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For α, β ∈ (0, 1/2) we prove that the double inequality G(αa + (1 − α)b, αb + (1 − α)a) < P(a, b) <
G(βa+(1−β)b, βb+(1−β)a) holds for all a, b > 0 with a/= b if and only if α ≤ (1−

√
1 − 4/π2)/2 and

β ≥ (3 − √
3)/6. Here, G(a, b) and P(a, b) denote the geometric and Seiffert means of two positive

numbers a and b, respectively.

1. Introduction

For a, b > 0 with a/= b the Seiffert mean P(a, b)was introduced by Seiffert [1] as follows:

P(a, b) =
a − b

4 arctan
√
a/b − π

. (1.1)

Recently, the bivariate mean values have been the subject of intensive research. In
particular, many remarkable inequalities for the Seiffert mean can be found in the literature
[1–9].

Let H(a, b) = 2ab/(a + b), G(a, b) =
√
ab, L(a, b) = (a − b)/(loga − log b),

I(a, b) = 1/e(bb/aa)1/(b−a), A(a, b) = (a + b)/2, C(a, b) = (a2 + b2)/(a + b), and Mp(a, b) =
[(ap + bp)/2]1/p(p /= 0) andM0(a, b) =

√
ab be the harmonic, geometric, logarithmic, identric,

arithmetic, contraharmonic, and pth power means of two different positive numbers a and b,
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respectively. Then it is well known that

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < L(a, b)

< I(a, b) < A(a, b) = M1(a, b) < C(a, b) < max{a, b}
(1.2)

for all a, b > 0 with a/= b.
For all a, b > 0 with a/= b, Seiffert [1] established that L(a, b) < P(a, b) < I(a, b);

Jagers [4] proved that M1/2(a, b) < P(a, b) < M2/3(a, b) and M2/3(a, b) is the best
possible upper power mean bound for the Seiffert mean P(a, b); Seiffert [7] established
that P(a, b) > A(a, b)G(a, b)/L(a, b) and P(a, b) > 2A(a, b)/π ; Sándor [6] presented that
(A(a, b) + G(a, b))/2 < P(a, b) <

√
A(a, b)(A(a, b) +G(a, b))/2 and 3

√
A2(a, b)G(a, b) <

P(a, b) < (G(a, b) + 2A(a, b))/3; Hästö [3] proved that P(a, b) > Mlog 2/logπ(a, b) and
Mlog 2/logπ(a, b) is the best possible lower power mean bound for the Seiffert mean P(a, b).

Very recently, Wang and Chu [8] found the greatest value α and the least value β
such that the double inequality Aα(a, b)H1−α(a, b) < P(a, b) < Aβ(a, b)H1−β(a, b) holds for
a, b > 0 with a/= b; For any α ∈ (0, 1), Chu et al. [10] presented the best possible bounds
for Pα(a, b)G1−α(a, b) in terms of the power mean; In [2] the authors proved that the double
inequality αA(a, b) + (1 − α)H(a, b) < P(a, b) < βA(a, b) + (1 − β)H(a, b) holds for all a, b > 0
with a/= b if and only if α ≤ 2/π and β ≥ 5/6; Liu and Meng [5] proved that the inequalities

α1C(a, b) + (1 − α1)G(a, b) < P(a, b) < β1C(a, b) +
(
1 − β1

)
G(a, b),

α2C(a, b) + (1 − α2)H(a, b) < P(a, b) < β2C(a, b) +
(
1 − β2

)
H(a, b)

(1.3)

hold for all a, b > 0 with a/= b if and only if α1 ≤ 2/9, β1 ≥ 1/π , α2 ≤ 1/π and β2 ≥ 5/12.
For fixed a, b > 0 with a/= b and x ∈ [0, 1/2], let

g(x) = G(xa + (1 − x)b, xb + (1 − x)a). (1.4)

Then it is not difficult to verify that g(x) is continuous and strictly increasing in
[0, 1/2]. Note that g(0) = G(a, b) < P(a, b) and g(1/2) = A(a, b) > P(a, b). Therefore, it is
natural to ask what are the greatest value α and least value β in (0, 1/2) such that the double
inequality G(αa + (1 − α)b, αb + (1 − α)a) < P(a, b) < G(βa + (1 − β)b, βb + (1 − β)a) holds for
all a, b > 0 with a/= b. The main purpose of this paper is to answer these questions. Our main
result is the following Theorem 1.1.

Theorem 1.1. If α, β ∈ (0, 1/2), then the double inequality

G(αa + (1 − α)b, αb + (1 − α)a) < P(a, b) < G
(
βa +

(
1 − β

)
b, βb +

(
1 − β

)
a
)

(1.5)

holds for all a, b > 0 with a/= b if and only if α ≤ (1 −
√
1 − 4/π2)/2 and β ≥ (3 − √

3)/6.
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2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let λ = (1 −
√
1 − 4/π2)/2 and μ = (3 − √

3)/6. We first prove that
inequalities

P(a, b) > G(λa + (1 − λ)b, λb + (1 − λ)a), (2.1)

P(a, b) < G
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
)

(2.2)

hold for all a, b > 0 with a/= b.
Without loss of generality, we assume that a > b. Let t =

√
a/b > 1 and p ∈ (0, 1/2),

then from (1.1) one has

logG
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
) − logP(a, b)

=
1
2
log

[(
pt2 +

(
1 − p

))((
1 − p

)
t2 + p

)]
− log

t2 − 1
4 arctan t − π

.
(2.3)

Let

f(t) =
1
2
log

[(
pt2 +

(
1 − p

))((
1 − p

)
t2 + p

)]
− log

t2 − 1
4 arctan t − π

, (2.4)

then simple computations lead to

f(1) = 0, (2.5)

lim
t→+∞

f(t) =
1
2
log

[
p
(
1 − p

)]
+ logπ, (2.6)

f ′(t) =
t
(
t2 + 1

)

(t2 − 1)(4 arctan t − π)
(
pt2 +

(
1 − p

))((
1 − p

)
t2 + p

)f1(t), (2.7)

where

f1(t) =
4
(
t2 − 1

)(
pt2 + 1 − p

)[(
1 − p

)
t2 + p

]

t(t2 + 1)2
− 4 arctan t + π. (2.8)

f1(1) = 0, (2.9)

lim
t→+∞

f1(t) = +∞, (2.10)

f ′
1(t) =

4f2
(
t2
)

t2(t2 + 1)4
, (2.11)

where f2(t) = p(1− p)t5 − (3p − 2)(3p − 1)t4 + 2(5p2 − 5p + 1)t3 + 2(5p2 − 5p + 1)t2 − (3p − 2)(3p −
1)t + p(1 − p).
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Note that

f2(1) = 0, (2.12)

lim
t→+∞

f2(t) = +∞, (2.13)

f ′
2(t) = 5p

(
1 − p

)
t4 − 4

(
3p − 2

)(
3p − 1

)
t3 + 6

(
5p2 − 5p + 1

)
t2

+ 4
(
5p2 − 5p + 1

)
t − (

3p − 2
)(
3p − 1

)
,

(2.14)

f ′
2(1) = 0, (2.15)

lim
t→+∞

f ′
2(t) = +∞, (2.16)

f ′′
2 (t) = 20p

(
1 − p

)
t3 − 12

(
3p − 2

)(
3p − 1

)
t2 + 12

(
5p2 − 5p + 1

)
t + 4

(
5p2 − 5p + 1

)
, (2.17)

f ′′
2 (t) = −8

(
6p2 − 6p + 1

)
, (2.18)

lim
t→+∞

f ′′
2 (t) = +∞, (2.19)

f ′′′
3 (t) = 60p

(
1 − p

)
t2 − 24

(
3p − 2

)(
3p − 1

)
t + 12

(
5p2 − 5p + 1

)
, (2.20)

f ′′′
2 (1) = −36

(
6p2 − 6p + 1

)
, (2.21)

lim
t→+∞

f ′′′
2 (t) = +∞, (2.22)

f
(4)
2 (t) = 120p

(
1 − p

)
t − 24

(
3p − 2

)(
3p − 1

)
, (2.23)

f
(4)
2 (1) = −48

(
7p2 − 7p + 1

)
, (2.24)

lim
t→+∞

f
(4)
2 (t) = +∞. (2.25)

We divide the proof into two cases.

Case 1 (p = λ = (1 −
√
1 − 4/π2)/2). Then (2.6), (2.18), (2.21), and (2.24) become

lim
t→+∞

f(t) = 0, (2.26)

f ′′
2 (1) = −8

(
π2 − 6

)

π2
< 0, (2.27)

f ′′′
2 (1) = −36

(
π2 − 6

)

π2
< 0, (2.28)

f
(4)
2 (1) = −48

(
π2 − 7

)

π2
< 0. (2.29)
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From (2.23) we clearly see that f (4)
2 (t) is strictly increasing in [1,+∞), then (2.25) and

inequality (2.29) lead to the conclusion that there exists λ1 > 1 such that f (4)
2 (t) < 0 for t ∈

[1, λ1) and f
(4)
2 (t) > 0 for t ∈ (λ1,+∞). Thus, f ′′′

2 (t) is strictly decreasing in [1, λ1] and strictly
increasing in [λ1,+∞).

It follows from (2.22) and inequality (2.28) together with the piecewise monotonicity
of f ′′′

2 (t) that there exists λ2 > λ1 > 1 such that f ′′
2 (t) is strictly decreasing in [1, λ2] and strictly

increasing in [λ2,+∞). Then (2.19) and inequality (2.27) lead to the conclusion that there
exists λ3 > λ2 > 1 such that f ′

2(t) is strictly decreasing in [1, λ3] and strictly increasing in
[λ3,+∞).

From (2.15) and (2.16) together with the piecewise monotonicity of f ′
2(t)we know that

there exists λ4 > λ3 > 1 such that f2(t) is strictly decreasing in [1, λ4] and strictly increasing in
[λ4,+∞). Then (2.11)–(2.13) lead to the conclusion that there exists λ5 > λ4 > 1 such that f1(t)
is strictly decreasing in [1,

√
λ5] and strictly increasing in [

√
λ5,+∞).

It follows from (2.7)–(2.10) and the piecewise monotonicity of f1(t) that there exists
λ6 >

√
λ5 > 1 such that f(t) is strictly decreasing in [1, λ6] and strictly increasing in [λ6,+∞).
Therefore, inequality (2.1) follows from (2.3)–(2.5) and the piecewise monotonicity of

f(t).

Case 2 (p = μ = (3 − √
3)/6). Then (2.18), (2.21) and (2.24) become

f ′′
2 (1) = 0, (2.30)

f ′′′
2 (1) = 0, (2.31)

f
(4)
2 (1) = 8 > 0. (2.32)

From (2.23) we clearly see that f (4)
2 (t) is strictly increasing in [1,+∞), then inequality

(2.32) leads to the conclusion that f ′′′
2 (t) is strictly increasing in [1,+∞).

Therefore, inequality (2.2) follows from (2.3)–(2.5), (2.7)–(2.9), (2.11), (2.12), (2.15),
and inequalities (2.30) and (2.31) together with the monotonicity of f ′′′

2 (t).
Next, we prove that λ = (1 −

√
1 − 4/π2)/2 is the best possible parameter such that

inequality (2.1) holds for all a, b > 0 with a/= b. In fact, if (1 −
√
1 − 4/π2)/2 = λ < p < 1/2,

then (2.6) leads to

lim
t→+∞

f(t) =
1
2
log

[
p
(
1 − p

)]
+ logπ > 0. (2.33)

Inequality (2.33) implies that there exists T = T(p) > 1 such that

f(t) > 0 (2.34)

for t ∈ (T,+∞).
It follows from (2.3) and (2.4) together with inequality (2.34) that P(a, b) < G(pa+(1−

p)b, pb + (1 − p)a) for a/b ∈ (T2,+∞).
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Finally, we prove that μ = (3−√3)/6 is the best possible parameter such that inequality
(2.2) holds for all a, b > 0 with a/= b. In fact, if 0 < p < μ = (3 −√

3)/6, then from (2.18)we get
f ′′
2 (1) < 0, which implies that there exists δ > 0 such that

f ′′
2 (t) < 0 (2.35)

for t ∈ [1, 1 + δ).
Therefore, P(a, b) > G(pa + (1 − p)b, pb + (1 − p)a) for a/b ∈ (1, (1 + δ)2) follows from

(2.3)–(2.5), (2.7)–(2.9), (2.11), (2.12), and (2.15) together with inequality (2.35).
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