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We study the interaction of a three-level atom with a single mode field through multiphoton
transition in a cavity, taking explicitly into account the existence of forms of nonlinearities of
both the field and the intensity-dependent atom-field coupling. The analytical forms of the
absorption spectrum is calculated using the dressed states of the system. The effects of photon
multiplicities, mean photon number, detuning, Kerr-like medium, and the intensity-dependent
coupling functional on the absorption spectrum are analyzed.

1. Introduction

The spectrum of spontaneous emission of a V -configuration three-level atom, whose two
upper levels are coupled by a classical field and their energy spacing is much larger than
the spontaneous emission widths has been investigated [1]. It has been shown that the
spontaneously generated interference can induce the spectrum to exhibit six peaks and
depend on the phase of the classical field. The effects of a broadband squeezed vacuum on
three-level atoms at different configurations (Λ, V , and Ξ configurations) have also been
investigated [2–5]. Further work has also been done to study the resonance fluorescence
spectra of three-level atoms interacting with two coherent lasers and two independent
squeezed vacuum [3–5]. The fluorescence spectrum for a strongly driven three-level system
in which one of the two one-photon transition is coupled to a finite-bandwidth squeezed
vacuum field has been examined [4]. Quantum interference effects in resonance fluorescence
and absorption spectra of a V -type three-level atom damped by a broadband squeezed vac-
uum studied in [6].
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In recent years, there has been tremendous progress in the ability to generate states
of the electromagnetic field with manifestly quantum or nonclassical characteristics exper-
imentally [7–9]. Because the squeezed coherent states are experimentally available, we use
it in this paper. Squeezed states of light are nonclassical states for which the fluctuations in
one of two quadrature phase amplitudes of the electromagnetic field drop below the level of
fluctuations associated with the vacuum state of the field. Squeezed states therefore provide
a field which is in some sense quieter than the vacuum state and hence can be employed to
improve measurement precision beyond the standard quantum limits [7].

The goal of this paper is to shed some light on the absorption spectrum for a general
three-level system. The model we will consider is consisting of a single V -type three-level
atom interacting with a multiphoton one mode field in a perfect cavity, including acceptable
kinds of nonlinearities of both the field and the intensity-dependent atom-field coupling. To
reach our goal it is more convenient to use exact expression for the unitary operator U(t) in
the frame of the dressed state formalism. This will be considered in Section 2. In Section 3
we employ the analytical results obtained, by using the finite double-Fourier transform of
the two-time field correlation function, to find an analytical expression for the absorption
spectrum. By a numerical computation, we examine the influence of photon multiplicities,
mean photon number, detuning parameters, the functional dependence of the coupling as
well as the nonlinearity parameter on the absorption spectrum in Section 4. Finally, the
conclusions are summarized in Section 5.

2. Formulation of the Problem

The Hamiltonian of the system in the rotating-wave approximation is of the form (� = 1)

H = H0 +Hin,

H0 =
3∑

j=1

ωjσj,j + Ωâ+â.
(2.1)

The operators â and â+ are the boson operators for the field satisfying [â, â+] = 1. Where
ω1, ω2, and ω3 are the atomic energy levels (ω1 > ω2 > ω3) andΩ is the field frequency, with
the detuning parameters Δ1 and Δ2 given by

Δ1 = −kΩ + (ω1 −ω3), Δ2 = −kΩ + (ω2 −ω3). (2.2)

The interaction part of the Hamiltonian in the presence of an arbitrary nonlinear medium, via
multiphoton process k can be written as

Hin = R
(
â†â

)
+ λ1

(
σ13f1

(
â†â

)
âk + â+kf1

(
â†â

)
σ31

)

+ λ2
(
σ23f2

(
â†â

)
âk + â+kf2

(
â†â

)
σ32

)
.

(2.3)
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Figure 1: Energy level diagram for a V -type three-level atom with k-photon detuning Δ1,Δ2.

R(â†â) and f(â†â) are Hermitian operators functions of photon number operators,
such that λ1f1(â†â) and λ2f2(â†â) represent arbitrary intensity-dependent atom-field coup-
ling, while R(â†â) denotes the one-mode field nonlinearity which can model Kerr-like
medium nonlinearity as will be discussed later. The operators σij satisfy the following com-
mutation relations [σij , σκl] = σilδjκ − σκjδil, [â, σij] = 0 (Figure 1).

The initial state |Ψ(0)AF〉 of the combined atom-field system may be written as

|Ψ(0)AF〉 = |Ψ(0)A〉 ⊗ |Ψ(0)F〉, (2.4)

where |Ψ(0)A〉 = |1〉〈1| the initial state of the atom and |Ψ(0)F〉 = |Θ〉〈Θ| is the initial state of
the field. The initial state |Θ〉 =

∑
p(n)|n〉 where the probability amplitude p(n) is defined in

the usual manner as p(n) = 〈n|Θ〉.
The time evolution between the atom and the field is defined by the unitary evolution

operator generated byH. ThusU(t) is given by

U(t) ≡ exp(−iHt). (2.5)

This unitary operator U(t) is written as

U(t) =
k−1∑

s=0

exp
(
−iE(s)

03 t
)∣∣∣Φ(s)

〉〈
Φ(s)

∣∣∣ +
∞∑

n=k

3∑

j=1

exp
(
−iE(n)

j t
)∣∣∣Ψ(n)

j

〉〈
Ψ(n)

j

∣∣∣, (2.6)

where j = 1, 2, 3, and the eigenvalues

E
(s)
03 = ω3 + Ωs + R(s), (s = 0, 1, . . . , k − 1),

E
(n)
j = −X1

3
+
2
3

(√
X2

1 − 3X2

)
cos

(
θj
)
,

θj =

⎛

⎝1
3
cos−1

⎡

⎣9X1X2 − 2X3
1 − 27X3

2
(
X2

1 − 3X2
)3/2

⎤

⎦ +
(
j − 1

)2π
3

⎞

⎠,

(2.7)
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with

X1 = −(r1 + r2 + r3),

X2 = −
[
V 2
1 + V 2

2 − r1r2 − r1r3 − r2r3
]
,

X3 = r2V
2
1 + r1V

2
2 − r1r2r3,

r1 = ω1 + Ωn + R(n),

r2 = ω2 + Ωn + R(n),

r3 = ω3 + Ω(n + k) + R(n + k),

V1 = λ1f1(n)

√
(n + k)!

n!
, V2 = λ2f2(n)

√
(n + k)!

n!
,

(2.8)

and |Φ(s)〉, |Ψ(n)
j 〉 are the dressed states of the system associated with the eigenvalues E(s)

03 and

E
(n)
j , (j = 1, 2, 3)

∣∣∣Φ(s)
〉
= |s, 3〉, (s = 0, 1, . . . , k − 1),

∣∣∣Ψ(n)
j

〉
= α

(n)
j |n, 1〉 + β

(n)
j |n, 2〉 + γ

(n)
j |n + k, 3〉,

(2.9)

where

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(n)
j

β
(n)
j

γ
(n)
j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−V1

(
r2 − E

(n)
j

)

−V2

(
r1 − E

(n)
j

)

(
r1 − E

(n)
j

)(
r2 − E

(n)
j

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M =

√(
r1 − E

(n)
j

)2(
r2 − E

(n)
j

)2
+ V 2

1

(
r2 − E

(n)
j

)2
+ V 2

2

(
r1 − E

(n)
j

)2
.

(2.10)

Having obtained the explicit form of the unitary operator U(t), the eigenvalues and the
eigenfunctions for the system under consideration, we are therefore in a position to discuss
some properties related to the atom or the field, especially the absorption spectrum.
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3. Absorption Spectrum

In this section we calculate the absorption spectrum as [5],

A(ν) = Γ
∫T

0
dt1

∫T

0
dt2 exp[−(Γ − iν)(T − t1) − (Γ + iν)(T − t2)]

× 〈[(σ13(t1) + σ23(t1)), (σ31(t2) + σ32(t2))]〉,
(3.1)

where T is the interaction time and Γ is the bandwidth of the filter. The Fourier transform,
of the two-time commutator averaged dipole-dipole correlation, is directly related to the
absorption spectrum, where

〈[(σ13(t1) + σ23(t1)), (σ31(t2) + σ32(t2))]〉 = 〈(σ13(t1) + σ23(t1))(σ31(t2) + σ32(t2))〉
− 〈(σ31(t2) + σ32(t2))(σ13(t1) + σ23(t1))〉.

(3.2)

The first term 〈(σ13(t1) + σ23(t1))(σ31(t2) + σ32(t2))〉 is associated with emission processes
while the second term 〈(σ31(t2) + σ32(t2))(σ13(t1) + σ23(t1))〉, which has an opposite sign,
corresponds to stimulated absorption. In order to calculate the absorption spectrum we need
to calculate the two-time commutator of (3.1). The probe absorption coefficient is given by
the difference between a stimulated absorption and the emission component. However, in
what follows we analyze the case when the atom is initially prepared in it is most excited
state, and considering the field is being initially a squeezed coherent state. After carrying out
the various operations we obtain the absorption spectrum in the form:

A(ν) = Γ
k−1∑

s=0

3∑

j=1

∣∣∣p(s)
∣∣∣
2∣∣∣α(s)

j

∣∣∣
2
Υ
(
E
(s)
03 , E

(s)
j

)

×
[∣∣∣α(s)

j

∣∣∣
2
+ α

∗(s)
j β

(s)
j + α

(s)
j β

∗(s)
j +

∣∣∣β(s)j

∣∣∣
2
]

+ Γ
∞∑

n=k

3∑

i=1

3∑

j=1

∣∣∣p(n)
∣∣∣
2∣∣∣α(n)

j

∣∣∣
2∣∣∣γ (n−k)i

∣∣∣
2
Υ
(
E
(n−k)
i , E

(n)
j

)

×
[∣∣∣α(n)

j

∣∣∣
2
+ α

∗(n)
j β

(n)
j + α

(n)
j β

∗(n)
j +

∣∣∣β(n)j

∣∣∣
2
]

− Γ
∞∑

n=0

3∑

i=1

3∑

j=1

∣∣∣p(n)
∣∣∣
2∣∣∣α(n)

j

∣∣∣
2∣∣∣γ (n)j

∣∣∣
2
Υ
(
E
(n)
j , E

(n+1)
i

)

×
[∣∣∣α(n+1)

i

∣∣∣
2
+ α

∗(n+1)
i β

(n+1)
i + α

(n+1)
i β

∗(n+1)
i +

∣∣∣β(n+1)i

∣∣∣
2
]
,

(3.3)

where

Υ
(
x, y

)
=

[
1 + exp(−2ΓT) − 2 exp(−ΓT) cos(ν + x − y

)
T

Γ2 +
(
ν + x − y

)2

]

. (3.4)
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Thus the time-averaged absorption spectrum consists of resonant structures which arise from
transitions among different dressed states. The final structure of the time-averaged absorp-
tion spectrumwill depend on the form of the input photon distribution p(n). Due to the quan-
tum interference between component states the oscillations in the cavity field become com-
posed of different component states.

4. Numerical Results and Discussion

On the basis of the analytical solution presented in a previous section, we will study nu-
merically the absorption spectrum in a a squeezed coherent initial field. The photon number
distribution for a squeezed coherent state [7, 10] can be written as

|Pn|2 = s
(tanh r)n

2nn! cosh r

∣∣∣∣Hn

(
ε√

2 cosh r sinh r

)∣∣∣∣
2

exp
[
−|ε|2 + tanh r Re (ε)2

]
, (4.1)

where ε = α cosh r + α∗ sinh r, α = |α| exp(iς), andHn is the Hermite polynomial. We suppose
here the minor axis of the ellipse, representing the direction of squeezing, parallel to the
coordinate of the field oscillator. The initial phase ς of α is the angle between the direction of
coherent excitation and the direction of squeezing. The mean photon number of this field is
equal to n = |α|2 + sinh2r. Putting r = 0 we get the photon distribution for an initial coherent
state with n = |α|2, whereas for α = 0 the photon distribution for an initial squeezed vacuum
state with n = sinh2r is recovered. The latter distribution is oscillatory with zeros for odd n.

In general, the spectrum attains negative and positive values: a negative value repre-
sents amplification and a positive value represents absorption. Since the expression in (3.4)
depends on the difference in population between the upper and the lower energies of the
dressed states, one can easily predict that at high intensities the absorption spectrum exhibits
an equal number of absorbing and amplifying components. As we mentioned before the total
components appearing spectrum are proportional to the difference between the absorption
and emission processes occurring during the transit time T . Transitions to atomic levels and
the dressed states exhibit a structure in absorption spectrum whose components being either
absorbing or amplifying.

4.1. Effect of Multiplicity and Mean Photon Number

For k = 1, we observe that the central peak surrounded by two hole-burning and symmetric
side peaks giving absorption and hole-burning giving amplification degenerate around the
central line for small mean photon number as shown Figure 2(A)-(a). But, the situation is
changed for k > 1, where the central structure disappear, and we observe a number of
symmetric side peaks and hole burning, which demonstrate absorption and amplification,
respectively, degenerate around the central line, see Figures 2(A)-(b,c). As the mean photon
number and variance increases not only the depth of all side amplification and the height of
all side absorption peaks decrease but also all amplification and absorption peaks move away
from the central line see Figure 2(B). Furthermore, not only the range of the spectrum and the
number of the spectral component increases as the mean photon number increases but also
as k increases (compare frames in Figure 2). Also, the depth of all side amplification and
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Figure 2: The evolution of the function A(ν) in a perfect cavity as a function of (ν − kΩ)/
√
λ1λ2 with

λ1,2 = 1, Δ1,2 = 0, χ = 0, Γ = 0.1, ς = 0, f1,2(n) = 1, T = 100 and (a) k = 1, (b) k = 2, (c) k = 3 with (1) r = 1,
α = 1, (2) r = 1.7, α =

√
5.

the height of all side absorption peaks decrease as soon as the mean photon number increase
for all values of k.

4.2. Effect of Detuning

In Figure 3 we display the absorption spectrum A(ν) for different values of the detuning
parameters Δ1,Δ2. We observe that the detuning plays a crucial role in the behavior of the
absorption spectrum. For all values of k Figure 3(A) exhibits asymmetric amplification and
absorption elements for small values of the detuning parametersΔ1 andΔ2. While interesting
modifications are observed, for large detuning parameters, there is strong absorption with
minimal amplification, and the peaks are shifted to right side, and we have only strong
absorption elements, see Figure 3(B)-(a). This phenomena disappears clearly as k increase,
where at k greater than one we still note strong absorption and amplification in right side
while minimal absorption and amplification in the left side, Figures 3(B)-(b,c). Finally, the
heights of the spectral component depend on the values of the detuning parameters and the
photon multiplicities k.

4.3. Effect of Kerr Medium

Now we will turn our attention to the effect on the spectrum A(ν) of the nonlinearity of the
field with a Kerr-type medium due to the term R(n) being taken in the form χn(n− 1), where
χ is related to the third-order nonlinear susceptibility. In fact the optical Kerr effect is one
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Figure 3: The same as Figure 2(B) but with (1) Δ1 = 5,Δ2 = 4, (2) Δ1 = Δ2 = 20.

of the most extensively studied phenomenon in the field of nonlinear optics because of its
applications. The addition of the Kerr-like medium parameter to the problem adds asymme-
try to the spectrum as can be seen from comparison of the cases considered in Figure 4 with
Figure 2(B). Also, it is to be remarked that the amplitude of the side-bands decrease. As χ
increases the amplification and absorption element in the left side increase and emerge while
on the right side hand elements decrease, and the central line is pushed away to the left side.
For large values of χ there are no amplification and the spectrum tends to a single absorption
element in the left hand side see Figure 4(B). This phenomenon disappears clearly as k
increases. While for large k (i.e., k = 3)we still observe a number of strong amplification and
absorption peaks in left side, while minimal amplification and absorption peaks redistributed
in right side, see Figure 4(B)-(c). Finally, it is interesting to note that Kerr medium has an
effect opposite to the effect of the detuning (compare Figure 4 to Figure 3).

4.4. Effect of Intensity-Dependent Coupling Functional

Comparing Figure 2(B), where we set the intensity coupling functional f1(n) = f2(n) = 1 with
cases considered in Figure 5(A) where we take f1(n) = f2(n) =

√
n, we note that the shape of

the spectrum is changed on both sides of the central frequency. Also, there is no absorbtion or
amplification at the central line. Furthermore, the range of the spectrum is larger and numbers
of absorption and amplification component are increased, and the distance between them
becomes larger than the case of f1(n) = f2(n) = 1 (compare Figure 5(A) to Figure 2(B)).
This due to, in this case the Rabi frequency is larger than that in the case f1(n) = f2(n) = 1.
But the situation is completely changed, when we take f1(n) = f2(n) = 1/

√
(n + 1). Since

the Rabi frequency in this case is smaller than that in f1(n) = f2(n) = 1, hence the range of
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Figure 4: The same as Figure 2(B) but with (1) χ = 0.1 and (2) χ = 0.8.
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the spectrum is smaller than that when we take f1(n) = f2(n) = 1. Also, we observe that, the
shape of the spectrum is completely changed where for k = 1 we note a deep hole burning
giving a strong amplification at the center of the spectrum surrounded by one absorption and
one amplification peak, see Figure 5(B)-(a). This central hole burning disappearing for k > 1,
where the spectrum becomes rich and exhibits switch from amplification to absorption as k
increase (see Figures 5(B)-(b,c)). Finally, absorption spectrum can be controlled by choosing
a right form of intensity-dependent coupling functional.

5. Conclusion

We have investigated the absorption spectrum for a multiphoton interaction with a V -type
three-level atom, taking into account arbitrary forms of nonlinearities of both the field and
the intensity-dependent atom-field coupling. The spectrum is calculated when the field is
initially in a squeezed coherent state. We have explored the influence of various parameters
of the system on the absorption spectrum. It is observed that

(i) as the photon multiplicities number increase, the number of allowed transition
between the dressed states increases and hence number of absorption and amplifi-
cation peaks appearing in the spectrum increases as k increases;

(ii) the position of absorption and amplification peaks is associated with not only the
photon number (n) and the photon multiplicity number k but also the intensity-
dependent atom-field coupling λifi(n);

(iii) the heights of the spectrum components becomes shorter and the distances between
them is larger as the mean photon number increases;

(iv) the symmetry shown in the standard three-level atom model for the spectra is no
longer present once Kerr effect or detuning is considered;

(v) the effect of detuning on the absorption spectrum is twofold. The first effect is the
shift of the spectrum to the right hand side. The second effect is the dependence of
the amplitudes and heights of the peaks on Δi;

(vi) the Kerr medium has an effect opposite to the effect of the detuning, where the
earlier has shorter elements. Also, the heights and widths of the peaks not only
depend on the photonmultiplicity but also depend on the value of χ. Consequently,
changes in the detuning and the Kerr medium parameters can show in the spectra,
and hence the heights of the peaks; their shifts and widths are altered when com-
pared with the case of resonance;

(vii) the strong field effects can be produced by choosing the right parameters for these
nonlinearities.
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