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Analogs of the Tricomi and the Gellerstedt problems with integral gluing conditions for mixed
parabolic-hyperbolic equation with parameter have been considered. The considered mixed-type
equation consists of fractional diffusion and telegraph equation. The Tricomi problem is equiv-
alently reduced to the second-kind Volterra integral equation, which is uniquely solvable. The
uniqueness of the Gellerstedt problem is proven by energy integrals’ method and the existence by
reducing it to the ordinary differential equations. The method of Green functions and properties
of integral-differential operators have been used.

1. Introduction

Mathematical model of the movement of gas in a channel surrounded by a porous environ-
ment was described by parabolic-hyperbolic equation. This was done in the fundamental
work of Gel’fand [1]. Modeling of heat transfer processes in composite environment with
finite and infinite velocities leads to boundary value problems (BVPs) for parabolic-hyper-
bolic equations [2]. Omitting the huge amount of works devoted to studying these kinds of
equations, we refer the readers to [3, 4].

We would like to note works [5–10], devoted to the studying of BVPs for parabolic-
hyperbolic equations, involving fractional derivatives. In turn, applications of Fractional-
order differential equations can be found in the monographs [11–15]. We also note some
recent papers [16–18], related to the fractional diffusion and diffusion-wave equations.

BVP for parabolic-hyperbolic equations with integral gluing condition for the first time
was investigated byKapustin andMoiseev [19] andwas generalized for this kind of equation,
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but with parameters, in the work [20]. Another motivation of the usage of integral gluing
conditions comes from the appearance of them in heat exchange processes [21].

The consideration of equations with parameters was interesting because of the pos-
sibility of studying some multidimensional analogues of the main BVP via reducing them
by Fourier transformation to the BVP for equations with parameters. On the other hand,
consideration of equations with parameters will give possibility to study some spectral prop-
erties of BVPs for this kind of equations such as the existence of nontrivial solutions for
corresponding homogeneous problem at some values of parameters [22].

2. Analog of the Tricomi Problem

Consider an equation

uxx −DαH(x)+2H(−x)
0y u = λu (2.1)

in the domain Ω = Ω1 ∪AA0 ∪Ω2. Here Ω1 = {(x, y) : 0 < x < 1, 0 < y < 1}, Ω2 is character-
istic triangle with endpoints A(0, 0), A0(0, 1), C(−1/2, 1/2),H(x) is Heaviside function,

Dα
atf(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t
a

(t − s)−α+n−1f(s)ds (2.2)

is the αth Riemann-Liouville fractional-order derivative of a function f given on interval
[a, b], where n = [α] + 1 and [α] is the integer part of α, and Γ(·) is the Euler gamma function
defined by

Γ(α) =
∫∞

0
tα−1e−tdt, α > 0. (2.3)

For λ > 0 and 0 < α ≤ 1 given, we formulate the following problem called the analog of the
Tricomi problem.

Problem AT

To find a solution of (2.1), which belongs to the class of functions

W1 =
{
u : Dα−1

0y u ∈ C
(
Ω1

)
, uxx,D

α
0yu ∈ C(Ω1), ux

(
0±, y

) ∈ H(0; 1), u ∈ C
(
Ω2

)
∩ C2(Ω2)

}
,

(2.4)

satisfying the initial condition

lim
y→ 0

y1−αu
(
x, y
)
= ω(x), 0 ≤ x ≤ 1 (2.5)

together with the boundary conditions

u
(−y/2, y/2) = ψ1

(
y
)
, 0 ≤ y ≤ 1,

u
(
1, y
)
= ψ2

(
y
)
, 0 ≤ y ≤ 1,

(2.6)
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and the gluing conditions

u
(
0−, y

)
=

1
Γ(1 − α)

∫y
0
u(0+, t)

(
y − t)−αdt, 0 < y ≤ 1,

∫y
0
ux
(
0−, t
)
J0
[√

λ
(
y − t)]dt = 1

Γ(1 − α)
∫y
0
ux(0+, t)

(
y − t)−αdt, 0 < y < 1.

(2.7)

Here ω(x), ψi(y) (i = 1, 2) are given functions such as limy→ 0y
1−αψ1(y) = ω(0).

Solution of the Cauchy problem for (2.1) in Ω2 defined as

u
(
x, y
)
=

1
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τ−
(
y + x

)
+ τ−

(
y − x) +

∫y+x
y−x

ν−(t)J0

[√
λ
[(
y − t)2 − x2

]]
dt

+λx
∫y+x
y−x

τ−(t)
J1

[√
λ
[(
y − t)2 − x2

]]
√
λ
[(
y − t)2 − x2

] dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(2.8)

where Jk[·] is the first-kind Bessel function of the order k, τ−(y) = u(0−, y), ν−(y) = ux(0−, y).
We calculate u(−y/2, y/2) in order to use condition (2.5):

u
(−y/2, y/2)

=
1
2

⎧⎪⎨
⎪⎩τ

−(0) + τ−
(
y
) −
∫y
0
ν−(t)J0

[√
λt
(
t − y)

]
dt + λ

y

2

∫y
0
τ−(t)

J1
[√

λt
(
t − y)]√

λt
(
t − y)

dt

⎫⎪⎬
⎪⎭.

(2.9)

Considering the condition (2.5) and the following integral operator [23]

Bn,
√
λ

mx

[
f(x)

]
= f(x) +

∫x
m

f(t)
(
x −m
t −m

)1−n ∂
∂x

J0

[√
λ(t −m)(t − x)

]
dt, m, n = 0, 1, (2.10)

equality (2.9) can be written as follows

ψ1
(
y
)
=

1
2

{
ψ1(0) + B

0,
√
λ

0y

[
τ−
(
y
)] −

∫y
0
B1,

√
λ

0t

[
ν−(t)

]
dt

}
. (2.11)

Now we use an integral operator

An,
√
λ

mx

[
f(x)

]
= f(x) −

∫x
m

f(t)
(
t −m
x −m

)n ∂
∂t
J0

[√
λ(x −m)(x − t)

]
dt, m, n = 0, 1, (2.12)
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which is mutually inverse with the operator (2.10). Applying the operator (2.12) to both sides
of (2.11), we obtain

A0,
√
λ

0y

[
ψ1
(
y
)]

=
1
2

{
ψ1(0) +A

0,
√
λ

0y

{
B0,

√
λ

0y

[
τ−
(
y
)]} −A0,

√
λ

0y

{∫y
0
B1,

√
λ

0t

[
ν−(t)

]
dt

}}
. (2.13)

Considering the following properties of operators (2.10) and (2.12)

A0,
√
λ

0y

{
B0,

√
λ

0y

[
f
(
y
)]}

= f
(
y
)
, A0,

√
λ

0y

{∫y
0
B1,

√
λ

0t

[
f(t)
]
dt

}
=
∫y
0
f(t)J0

[√
λ
(
y − t)]dt,

(2.14)

we derive

2A0,
√
λ

0y

[
ψ1
(
y
)]

= ψ1(0) + τ−
(
y
) −
∫y
0
ν−(t)J0

[√
λ
(
y − t)]dt. (2.15)

Taking gluing conditions (2.7) into account, we have

Dα−1
0y ν+

(
y
)
= Dα−1

0y τ+
(
y
) − 2A0,

√
λ

0y

[
ψ1
(
y
)]

+ ψ1(0). (2.16)

Applying operator D1−α
0y to both sides of (2.16) and considering the following

composition rule [11]:

Dα
atD

β
atf(t) = D

α+β
at f(t), β ≤ 0, (2.17)

we get

τ+
(
y
)
= ν+

(
y
)
+ ψ∗

1

(
y
)
, 0 < y < 1, (2.18)

where ψ∗
1(y) = D

1−α
0y {2A0,

√
λ

0y [ψ1(y)] − ψ1(0)}.
Let us consider the following auxiliary problem:

uxx −Dα
0yu − λu = 0,

ux
(
0, y
)
= ν+

(
y
)
, u

(
1, y
)
= ψ2

(
y
)
, lim

y→ 0
y1−αu

(
x, y
)
= ω(x).

(2.19)

Solution of this problem can be defined as [24]

u
(
x, y
)
=
∫1

0
ω(ξ)G

(
x, y, ξ, 0

)
dξ −

∫y
0
ν+
(
η
)
G
(
x, y, 0, η

)
dη

+
∫y
0
ψ2
(
η
)
Gξ

(
x, y, 1, η

)
dη − λ

∫1

0

∫y
0
u
(
ξ, η
)
G
(
x, y, ξ, η

)
dξ dη,

(2.20)
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where

G
(
x, y, ξ, η

)
=

(
y − η)β−1

2

∞∑
n=−∞

[
e
1,β
1,β

(
−|x − ξ + 2n|(

y − η)β
)

+ e1,β1,β

(
−|x + ξ + 2n|(

y − η)β
)]

(2.21)

is the Green function of the problem (2.19),

e
1,β
1,β(z) = Φ

(−β, β, z) = ∞∑
n=0

zn

n!Γ
(−βn + β

) (2.22)

is the function of Wright [25], β = α/2.
Considering (2.20) as an integral equation regarding the function u(x, y), we write

solution via resolvent of the kernel λG(x, y, ξ, η):

u
(
x, y
)
= P
(
x, y
) −
∫y
0
ν+
(
η
)
K1
(
x, y, η

)
dη, (2.23)

where

P
(
x, y
)
=
∫1

0
ω(ξ)G

(
x, y, ξ, 0

)
dξ +

∫y
0

∫1

0

∫1

0
ω(ξ)G(s, t, ξ, 0)R

(
x, y, ξ, 0

)
dξ ds dt

+
∫y
0
ψ2
(
η
)[
G
(
x, y, 1, η

)
+
∫y
η

∫1

0
G
(
s, t, 1, η

)
R
(
x, y, 1, η

)
dsdt

]
dη,

K1
(
x, y, η

)
= G
(
x, y, 0, η

)
+
∫y
η

∫1

0
G
(
s, t, 0, η

)
R
(
x, y, 0, η

)
dsdt,

(2.24)

R(x, y, ξ, η) is a resolvent of the kernel λG(x, y, ξ, η).
From (2.23), tending x to 0+, we obtain

u
(
0+, y

)
= τ+

(
y
)
= P
(
0+, y

) −
∫y
0
ν−
(
η
)
K1
(
0+, y, η

)
dη. (2.25)

Considering functional relation (2.18), from (2.25) we get

ν+
(
y
)
+
∫y
0
ν+
(
η
)
K1
(
y, η
)
dη = ψ∗

1

(
y
) − P(0, y). (2.26)

Equality (2.26) is the second-kind Volterra-type integral equation regarding the function
ν+(y). Since kernel K1(y, η) has weak singularity and functions on the right-hand side
are continuous, we can conclude that (2.26) is uniquely solvable [26], and solution can be
represented as

ν+
(
y
)
= Ψ
(
y
)
+
∫y
0
Ψ
(
η
)
K2
(
y, η
)
dη, (2.27)

where Ψ(y) = ψ∗
1(y) − P(0, y), K2(y, η) is the resolvent of the kernel K1(y, η).
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Once we have obtained ν+(y), considering (2.18) or (2.25) we find function τ+(y).
Then using gluing conditions (2.7) we find functions τ−(y), ν−(y). Finally, we can define
solution of the considered problem by the formula (2.23) in the domain Ω1, by formula (2.8)
in the domain Ω2.

Hence, we prove the following theorem.

Theorem 2.1. If

ω(x) ∈ C2[0, 1], ψi
(
y
) ∈ C1[0, 1] ∩ C2(0, 1) (i = 1, 2), (2.28)

then there exists unique solution of the Problem AT and is defined by formulas (2.23) and (2.8) in the
domains Ω1, Ω2, respectively.

3. Analog of the Gellerstedt Problem

We would like to note some related works. Regarding the consideration of Gellerstedt
problem for parabolic-hyperbolic equations with constant coefficients we refer the readers
to [3] and for loaded parabolic-hyperbolic equations work by Khubiev [27], and also for
Lavrent’ev-Bitsadze equation [28].

Consider an equation

0 =

⎧⎨
⎩
uxx −Dα

0yu − λu, Φ0

uxx − uyy + λu, Φi, (i = 1, 2)
(3.1)

in the domainΦ = (
⋃2
k=0 Φk)∪I0, whereΦ0 is a domain, bounded by segmentsAA0,BB0,A0B0

of straight lines x = 0, x = 1, y = 1, respectively; Φ1 is a domain, bounded by the segment AE
of the axe x and by characteristics of (3.1) AC1 : x + y = 0, EC1 : x − y = r; Φ2 is a domain,
bounded by the segment EB of the axe x and by characteristics of (3.1) EC2 : x − y = r,
BC2 : x − y = 1; I0 is an interval 0 < x < 1, I1 is an interval 0 < x < r, and I2 is an interval
r < x < 1.

Problem AG

To find a solution of (3.1) from the class of functions

W2

=
{
u : Dα−1

0y u∈C
(
Φ0

)
, uxx,D

α
0yu ∈ C(Φ0), uy

(
x, 0±

)∈H(I0), u ∈ C
(
Φi

)
∩ C2(Φi) (i = 1, 2)

}
,

(3.2)

satisfying boundary conditions

u
(
0, y
)
= ϕ1

(
y
)
, u

(
1, y
)
= ϕ2

(
y
)
, 0 ≤ y ≤ 1, (3.3)
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u |AC1
= u
(x
2
,−x

2

)
= ϕ3(x), 0 ≤ x ≤ r, (3.4)

u |EC2
= u
(
(x + r)

2
,
(r − x)

2

)
= ϕ4(x), r ≤ x ≤ 1, (3.5)

together with gluing conditions

lim
y→ 0+

y1−αu
(
x, y
)
= lim

y→ 0+
u
(
x, y
)
, x ∈ I0, (3.6)

lim
y→ 0+

[
y1−α

(
y1−αu

(
x, y
))

y

]
=
∫x
0

lim
y→ 0+

uy
(
t, y
)
J0
[√

α(x − t)]dt, x ∈ I0 \ {r}. (3.7)

Here ϕj(·) (j =1, 4) are given functions such as limy→ 0+y
1−αϕ1(y)=ϕ3(0), limy→ 0+y

1−αu(r, y)=
ϕ4(r).

Theorem 3.1. If the following conditions

λ ≥ 0, ϕi
(
y
) ∈ C1[0, 1] ∩ C2(0, 1), ϕj(x) ∈ C1

(
Ii
)
∩ C2(Ii)

(
i = 1, 2; j = 3, 4

)
(3.8)

are fulfilled, then the Problem AG has a unique solution.

Proof. Introduce the following designations:

lim
y→ 0+

y1−αu
(
x, y
)
= τ+(x), lim

y→ 0−
u
(
x, y
)
= τ−(x), x ∈ I0,

lim
y→ 0+

[
y1−α

(
y1−αu

(
x, y
))

y

]
= ν+(x), lim

y→ 0−
uy
(
x, y
)
= ν−(x), x ∈ I0.

(3.9)

Solution of the Cauchy problem for (3.1) in the domainΦi (i = 1, 2) in case, when λ ≥ 0
has a form

u
(
x, y
)
=

1
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ−
(
x + y

)
+ τ−

(
x − y) +

∫x+y
x−y

ν−(t)J0

[√
λ
[
(x − t)2 − y2

]]
dt

+λy
∫x+y
x−y

τ−(t)
J1

[√
λ
[
(x − t)2 − y2

]]
√
λ
[
(x − t)2 − y2

] dt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(3.10)
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Using boundary conditions (3.4), (3.5), and gluing conditions (3.6), (3.7), from (3.10) we
obtain

ν+(x) = τ+(x) + ϕ∗
3(x), x ∈ I1, (3.11)

ν+(x) = τ+(x) + ϕ∗
4(x), x ∈ I2, (3.12)

where

ϕ∗
3(x) = ϕ3(0) −A0,

√
λ

0x

[
2ϕ3(x)

]
, ϕ∗

4(x) = ϕ4(r) −A0,
√
λ

rx

[
2ϕ4(x)

]
. (3.13)

According to [10], tending y to +0, from (3.1)we get

ν+
(
y
)
=

1
Γ(1 + α)

[
τ+′′(x) − λτ+(x)

]
. (3.14)

In order to prove the uniqueness of the solution for the Problem AG, we need estimate the
following integral:

I =
∫1

0
τ+(x)ν+(x)dx. (3.15)

Considering homogeneous case of the condition (3.3) and taking designation (3.9) into
account, after some evaluations we derive

I = −
∫1

0

{[
τ+′(x)

]2
+ λ[τ+(x)]2

}
dx. (3.16)

If λ ≥ 0, then I ≤ 0. On the other hand, if we consider homogeneous cases of (3.11) and (3.12),
one can easily be sure that I ≥ 0. Hence, we get that I ≡ 0. Based on (3.16) we can conclude
that τ+(x) = 0 for all x ∈ I0. Due to the solution of the first boundary problem [24] we can
conclude that u(x, y) ≡ 0 in Φ0. Further, according to the gluing conditions and the solution
of Cauchy problem, we have u(x, y) ≡ 0 in Φ.

Considering functional relations (3.11)–(3.14) and conditions (3.3)–(3.5), we get the
following problems:

τ+′′(x) − (λ + Γ(1 + α))τ+(x) = ϕ∗
3(x)Γ(1 + α),

τ+(0) = ϕ3(0), τ+(r) = ϕ4(r), x ∈ I1,
(3.17)

τ+′′(x) − (λ + Γ(1 + α))τ+(x) = ϕ∗
4(x)Γ(1 + α),

τ+(r) = ϕ4(r), τ+(1) = lim
y→+0

y1−αϕ2
(
y
)
, x ∈ I1.

(3.18)
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The problems (3.17) and (3.18) are model problems and can be solved directly. After the
finding function τ+(x) for all x ∈ I0, functions ν+(x) and τ−(x), ν−(x) can be defined by
formulas (3.14) and (3.6), (3.7), respectively. Finally, solution of the Problem AG can be
recovered by formulas (3.10) and (2.23) in the domains Φi (i = 1, 2) and Φ0, respectively, but
only with some changes in (2.23), precisely, Green function G(x, y, ξ, η) should be replaced
by

G∗(x, y, ξ, η) =
(
y − η)β−1

2

∞∑
n=−∞

[
e
1,β
1,β

(
−|x − ξ + 2n|(

y − η)β
)

− e1,β1,β
(
−|x + ξ + 2n|(

y − η)β
)]

, (3.19)

which is the Green function of the first boundary problem for the (3.1) in Φ0 [24].
Theorem 3.1 is proved.
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