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We will study oscillation of bounded solutions of higher-order nonlinear neutral delay differential
equations of the following type: [y(t) + p(t)f(y(τ(t)))](n) + q(t)h(y(σ(t))) = 0, t ≥ t0, t ∈ R, where
p ∈ C([t0,∞),R), limt→∞p(t) = 0, q ∈ C([t0,∞),R+), τ(t), σ(t) ∈ C([t0,∞),R), τ(t), σ(t) < t,
limt→∞τ(t), σ(t) = ∞, and f, h ∈ C(R,R). We obtain sufficient conditions for the oscillation of all
solutions of this equation.

1. Introduction

In this paper, we are concerned with the oscillation of the solutions of a certain more general
higher-order nonlinear neutral-type functional differential equation with an oscillating
coefficient of the form

[
y(t) + p(t)f

(
y(τ(t))

)](n) + q(t)h
(
y(σ(t))

)
= 0, t ≥ t0, t ∈ R, (1.1)

where p ∈ C([t0,∞),R) is oscillatory and limt→∞p(t) = 0, q ∈ C([t0,∞),R+), τ(t), σ(t) ∈
C([t0,∞),R), τ(t), σ(t) < t, limt→∞τ(t) = ∞, limt→∞σ(t) = ∞, and f, h ∈ C(R,R). As it is
customary, a solution y(t) is said to be oscillatory if y(t) is not eventually positive or not
eventually negative. Otherwise, the solution is called nonoscillatory. A differential equation
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is called oscillatory if all of its solutions oscillate. Otherwise, it is nonoscillatory. In this paper,
we restrict our attention to real-valued solutions y.

In [1, 2], several authors have investigated the linear delay differential equation

x′(t) + q(t)x(σ(t)) = 0, t ≥ t0, (1.2)

where q ∈ C([t0,∞),R+) and σ(t) ∈ C([t0,∞),R). A classical result is that every solution of
(1.2) oscillates if

lim inf
t→∞

∫ t

σ(t)
q(s)ds >

1
e
. (1.3)

In [3], Zein and Abu-Kaff have investigated the higher-order nonlinear delay
differential equation

[
x(t) + p(t)x(τ(t))

](n) + f(t, x(t), x(σ(t))) = s(t), t ≥ t0, t ∈ R, (1.4)

where p ∈ C([t0,∞),R), limt→∞p(t) = 0, τ(t), σ(t) ∈ C([t0,∞),R), τ(t), σ(t) < t, limt→∞τ(t) =
∞, limt→∞σ(t) = ∞, f : R+ × R × R → R is continuous, yf(t, x, y) > 0 for xy > 0, there exists
an oscillatory function r ∈ Cn(R+,R), such that r(n)(t) = s(t), limt→∞r(t) = 0.

In [4], Bolat and Akin have investigated the higher-order nonlinear differential
equation

[
y(t) + p(t)y(τ(t))

](n) +
m∑

i=1

qi(t)fi
(
y(σi(t))

)
= s(t), (1.5)

where p(t), qi(t), τ(t), s(t) ∈ C([t0,∞),R) for i = 1, . . . , m, p(t) and s(t) are oscillating
functions, qi(t) ≥ 0 for i = 1, . . . , m, σi(t) ∈ C1([t0,∞),R), σ ′

i(t) > 0, σi(t) ≤ t, limt→∞σi(t) = ∞
for i = 1, . . . , m, limt→∞τ(t) = ∞, fi(u) ∈ C((R,R)) is nondecreasing function, uf(u) > 0 for
u/= 0, and i = 1, . . . , m. If n is odd, limt→∞p(t) = 0, limt→∞r(t) = 0, and

∫∞
t0
νn−1q(ν)dν = ∞

for i = 1, . . . , m, then every bounded solution of (1.5) is either oscillatory or tends to zero
as t → ∞. If n is even, limt→∞p(t) = 0, and limt→∞r(t) = 0, there exists a continuously
differentiable function ϕ(t)

lim sup
t→∞

∫ t

t0

ϕ(ν)
m∑

i=1

qi(ν)dν = ∞,

lim sup
t→∞

∫ t

t0

[ [
ϕ′(ν)

]2

ϕ(ν)σ ′
i(ν)σ

n−2
i (ν)

]

dν < ∞,

(1.6)

then every bounded solution of (1.5) is either oscillatory or tends to zero as t → ∞.
Recently, many studies have been made on the oscillatory and asymptotic behaviour

of solutions of higher-order neutral-type functional differential equations. Most of the known
results which were studied are the cases when f(u) = I(u), where I is the identity function;
see, for example, [1–15] and references cited there in.
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The purpose of this paper is to study oscillatory behaviour of solutions of (1.1). For
the general theory of differential equations, one can refer to [5, 6, 12–14]. Many references to
some applications of the differential equations can be found in [2].

In this paper, the function z(t) is defined by

z(t) = y(t) + p(t)f
(
y(τ(t))

)
. (1.7)

2. Some Auxiliary Lemmas

Lemma 2.1 (see [5]). Let y be a positive and n-times differentiable function on [t0,+∞). If y(n)(t)
is of constant sign and not identically zero in any interval [b,+∞), then there exist a t1 ≥ t0 and an
integer l, 0 ≤ l ≤ n such that n+l is even, if y(n)(t) is nonnegative, or n+l odd, if y(n)(t) is nonpositive,
and that, as t ≥ t1, if l > 0, y(n)(t) > 0 for k = 0, 1, 2, . . . , l − 1, and if l ≤ n − 1, (−1)k+1y(n)(t) > 0 for
k = l, l + 1, . . . , n − 1.

Lemma 2.2 (see [5]). Let y(t) be as in Lemma 2.1. In addition limt→∞y(t)/= 0 and
y(n−1)(t)y(n)(t) ≤ 0 for every t ≥ ty; then for every λ, 0 < λ < 1, the following hold:

y(t) ≥ λ

(n − 1)!
tn−1y(n−1)(t) for all large t. (2.1)

3. Main Results

Theorem 3.1. Assume that n is even,

(C1) there exists a function H : R → R such that H is continuous and nondecreasing and
satisfies the inequality

−H(−uv) ≥ H(uv) ≥ KH(u)H(v), for u, v > 0, (3.1)

where K is a positive constant, and

|h(u)| ≥ |H(u)|, H(u)
u

≥ γ > 0, H(u) > 0, for u/= 0, (3.2)

(C2) limt→∞p(t) = 0,

(C3)
∫∞
t0
sn−1q(s)ds = ∞

and every solution of the first-order delay differential equation

w′(t) + q(t)KγH

(
1
2

λ

(n − 1)!
σn−1(t)

)
w(σ(t)) = 0 (3.3)

is oscillatory. Then every bounded solution of (1.1) is either oscillates or tends to zero as t → ∞.
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Proof. Assume that (1.1) has a bounded nonoscillatory solution y. Without loss of generality,
assume that y is eventually positive (the proof is similar when y is eventually negative). That
is, y(t) > 0, y(τ(t)) > 0, and y(σ(t)) > 0 for t ≥ t1 ≥ t0. Further, suppose that y does not tend
to zero as t → ∞. By (1.1) and (1.7), we have

z(n)(t) = −q(t)h(y(σ(t))) ≤ 0, t ≥ t1. (3.4)

It follows that z(α)(t)(α = 0, 1, 2, . . . , n − 1) is strictly monotone and eventually of constant
sign. Since y is bounded and does not tend to zero as t → ∞, by virtue of (C2),
limt→∞p(t)f(y(τ(t))) = 0. Then we can find a t2 ≥ t1 such that z(t) = y(t) + p(t)f(y(τ(t))) > 0
eventually and z(t) is also bounded for sufficiently large t ≥ t2. Because n is even and (n + l)
odd for z(n)(t) ≤ 0 and z(t) > 0 is bounded, by Lemma 2.1, since l = 1 (otherwise, z(t) is not
bounded), there exists a t3 ≥ t2 such that for t ≥ t3

(−1)k+1z(k)(t) > 0 (k = 1, 2, . . . , n − 1). (3.5)

In particular, since z′(t) > 0 for t ≥ t3, z is increasing. Since y is bounded,
limt→∞p(t)f(y(τ(t))) = 0 by (C2). Then, there exists a t4 ≥ t3 by (1.7),

y(t) = z(t) − p(t)f
(
y(τ(t))

) ≥ 1
2
z(t) > 0, (3.6)

for t ≥ t4. We may find a t5 ≥ t4 such that for t ≥ t5, we have

y(σ(t)) ≥ 1
2
z(σ(t)) > 0. (3.7)

From (3.4) and (3.7), we can obtain the result of

z(n)(t) + q(t)h
(
1
2
z(σ(t))

)
≤ 0, (3.8)

for t ≥ t5. Since z is defined for t ≥ t2, and z(t) > 0 with z(n)(t) ≤ 0 for t ≥ t2 and not identically
zero, applying directly Lemma 2.2 (second part, since z is positive and increasing), it follows
from Lemma 2.2 that

y(σ(t)) ≥ 1
2

λ

(n − 1)!
σn−1(t)y(n−1)(σ(t)). (3.9)
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Using (C1) and (3.7), we find for t ≥ t6 ≥ t5,

h
(
y(σ(t))

) ≥ H
(
y(σ(t))

)

≥ H

(
1
2

λ

(n − 1)!
σn−1(t)z(n−1)(σ(t))

)

≥ KH

(
1
2

λ

(n − 1)!
σn−1(t)

)
H
(
z(n−1)(σ(t))

)

≥ KγH

(
1
2

λ

(n − 1)!
σn−1(t)

)
z(n−1)(σ(t)).

(3.10)

It follows from (3.4) and the above inequality that z(n−1)(t) is an eventually positive solution
of

w′(t) + q(t)KγH

(
1
2

λ

(n − 1)!
σn−1(t)

)
w(σ(t)) ≤ 0. (3.11)

By a well-known result (see [14, Theorem 3.1]), the differential equation

w′(t) + q(t)KγH

(
1
2

λ

(n − 1)!
σn−1(t)

)
w(σ(t)) = 0, t ≥ t7 ≥ t6 (3.12)

has an eventually positive solution. This contradicts the fact that (1.1) is oscillatory, and the
proof is completed.

Thus, from Theorem 3.1 and [11, Theorem 2.3] (see also [11, Example 3.1]), we can
obtain the following corollary.

Corollary 3.2. If

lim inf
t→∞

∫ t

σ(t)
q(s)H

(
1
2

λ

(n − 1)!
σ(t)n−1

)
ds >

1
eKγ

, (3.13)

then every bounded solution of (1.1) is either oscillatory or tends to zero as t → ∞.

Theorem 3.3. Assume that n is odd and (C2), (C3) hold. Then, every bounded solution of (1.1) either
oscillates or tends to zero as t → ∞.

Proof. Assume that (1.1) has a bounded nonoscillatory solution y. Without loss of generality,
assume that y is eventually positive (the proof is similar when y is eventually negative). That
is, y(t) > 0, y(τ(t)) > 0, and y(σ(t)) > 0 for t ≥ t1 ≥ t0. Further, we assume that y(t) does not
tend to zero as t → ∞. By (1.1) and (1.7), we have for t ≥ t1

z(n)(t) = −q(t)h(y(σ(t))) ≤ 0. (3.14)

That is, z(n)(t) ≤ 0. It follows that z(α)(t) (α = 0, 1, 2, . . . , n − 1) is strictly monotone and
eventually of constant sign. Since limt→∞p(t) = 0, there exists a t2 ≥ t1, such that for t ≥ t2,
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we have z(t) > 0. Since y is bounded, by virtue of (C2) and (1.7), there is a t3 ≥ t2 such
that z is also bounded, for t ≥ t3. Because n is odd and z is bounded, by Lemma 2.1, since
l = 0 (otherwise, z(t) is not bounded), there exists t4 ≥ t3, such that for t ≥ t4, we have
(−1)kz(k)(t) > 0 (k = 1, 2, . . . , n − 1). In particular, since z′(t) < 0 for t ≥ t4, z is decreasing.
Since z is bounded, we may write limt→∞z(t) = L, (−∞ < L < ∞). Assume that 0 ≤ L < ∞.
Let L > 0. Then, there exist a constant c > 0 and a t5 with t5 ≥ t4, such that z(t) > c > 0 for
t ≥ t5. Since y is bounded, limt→∞p(t)f(y(τ(t))) = 0 by (C1). Therefore, there exists a constant
c1 > 0 and a t6 with t6 ≥ t5, such that y(t) = z(t) − p(t)f(y(τ(t))) > c1 > 0 for t ≥ t6. So, we
may find t7 with t7 ≥ t6, such that y(σ(t)) > c1 > 0 for t ≥ t7. From (3.14), we have

z(n)(t) ≤ −q(t)h(c1) (t ≥ t7). (3.15)

If we multiply (3.15) by tn−1 and integrate from t7 to t, then we obtain

F(t) − F(t7) ≤ −h(c1)
∫ t

t7

q(s)sn−1ds, (3.16)

where

F(t) =
∫ t

γ=2
(−1)γ tn−1z(n−γ−1)(t + γ

)
dt. (3.17)

Since (−1)kz(k)(t) > 0, for k = 1, 2, . . . , n − 1 and t ≥ t4, we have F(t) > 0 for t ≥ t7. From (3.16),
we have

−F(t7) ≤ −h(c1)
∫ t

t7

q(s)sn−1ds. (3.18)

By (C3), we obtain

−F(t7) ≤ −h(c1)
∫ t

t7

q(s)sn−1ds = −∞, (3.19)

as t → ∞. This is a contradiction. So, L > 0 is impossible. Therefore, L = 0 is the only possible
case. That is, limt→∞z(t) = 0. Since y is bounded, by virtue of (C2) and (1.7), we obtain

lim
t→∞

y(t) = lim
t→∞

z(t) − lim
t→∞

p(t)f
(
y(τ(t))

)
= 0. (3.20)

Now, let us consider the case of y(t) < 0 for t ≥ t1. By (1.1) and (1.7),

z(n)(t) = −q(t)h(y(σ(t))) ≥ 0 (t ≥ t1). (3.21)

That is, z(n)(t) ≥ 0. It follow that z(α)(t) (α = 0, 1, 2, . . . , n − 1) is strictly monotone and
eventually of constant sign. Since limt→∞p(t) = 0, there exists a t2 ≥ t1, such that for t ≥ t2,
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we have z(t) < 0. Since y(t) is bounded, by virtue of (C2) and (1.7), there is a t3 ≥ t2 such that
z(t) is also bounded, for t ≥ t3. Assume that x(t) = −z(t). Then, x(n)(t) = −z(n)(t). Therefore,
x(t) > 0 and x(n)(t) ≤ 0 for t ≥ t3. From this, we observe that x(t) is bounded. Because n is
odd and x is bounded, by Lemma 2.1, since l = 0 (otherwise, x is not bounded), there exists
a t4 ≥ t3, such that (−1)kx(k)(t) > 0 for k = 1, 2, . . . , n − 1 and t ≥ t4. That is, (−1)kz(k)(t) < 0
for k = 1, 2, . . . , n − 1 and t ≥ t4. In particular, for t ≥ t4, we have z′(t) > 0. Therefore, z(t)
is increasing. So, we can assume that limt→∞z(t) = L, (−∞ < L ≤ 0). As in the proof of
y(t) > 0, we may prove that L = 0. As for the rest, it is similar to the case y(t) > 0. That is,
limt→∞y(t) = 0. This contradicts our assumption. Hence, the proof is completed.

Example 3.4. We consider difference equation of the form

[
y(t) +

1
t
sin(t)

(
y3(t − 2) + y(t − 2)

)](4)
+

1
t2
y3(t − 3) = 0, (3.22)

where n = 4, τ(t) = t−2, p(t) = (1/t) sin(t), q(t) = 1/t2, σ(t) = t−3, h(y) = y3, and f(y) = y3+y.
By taking H(u) = u,

lim inf
t→∞

∫ t

t−3

1
s2

1
2
1
3!

(
s − 3
23

)3

ds >
1
e
, (3.23)

we check that all the conditions of Theorem 3.1 are satisfied and that every bounded solution
of (3.22) oscillates or tends to zero at infinity.

Example 3.5. We consider difference equation of the form

[
y(t) + cos te−5t

2
[
y5(t − 5) + 2y(t − 5)

]](3)
+ t2y2(t − 3) = 0, t ≥ 2, (3.24)

where n = 3, q(t) = t2, σ(t) = t − 3, τ(t) = t − 5, and p(t) = cos te−5t
2
, f(y) = y5 − 2y, h(y) = y2.

Hence, we have

lim
t→∞

p(t) = lim
t→∞

1
e5t2

cos t = 0,

∫∞

t0

sn−1q(s)ds =
∫∞

t0

s4ds = ∞.

(3.25)

Since Conditions (C2) and (C3) of Theorem 3.3 are satisfied, every bounded solution of (3.24)
oscillates or tends to zero at infinity.
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