensure that the heat
conduction equationwill predict finite speeds of heat propagation. τ is the diffusion
relaxation time, which will ensure that the equation satisfied by the concentration
will also predict finite speeds of propagation of matter from one medium to the
other.

We will now formulate a different alternative form that will be useful in proving
uniqueness in the next section. In this new formulation, we will use the chemical potential as
a state variable instead of the concentration. From (2.9), we obtain

C = γ2ekk + nP + dθ. (2.10)

The alternative form can be written by substituting (2.10) into (2.1)–(2.8),

σij,j = ρüi,

σij = 2μeij + δij
(
λ0ekk − γ1θ − γ2P

)
,

qi,i = −ρT0Ṡ,
−kθ,i = qi + τ0q̇i,

ρS = cθ + γ1ekk + dP,

ηi,i = −Ċ,
−�P,i = ηi + τη̇i,

(2.11)
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where

γ1 = β1 +
aβ2
b
, γ2 =

β2
b
, λ0 = λ − β22

b
, c =

ρcE
T0

+
a2

b
, d =

a

b
, n =

1
b
(2.12)

are physical positive constants satisfying the following condition:

cn − d2 > 0. (2.13)

Note that this condition implies that

cθ2 + 2dθP + nP 2 > 0. (2.14)

Condition (2.13) is needed to stabilize the thermoelastic diffusion system (see [18] for more
information on this).

We assume throughout this paper that the condition (2.13) is satisfied.
For the sake of simplicity, we assume that ρ = 1, and we study the exponential stability

in one-dimension space. If u = u(x, t), θ = θ(x, t), and P = P(x, t) describe the displacement,
relative temperature and chemical potential, respectively, our equations take the form

utt − αuxx + γ1θx + γ2Px = 0, in ]0, �[ × R
+,

cθt + dPt + qx + γ1uxt = 0, in ]0, �[ × R
+,

τ0qt + q + kθx = 0, in ]0, �[ × R
+,

dθt + nPt + ηx + γ2uxt = 0, in ]0, �[ × R
+,

τηt + η + �ηx = 0, in ]0, �[ × R
+,

(2.15)

where α = λ0 + 2μ > 0. The system is subjected to the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ ]0, �[,

θ(x, 0) = θ0(x), q(x, 0) = q0(x), x ∈ ]0, �[,

P(x, 0) = P0(x), η(x, 0) = η0(x), x ∈ ]0, �[,

(2.16)

and boundary conditions

u(0, t) = u(�, t) = 0, q(0, t) = q(�, t) = 0, η(0, t) = η(�, t) = 0, t ≥ 0. (2.17)
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For the sake of simplicity, we present a short direct discussion of the the well-
posedness for the linear initial boundary value (2.15)1–(2.17). We transform the system
(2.15)1–(2.17) into a first-order system of evolution type, finally applying semigroup theory.
For a solution (u, θ, q, P, η), let U be defined as

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

αux

ut

θ

q

P

η

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, U(0, ·) = U0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

αu0,x

u1

θ0

q0

P0

η0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (2.18)

The initial-boundary value problem (2.15)1–(2.17) is equivalent to problem

dU
dt

+Q−1MU = 0, U(0) = U0, (2.19)

where

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
α

0 0 0 0 0

0 1 0 0 0 0

0 0 c 0 d 0

0 0 0
τ0
k

0 0

0 0 d 0 n 0

0 0 0 0 0
τ

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −∂x 0 0 0 0

−∂x 0 γ1∂x 0 γ2∂x 0

0 γ1∂x 0 ∂x 0 0

0 0 ∂x
1
k

0 0

0 γ2∂x 0 0 0 ∂x

0 0 0 0 ∂x
1
�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.20)

We consider the Hilbert space £ = U ∈ (L2(0, �))6 with inner product

〈U,W〉£ = 〈U,QW〉L2 . (2.21)

Let A : D(A) ⊂ £ → £ such that

AU = Q−1MU. (2.22)

The domain of A is

D(A) =
{
U =

(
U1, U2, U3, U4, U5, U6

)T ∈ £/U2, U4, U6 ∈ H1
0(0, �), U

1, U3, U5 ∈ H1(0, �)
}
,

(2.23)
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that is,

dU
dt

+AU = 0, U(0) = U0 ∈ D(A). (2.24)

On the other hand, if U satisfies (2.24) for U0 defined in (2.18), then

u(·, t) = u0(·) +
∫ t

0
U2(·, s)ds, θ = U3, q = U4, P = U5, η = U6 (2.25)

satisfy (2.15)1–(2.17); that is, (2.24) and (2.15)1–(2.17) are equivalent (in the chosen spaces).
Thewell-posedness is now a corollary of the following lemma characterizingA as a generator
of a C0-semigroup of contractions.

Lemma 2.1. (i)D(A) is dense in £, and the operator −A is dissipative.
(ii)A is closed.
(iii)

D(A∗) = D(A), A∗W = Q−1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∂x 0 0 0 0

∂x 0 −γ1∂x 0 −γ2∂x 0

0 −γ1∂x 0 −∂x 0 0

0 0 −∂x 1
k

0 0

0 −γ2∂x 0 0 0 −∂x

0 0 0 0 −∂x 1
�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

W. (2.26)

Proof. (i) The density of D(A) in £ is obvious, and we have

Re〈−AU,U〉£ = − 1
k

∫�

0
q2dx − 1

�

∫�

0
η2dx ≤ 0. (2.27)

Then −A is dissipative.
(ii) Let (Un)n ⊂ D(A), Un → U ∈ £, and AUn → F ∈ £, as n → ∞. Then,

∀Φ ∈ £ : 〈AUn,Φ〉£ −→ 〈F,Φ〉£. (2.28)

Choosing successively

(1) Φ = (Φ1, 0, 0, 0, 0, 0)T , Φ1 ∈ H1(0, �),

(2) Φ = (0, 0,Φ3, 0, 0, 0)T , Φ3 ∈ H1(0, �),

(3) Φ = (0, 0, 0, 0,Φ5, 0)T , Φ5 ∈ H1(0, �),

(4) Φ = (0, 0, 0,Φ4, 0, 0)T , Φ4 ∈ C∞
0 (0, �),
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(5) Φ = (0, 0, 0, 0, 0,Φ6)T , Φ6 ∈ C∞
0 (0, �),

(6) Φ = (0,Φ2, 0, 0, 0)T , Φ2 ∈ C∞
0 (0, �),

we obtain

(1) U2 ∈ H1
0(0, �) and −∂xU2 = [QF]1 (first component),

(2) U4 ∈ H1
0(0, �) and γ1∂xU

2 + ∂xU4 = [QF]3,
(3) U6 ∈ H1

0(0, �) and γ2∂xU
2 + ∂xU6 = [QF]5,

(4) U3 ∈ H1(0, �) and ∂xU3 + 1/kU4 = [QF]4,
(5) U5 ∈ H1(0, �) and ∂xU5 + 1/�U6 = [QF]6,
(6) U1 ∈ H1(0, �) and −∂xU1 + γ1∂xU3 + γ1∂xU5 = [QF]2.

(iii)

W ∈ D(A∗) ⇐⇒ ∃F ∈ £, ∀Φ ∈ D(A) : 〈AΦ,W〉£ −→ 〈Φ,F〉£. (2.29)

Choosing Φ appropriately as in the proof of (ii), the conclusion follows.

With the Hille-Yosida theorem (see [19]) C0-semigroups, we can state the following
result.

Theorem 2.2. (i) The operator −A is the infinitesimal generator of a C0-semigroup of linear
contractions T(t) = e−tA over the space £ for t ≥ 0.

(ii) For any U0 ∈ D(A), there exists a unique solution U(t) ∈ C1([0,∞); £) ∩
C0([0,∞);D(A)) to (2.24) given by U(t) = e−tAU0.

(iii) If U0 ∈ D(An), n ∈ N, then U(t) ∈ C0([0,∞);D(An)) and (2.24) yields higher
regularity in t.

Moreover, we will use the Young inequality

±ab ≤ a2

δ
+
δ

4
b2, ∀a, b ∈ R, δ > 0. (2.30)

The differential of (2.15)2 and (2.15)4 together with boundary conditions (2.17) yields

∫�

0
θ(x, t)dx =

∫�

0
θ0(x)dx,

∫�

0
P(x, t)dx =

∫�

0
P0(x)dx, t ≥ 0. (2.31)

Then, θ and P defined by

θ(x, t) := θ(x, t) − 1
�

∫�

0
θ0(x)dx, P(x, t) := P(x, t) − 1

�

∫�

0
P0(x)dx (2.32)
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satisfy with u, q, and η the same differential equations (2.15)1–(2.17) as (u, θ, q, P, η), but
additionally, we have the Poincaré inequality

∫�

0
v2dx ≤ �2

π2

∫�

0
v2
xdx, (2.33)

for v = θ(·, t) as well as for v = P , v = u, v = q or v = η.
In the sequel, we will work with θ and P but still write θ and P for simplicity until we

will have proved Theorem 3.2.
From (2.15)3 and (2.15)5, we conclude

∫�

0
θ2xdx ≤ 2τ20

k2

∫�

0
q2t dx +

2
k2

∫�

0
q2dx,

∫�

0
P 2
xdx ≤ 2τ2

�2

∫�

0
η2t dx +

2
�2

∫�

0
η2dx.

(2.34)

Finally, for the sake of simplicity, we will employ the same symbols C for different constants,
even in the same formula. In particular, we will denote by the same symbol Ci different
constants due to the use of Poincaré’s inequality on the interval [0, �].

3. Exponential Stability

Let (u, θ, q, P, η) be a solution to problem (2.15)1–(2.17). Multiplying (2.15)1 by ut, (2.15)2 by
θ, (2.15)3 by q, (2.15)4 by P , and (2.15)5 by η and integrating from 0 to �, we get

d

dt
E1(t) = − 1

k

∫�

0
q2dx − 1

�

∫�

0
η2dx, (3.1)

where

E1(t) =
1
2

∫�

0

(
u2t + αu

2
x + cθ

2 + nP 2 + 2dθP +
τ0
k
q2 +

τ

�
η2
)
dx. (3.2)

Differentiating (2.15) with respect to t, we get in the same manner

d

dt
E2(t) = − 1

k

∫�

0
q2t dx − 1

�

∫�

0
η2t dx, (3.3)

where

E2(t) =
1
2

∫�

0

(
u2tt + αu

2
xt + cθ

2
t + nP

2
t + 2dθtPt +

τ0
k
q2t +

τ

�
η2t

)
dx. (3.4)
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Let us define the functionals

F(t) = −
∫�

0

(
1
α
uxtux +

3
α2γ1

qutt +
3
α
qθx +

3γ2
αγ1

qPx +
3c
αγ1

θxut +
3d
αγ1

Pxut

)
dx,

G(t) = −
∫�

0

(
1
α
uxtux +

3
α2γ2

ηutt +
3
α
ηPx +

3γ1
αγ2

ηθx +
3d
αγ2

Pxut +
3n
αγ2

θxut

)
dx.

(3.5)

Lemma 3.1. Let (u, θ, q, P, η) be a solution to problem (2.15)1–(2.17). Then, one has

d

dt
F(t) ≤ −1

36α2

∫�

0

(

u2tt +
απ2

�2
u2t + θ

2 + P 2

)

dx − 1
α

∫�

0
u2xtdx +

27
γ21α

2

∫�

0
q2t dx

+

(
27c2

γ21
+
3cγ2
2αγ1

+
5γ21
6α2

+
�2

36α2π2
+
3c
2α

)∫�

0
θ2xdx

+

(
27d2

γ22
+
3cγ2
2αγ1

+
5γ22
6α2

+
�2

36α2π2
+
3c
2α

)∫�

0
P 2
xdx,

(3.6)

d

dt
G(t) ≤ −1

36α2

∫�

0

(

u2tt +
απ2

�2
u2t + θ

2 + P 2

)

dx − 1
α

∫�

0
u2xtdx +

27
γ22α

2

∫�

0
η2t dx

+

(
27n2

γ22
+
3nγ1
2αγ2

+
5γ22
6α2

+
�2

36α2π2
+
3n
2α

)∫�

0
P 2
xdx

+

(
27d2

γ21
+
3nγ1
2αγ2

+
5γ21
6α2

+
�2

36α2π2
+
3n
2α

)∫�

0
θ2xdx.

(3.7)

Proof. We will only prove (3.6) and (3.7) can be obtained analogously. Multiplying (2.15)1 by
uxx/α and using the Young inequality, we get

∫�

0
u2xxdx = − 1

α

∫�

0
uttxuxdx +

γ1
α

∫�

0
θxuxxdx +

γ2
α

∫�

0
Pxuxxdx

≤ − 1
α

d

dt

∫�

0
uxtuxdx +

1
α

∫�

0
u2xtdx +

3γ21
4α2

∫�

0
θ2xdx +

3γ22
4α2

∫�

0
P 2
xdx +

2
3

∫�

0
u2xxdx,

(3.8)

which implies

1
α

d

dt

∫�

0
uxtuxdx ≤ −1

3

∫�

0
u2xxdx +

1
α

∫�

0
u2xtdx +

3γ21
4α2

∫�

0
θ2xdx +

3γ22
4α2

∫�

0
P 2
xdx. (3.9)
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Multiplying (2.15)2 by 3uxt/(αγ1) and using the Young inequality, we get

3
α

∫�

0
u2xtdx =

3
αγ1

∫�

0
quxxtdx +

3c
αγ1

∫�

0
θxtutdx +

3d
αγ1

∫�

0
Pxtutdx

=
3
αγ1

d

dt

∫�

0
quxxdx − 3

αγ1

∫�

0
qtuxxdx +

3c
αγ1

d

dt

∫�

0
θxutdx − 3c

αγ1

∫�

0
θxuttdx

+
3d
αγ1

d

dt

∫�

0
Pxutdx − 3d

αγ1

∫�

0
Pxuttdx.

(3.10)

Substituting (2.15)1 in the above equation, yields

3
α

∫�

0
u2xtdx =

3
α2γ1

d

dt

∫�

0
quttdx +

3
α

d

dt

∫�

0
qθxdx +

3γ2
αγ1

d

dt

∫�

0
qPxdx − 3

αγ1

∫�

0
qtuxxdx

+
3c
αγ1

d

dt

∫�

0
θxutdx − 3c

γ1

∫�

0
θxuxxdx +

3c
α

∫�

0
θ2xdx +

3cγ2
αγ1

∫�

0
θxPxdx

+
3d
αγ1

d

dt

∫�

0
Pxutdx − 3d

γ1

∫�

0
Pxuxxdx +

3c
α

∫�

0
θxPxdx +

3cγ2
αγ1

∫�

0
P 2
xdx.

(3.11)

Using the estimates

− 3
αγ1

∫�

0
qtuxxdx ≤ 1

12

∫�

0
u2xxdx +

27
γ21α

2

∫�

0
q2t dx,

−3c
γ1

∫�

0
θxuxxdx ≤ 1

12

∫�

0
u2xxdx +

27c2

γ21

∫�

0
θ2xdx,

3cγ2
αγ1

∫�

0
θxPxdx ≤ 3cγ2

2αγ1

∫�

0
θ2xdx +

3cγ2
2αγ1

∫�

0
P 2
xdx,

−3d
γ2

∫�

0
Pxuxxdx ≤ 1

12

∫�

0
u2xxdx +

27d2

γ22

∫�

0
P 2
xdx,

3c
α

∫�

0
θxPxdx ≤ 3c

2α

∫�

0
θ2xdx +

3c
2α

∫�

0
P 2
xdx,

(3.12)
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3
α

∫�

0
u2xtdx ≤ d

dt

∫�

0

(
3

α2γ1
qutt +

3
α
qθx +

3γ2
αγ1

qPx +
3c
αγ1

θxut +
3d
αγ1

Pxut

)
dx +

1
4

∫�

0
u2xxdx

+
27
γ21α

2

∫�

0
q2t dx +

3c
α

(
9cα
γ21

+
γ2
2γ1

+
1
2

)∫�

0
θ2xdx +

3n
α

(
9cα
γ22

+
γ1
2γ2

+
1
2

)∫�

0
θ2xdx.

(3.13)

Combining (3.9) and (3.13), we get

d

dt
F(t) ≤ − 1

12

∫�

0
u2xxdx − 2

α

∫�

0
u2xtdx +

27
γ21α

2

∫�

0
q2t dx

+
3c
α

(
9cα
γ21

+
γ2
2γ1

+
γ21
4cα

+
1
2

)∫�

0
θ2xdx

+
3c
α

(
9d2α

γ22 c
+
γ2
2γ1

+
γ22
4cα

+
1
2

)∫�

0
P 2
xdx.

(3.14)

Now, we conclude from (2.15) that

∫�

0

(

u2tt +
απ2

�2
u2t + θ

2 + P 2

)

dx

=
∫�

0

(

α2u2xx + γ
2
1θ

2
x + γ

2
2P

2
x − 2αγ1uxxθx − 2αγ2uxxPx + 2γ1γ2θxPx +

απ2

�2
u2t + θ

2 + P 2

)

dx

≤ 3α2
∫�

0
u2xxdx +

(

3γ21 +
�2

π2

)∫�

0
θ2xdx +

(

3γ22 +
�2

π2

)∫�

0
P 2
xdx + α

∫�

0
u2xtdx

(3.15)

whence

−
∫�

0
u2xxdx ≤ −1

3α2

∫�

0

(

u2tt +
α2π2

�2
u2t + θ

2 + P 2

)

dx

+
1
α2

(

γ21 +
�2

3π2

)∫�

0
θ2xdx +

1
α2

(

γ22 +
�2

3π2

)∫�

0
P 2
xdx +

1
3α

∫�

0
u2xtdx.

(3.16)

Combining (3.14) and (3.16), we get our conclusion follows.
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Multiplying (2.15)2 by θt and (2.15)4 by Pt, and summing the results, yields

− d
dt

∫�

0

(
qθx + ηPx

)
dx = −

∫�

0

(
cθ2t + nP

2
t + 2dθtPt

)
dx −

∫�

0
qtθxdx

− γ1
∫�

0
uxtθtdx −

∫�

0
ηtPxdx − γ2

∫�

0
uxtPtdx.

(3.17)

Using the estimates

γ1

∫�

0
uxtθtdx ≤ c

4

∫�

0
θ2t dx +

γ21
c

∫�

0
u2xtdx,

γ2

∫�

0
uxtPtdx ≤ δ

4

∫�

0
P 2
t dx +

γ22
δ

∫�

0
u2xtdx,

−2d
∫�

0
θtPtdx ≤ c

4

∫�

0
θ2t dx +

4d2

c

∫�

0
P 2
t dx,

− d
dt

∫�

0

(
qθx + ηPx

)
dx ≤ −c

2

∫�

0
θ2t dx −

(

n − δ

4
− 4d2

c

)∫�

0
P 2
t dx

+
1
2

∫�

0
q2t dx +

1
2

∫�

0
η2t dx +

1
2

∫�

0
θ2xdx

+
1
2

∫�

0
P 2
xdx +

(
γ21
c

+
γ22
δ

)∫�

0
u2xtdx.

(3.18)

Choosing δ such as

n − δ

4
− 4d2

c
>
n

2
(3.19)

yields

− d
dt

∫�

0

(
qθx + ηPx

)
dx ≤ −c

2

∫�

0
θ2t dx − n

2

∫�

0
P 2
t dx +

1
2

∫�

0
q2t dx +

1
2

∫�

0
η2t dx

+
1
2

∫�

0
θ2xdx +

1
2

∫�

0
P 2
xdx +

(
γ21
c

+
γ22
δ

)∫�

0
u2xtdx.

(3.20)

Now, we will show the main result of this section.
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Theorem 3.2. Let (u, θ, q, P, η) be a solution to problem (2.15)1–(2.17). Then, the associated energy
of first and second order

E(t) = E1(t) + E2(t)

=
1
2

2∑

j=1

∫�

0

((
∂
j−1
t ut

)2
+ α
(
∂
j−1
t ux

)2
+ c
(
∂
j−1
t θ
)2

+n
(
∂
j−1
t P
)2

+ 2d∂j−1t θ∂
j−1
t P +

τ0
k

(
∂
j−1
t q
)2

+
τ

�

(
∂
j−1
t η
)2)

(x, t)dx

(3.21)

decays exponentially; that is,

∃c0 > 0, ∃C0 > 0, ∀t ≥ 0 E(t) ≤ C0E(0)e−c0t. (3.22)

Bounds for c0 and C0 can be given explicitly in terms of the coefficient α, γ1, γ2, c, n, d, k,
�, τ0, τ , and �.

Proof. Now, we define the desired Lyapunov functional N(t). For ε > 0, to be determined
later on, let

N(t) =
1
ε
E(t) + F(t) + G(t) − ε

∫�

0

(
qθx + ηPx

)
dx. (3.23)

Then, we conclude from (3.1)–(3.6) and (3.14) that

d

dt
N(t) ≤ − 1

εk

∫�

0
q2dx − 1

ε�

∫�

0
η2dx − 1

18α2

∫�

0

(

u2tt +
απ2

�2
u2t + θ

2 + P 2

)

dx

−
(

2
α
− εγ22

n
− εγ21

δ

)∫�

0
u2xtdx −

(
1
εk

− 27
γ21α

2
− ε

2

)∫�

0
q2t dx

−
(

1
ε�

− 27
γ22α

2
− ε

2

)∫�

0
η2t dx − ε

2

∫�

0

(
cθ2t + nP

2
t

)
dx

+
(
� +

ε

2

)∫�

0
θ2xdx +

(
� +

ε

2

)∫�

0
P 2
xdx,

(3.24)

where

� =
27
(
c2 + d2)

γ21
+
3cγ2
2αγ1

+
3nγ1
2αγ2

+
5γ21
3α2

+
�2

18α2π2
+

3
2α

(c + n),

� =
27
(
n2 + d2)

γ21
+
3cγ2
2αγ1

+
3nγ1
2αγ2

+
5γ22
3α2

+
�2

18α2π2
+

3
2α

(c + n).

(3.25)
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Using (2.34), we obtain

d

dt
N(t) ≤ − 1

k

(
1
ε
− 2
k

(
� +

ε

2

))∫�

0
q2dx − 1

�

(
1
ε
− 2

�

(
� +

ε

2

))∫�

0
η2dx

− 1
18α2

∫�

0

(

u2tt +
απ2

�2
u2t + θ

2 + P 2

)

dx −
(

2
α
− εγ22

n
− εγ21

δ

)∫�

0
u2xtdx

−
(

1
εk

− 27
γ21α

2
− ε

2
− 2τ20
k2

(
� +

ε

2

))∫�

0
q2t dx

−
(

1
ε�

− 27
γ22α

2
− ε

2
− ε

2
− 2τ20

�2

(
� +

ε

2

))∫�

0
η2t dx − ε

2

∫�

0

(
cθ2t + nP

2
t

)
dx.

(3.26)

Using (2.13) and choosing 0 < ε < 1 such that all terms on the right-hand side of (3.27)
become negative,

2
α
((
γ21/c

)
+
(
γ22/δ

))

< ε < min

{
k

1 + 2�
,

�

1 + 2�
,

1
k
(
(1/2) +

(
τ20/k

2
)
(1 + 2�) +

(
27/γ21α

2
)) ,

1
�
(
(1/2) + (τ2/�2)

(
1 + 2�

)
+
(
27/γ22α

2
))

}

.

(3.27)

Choosing ε as in (3.27), we obtain from

d

dt
N(t) ≤ −c1

∫�

0

(
u2tt + u

2
t + u

2
xt + θ

2 + P 2 + θ2t + P
2
t + q

2
t + η

2
t + q

2 + η2
)
dx, (3.28)

where

c1 =
1
2
min
{

1
εk
,
1
ε�
,

1
9α2

,
2
α
, ε

}
, (3.29)

which implies

d

dt
N(t) ≤ −c2E(t), (3.30)

with

c2 =
c1
2
min
{
1, α, c, d, n,

τ0
k
,
τ

�

}
. (3.31)
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On the other hand, we have

∃ε2 > 0, ∃C1, C2 > 0, ∀ε ≤ ε2, ∀t > 0 : C1E(t) ≤ N(t) ≤ C2E(t), (3.32)

where C1, C2 are determined as follows. Let

H(t) = N(t) − 1
ε
E(t), (3.33)

then

|H(t)| ≤ C1E(t), (3.34)

with

C1 = max
{
3(c + d)
αγ1

+
3(n + d)
αγ2

,
3
α2

(
1
γ1

+
1
γ2

)
,
1
α2
,
3k
τ0

(
1

α2γ1
+
1
α
+
γ2
αγ1

+
2
αk2

(
1 +

c

γ1

))
,

3�
τ

(
1

α2γ2
+
1
α
+
γ1
αγ2

+
2
α�2

(
1 +

n

γ2

)
,
6τ0
αk

(
1 +

c

γ1

)
,
6τ
α�

(
1 +

n

γ2

))}
.

(3.35)

Choosing

ε ≤ ε2 = 1
2C1

, (3.36)

we have

C2 =
1
ε
+ C1,

ε = min{ε1, ε2}.
(3.37)

Moreover, from (3.30) and (3.32), we derive

d

dt
N(t) ≤ −c0N(t), (3.38)

with

c0 =
c2
C2
, (3.39)

hence

N(t) ≤ e−c0tN(0). (3.40)
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Applying (3.32) again, we have proved

E(t) ≤ C0E(0)e−c0t, (3.41)

with

C0 =
C2

C1
, (3.42)

and it holds.

The copper material was chosen for purposes of numerical evaluations. The physical
constants given by Table 1 are found in [20].

Successively we can approximately compute ε1, C1, ε2, ε, c1, c2, C0, and c0 from the pre-
vious equations, getting finally

c0 ≈ 2.68 × 10−56, (3.43)

which indicates a slow decay of the energy in the beginning but does not mean that solutions
do not decay.

Remark 3.3. In particular, we can get

d0 = O(τ0, τ) as (τ0, τ) −→ (0, 0). (3.44)

Although the estimate for τ0 and τ are very coarse and might be far from being sharp, it in-
dicates a slow decay of the energy in usually measured time periods. The above relation of
course does not imply that solutions to the limiting case (τ0, τ) = (0, 0) do not decay. Instead,
the decay rate of the thermodiffusion system provides a better rate; that is,

cθt + dPt − kθxx = 0, in ]0, �[ × R
+,

dθt + nPt − �Pxx = 0, in ]0, �[ × R
+,

(3.45)

with initial conditions

θ(x, 0) = θ0(x), P(x, 0) = P0(x), x ∈ ]0, �[, (3.46)

and boundary conditions

θ(0, t) = θ(�, t) = 0, P(0, t) = P(�, t) = 0, t ≥ 0. (3.47)

In this case, we have

d

dt
E(t) = −k

∫�

0
θ2dx − �

∫�

0
P 2dx, (3.48)



18 International Journal of Differential Equations

Table 1: Values of the constants.

μ = 3.86 × 1010 kg/(ms3) λ = 7.76 × 1010 kg/(ms3) ρ = 8954 kg/m3

cE = 383.1 J/(KgK) αt = 1.78 × 10−5 K−1 k = 386W/(mK)
αc = 1.98 × 10−4 m3/kg � = 0.85 × 10−8 kg s/m3 T0 = 293K
a = 1.2 × 104 m2/(s2 K) b = 0.9 × 106 m5/(s2 Kg) τ0 = 10−12 s
τ = 10−11 s � = 6 × 10−4 m

where

E(t) =
1
2

∫�

0

(
cθ2 + nP 2 + 2dθP +

τ0
k
q2 +

τ

�
η2
)
dx. (3.49)

Using the Poincaré inequality, we get

E(t) ≤ e−νtE(0), (3.50)

with

ν = 2
π2

�2

(
k

c
+

�

n

)
≈ 2.43 × 10−3. (3.51)

4. The Limit Case (τ0, τ) → (0, 0)

We will show that the energy of the difference of the solution (u, θ, P, q, η) to (2.15)1–(2.17)
and the the solution (ũ, θ̃, P̃ , q̃, η̃) to the corresponding system with (τ0, τ) = (0, 0) (see [17])
vanishes of order τ20 + τ2 as (τ0, τ) → (0, 0), provided the values at t = 0 coincide. For this
purpose, let (U,Θ, φ,Φ, ψ) denote the difference

U = u − ũ, Θ = θ − θ̃, φ = q − q̃, Φ = P − P̃ , ψ = η − η̃, (4.1)

then (U,Θ, φ,Φ, ψ) satisfies

Utt − αUxx + γ1Θx + γ2Φx = 0,

cΘt + dΦt + φx + γ1Uxt = 0,

τ0φt + φ + kΘx = τ0kθ̃xt,

dΘt + nΦt + ψx + γ2Uxt = 0,

τψt + η + �ψx = τ�P̃xt,

(4.2)

U(x, 0) = 0, Ut(x, 0) = 0, Θ(x, 0) = 0, Φ(x, 0) = 0,

φ(x, 0) = 0, ψ(x, 0) = 0, x ∈ ]0, �[,
(4.3)
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U(0, t) = U(�, t) = 0, Θ(0, t) = Θ(�, t) = 0, Φ(0, t) = Φ(�, t) = 0. (4.4)

Here, we assumed the compatibility conditions

q0 = −kθ0,x, η0 = −�P0,x. (4.5)

If E(t) denotes the energy of first order for (U,Θ, φ,Φ, ψ); that is,

d

dt
E(t) = − 1

k

∫�

0
φ2dx + τ0

∫�

0
θ̃xtφdx − 1

�

∫�

0
ψ2dx + τ

∫�

0
P̃xtψdx, (4.6)

where

E(t) =
1
2

∫�

0

(
U2
t + αU

2
x + cΘ

2 + nΦ2 + 2dΘΦ +
τ0
k
φ2 +

τ

�
ψ2
)
dx. (4.7)

Using the Young inequality, we obtain

d

dt
E(t) ≤ − 1

2k

∫�

0
φ2dx +

τ20k

2

∫�

0
θ̃2xtdx − 1

2�

∫�

0
ψ2dx +

τ2�

2

∫�

0
P̃ 2
xtdx. (4.8)

Using initial condition (4.3) yields

E(t) ≤ τ20k

2

∫ t

0

∫�

0
θ̃2xt(x, s)dx ds +

τ2�

2

∫ t

0

∫�

0
P̃ 2
xt(x, s)dx ds, (4.9)

from where we get for T > 0 fixed, t ∈ [0, T]

E(t) ≤ τ20k

2

∫T

0

∫�

0
θ̃2xt(x, s)dx ds +

τ2�

2

∫T

0

∫�

0
P̃ 2
xt(x, s)dx ds. (4.10)

Moreover, since

∫∞

0

∫�

0
θ̃2xt(x, s)dx ds <∞,

∫∞

0

∫�

0
P̃ 2
xt(x, s)dx ds <∞, (4.11)

because of the exponential decay of the solution corresponding to the problem when (τ0, τ) =
(0, 0) (see [17]), we obtain a uniform bound on the right-hand side,

∃C > 0, ∀t ≥ 0 : E(t) ≤ C
(
τ20 + τ2

)
, (4.12)
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where

C =
1
2
min

{

k

∫T

0

∫�

0
θ̃2xt(x, s)dx ds, �

∫T

0

∫�

0
P̃ 2
xt(x, s)dx ds

}

. (4.13)

Then we have

E(t) ≤ O
(
τ20 + τ2

)
as (τ0, τ) −→ (0, 0), (4.14)

also

E(t)
τ20 + τ2

−→ 0 as t −→ 0. (4.15)

5. Concluding Remarks

(1) By comparison of the approximate value of c0 ≈ 2.68 × 10−56 with the value c0 ≈
1.75 × 10−13 of the problem corresponding to (τ0, τ) = (0, 0) computed in [17], we
remark the second value is significantly larger than the first. This confirms that
thermoelastic models with second sound are physically more realistic than those
given in the classic context.

(2) By comparison of the approximate value of c0 ≈ 2.68 × 10−56 with the value ν ≈
2.43 × 10−3 of the thermodiffusion problem, we conclude that the slow decay of the
elastic part is responsible for the low bounds on the decay rates obtained in this
paper and in [17].

(3) Finally, we remark that in [17], the exponential decay of the solution was proved by
means of the first energy only, while in our case, it is necessary to use second-order
derivatives because of the more complicated system with second sound.

References

[1] H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” Journal of the
Mechanics and Physics of Solids, vol. 15, no. 5, pp. 299–309, 1967.

[2] W. Nowacki, “Dynamical problems of thermoelastic diffusion in solids I,” Bulletin de l’Académie
Polonaise des Sciences Serie des Sciences Techniques, vol. 22, p. 55–64; 129–135; 257–266, 1974.

[3] H. H. Sherief, F. A. Hamza, and H. A. Saleh, “The theory of generalized thermoelastic diffusion,”
International Journal of Engineering Science, vol. 42, no. 5-6, pp. 591–608, 2004.

[4] M. Aouadi, “Theory of generalized micropolar thermoelastic diffusion under Lord-Shulman model,”
Journal of Thermal Stresses, vol. 32, no. 9, pp. 923–942, 2009.

[5] M. Aouadi, “The coupled theory of micropolar thermoelastic diffusion,” Acta Mechanica, vol. 208, no.
3-4, pp. 181–203, 2009.

[6] M. Aouadi, “A theory of thermoelastic diffusion materials with voids,” Zeitschrift für Angewandte
Mathematik und Physik, vol. 61, no. 2, pp. 357–379, 2010.

[7] M. Aouadi, “Qualitative results in the theory of thermoelastic diffusion mixtures,” Journal of Thermal
Stresses, vol. 33, no. 6, pp. 595–615, 2010.

[8] C. M. Dafermos, “Contraction semigroups and trends to equilibrium in continuum mechanics,” in
Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain and B. Nayroles,
Eds., vol. 503 of Springer Lectures Notes in Mathematics, pp. 295–306, Springer, Berlin, Germany, 1976.



International Journal of Differential Equations 21

[9] M. Slemrod, “Global existence, uniqueness, and asymptotic stability of classical smooth solutions in
one-dimensional nonlinear thermoelasticity,” Archive for Rational Mechanics and Analysis, vol. 76, no.
2, pp. 97–133, 1981.

[10] S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, vol. 112 of Monographs and Surveys in
Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2000.

[11] G. Lebeau and E. Zuazua, “Decay rates for the three-dimensional linear system of thermoelasticity,”
Archive for Rational Mechanics and Analysis, vol. 148, no. 3, pp. 179–231, 1999.

[12] H. H. Sherief, “On uniqueness and stability in generalized thermoelasticity,” Quarterly of Applied
Mathematics, vol. 44, no. 4, pp. 773–778, 1987.

[13] M. A. Tarabek, “On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity
with second sound,” Quarterly of Applied Mathematics, vol. 50, no. 4, pp. 727–742, 1992.

[14] R. Racke, “Thermoelasticity with second sound—exponential stability in linear and non-linear 1-d,”
Mathematical Methods in the Applied Sciences, vol. 25, no. 5, pp. 409–441, 2002.

[15] S. A. Messaoudi and B. Said-Houari, “Exponential stability in one-dimensional non-linear thermoe-
lasticity with second sound,” Mathematical Methods in the Applied Sciences, vol. 28, no. 2, pp. 205–232,
2005.

[16] A. Soufyane, “Energy decay for porous-thermo-elasticity systems of memory type,” Applicable
Analysis, vol. 87, no. 4, pp. 451–464, 2008.

[17] M. Aouadi and A. Soufyane, “Polynomial and exponential stability for one-dimensional problem in
thermoelastic diffusion theory,” Applicable Analysis, vol. 89, no. 6, pp. 935–948, 2010.

[18] M. Aouadi, “Generalized theory of thermoelastic diffusion for anisotropic media,” Journal of Thermal
Stresses, vol. 31, no. 3, pp. 270–285, 2008.

[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 ofApplied
Mathematical Sciences, Springer, New York, NY, USA, 1983.

[20] L. Thomas, Fundamentals of Heat Transfer, Prentice-Hall, Englewood Cliffs, NJ, USA, 1980.


