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We present and study a stabilized mixed finite element method for single-phase compressible
flow through porous media. This method is based on a pressure projection stabilization method
for multiple-dimensional incompressible flow problems by using the lowest equal-order pair for
velocity and pressure (i.e., the P; — P; pair). An optimal error estimate in divergence norm for the
velocity and suboptimal error estimates in the L?-norm for both velocity and pressure are obtained.
Numerical results are given in support of the developed theory.

1. Introduction

The mixed finite element method is frequently used to obtain approximate solutions to
more than one unknown. For example, the Stokes equations are often solved to obtain both
pressure and velocity simultaneously. Accordingly, we need a finite element space for each
unknown. These two spaces must be chosen carefully so that they satisfy an inf-sup stability
condition for the mixed method to be stable. Examples of an appropriate choice for the mixed
spaces for the Stokes equations include the P, — P; pair (i.e., the Taylor-Hood element [1, 2])
and the MINI-element [1, 3] (i.e., the P; — P; pair with the addition of the cubic bubble
functions on triangles to the P;-velocity space), where P, stands for the space of polynomials
of degree r > 0. For second-order partial differential problems of the Darcy flow type, many
special mixed finite element spaces have been established, such as those of Nedelec [4],
Raviart and Thomas [5], Brezzi et al. [6], Brezzi et al. [7], Chen and Douglas Jr. [8], and
Brezzi et al. [9]. These mixed spaces do not include the equal-order pairs such as P, — P,.
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Although the equal-order pairs of mixed finite element spaces do not satisfy the
inf-sup stability condition [10], they offer some computational advances such as they are
simple and have practical uniform data structure and adequate accuracy. Much attention
has recently been attracted to using the equal-order finite element pairs for the fluid
mechanics equations, particularly for the Stokes and Navier-Stokes equations [10-16]. Many
stabilization techniques have been used to stabilize these element pairs such as penalty,
pressure projection, and residual stabilization methods [16-19]. Among these methods, the
pressure projection stabilization method is a preferable choice in that it is free of stabilization
parameters, does not require any calculation of high-order derivatives or edge-based data
structures, and can be implemented at the element level [10, 12, 14, 15]. These recent
studies have been focused on stabilization of the lowest equal-order finite element pair
P, — P (or Q; — Qi, the bilinear function pair) using the pressure projection stabilization
method for second-order elliptic problems of the Darcy flow type and the Stokes and Navier-
Stokes problems [10, 12, 15, 20]. This pressure projection stabilization method involves the
introduction of a local projection of the pressure into a scalar finite element space.

In this paper, we extend the pressure projection stabilization method to solving the
single-phase compressible flow problem in porous media that is described by a second-order
parabolic equation. We first define this stabilized method using the equal-order pair of mixed
finite element spaces P; — P;. Then we derive error estimates for this method; optimal error
estimates in the divergence norm for velocity and suboptimal error estimates in the L*>-norm
for pressure and velocity are obtained. For more information on the better features of the
present pressure projection stabilization method over other stabilized mixed methods, please
refer to [21]. This is the first time that this method is used for the numerical solution of the
single-phase compressible flow problem in porous media.

The rest of this paper is organized as follows. In the next section, the basic notation,
the differential equation, and its mixed formulation are stated. Then, in the third section, the
stabilized mixed finite element method is shown. Error estimates for this stabilized method
are derived in the fourth section, and a superconvergence result is proved in the fifth section.
In the final section, numerical experiments are given to illustrate the theoretical results.

2. Function Setting

The dynamical problem we consider is single-phase compressible flow in a porous medium
domain Q ¢ R4, d > 2, with a Lipschitz-continuous boundary I'. The system is governed by

cpr - V- (KVp)=f, inQx(0,T], (2.1)
p=po, inQx{0}, (2.2)
p=0, onIx(0,T], (2.3)

where p(x,t) is the pressure, c(x,t) the compressibility factor, f(x,t) the source or sink
function, py(x) the initial pressure, K(x) the permeability (or mobility) of the medium, T > 0
the final time, and p; = Op/0t. When gravity is ignored, the single-phase compressible flow
problem reduces to (2.1)—(2.3) [22]. We assume that c(x, t) is a smooth function:

O0<co<c(x,t)<oo, c(x,t)<oo, x€Q, 0<t<T. (2.4)
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Furthermore, assume that K = (kl-,-)?].=1 is a bounded, symmetric, and positive definite matrix
in Q; that is, there exist positive constants a; and a, such that

all¢l? < ¢TKE < mllgl’, VEeR?, d>2, (2.5)

where ¢ is the transpose of ¢.
In order to introduce a mixed formulation on Q, set

V = H(div; Q) = {v € <L2(9)>d s divv € L3(Q) } W = [X(Q), (2.6)

with the norms

1/2
Wiy = (IVI5 + v vlig) llally = llqll, vev, gqew. (27)

Introduce u = —-KVp and transform (2.1) and (2.3) into the standard mixed form: for any
t € [0,T], find u(t) € Vand p(t) € W such that

(cpr.q) + (divu,q) = (f.q), YqeW, (2.8)

(K’lu, v> - (p,divv) =0, VYveV. (2.9)

This is the mixed variational form of (2.1) and (2.3). The initial condition (2.2) remains valid.
A generalized bilinear form on (V, W) x (V, W) is defined by

B((w,p),(v,q)) = (K’lu, v> - (p,divv) + (divu,q), (u,p),(v,q) € VxW. (2.10)

Consequently, the system (2.8) and (2.9) is written as follows: for any t € [0, T], find u(f) e V
and p(t) € W such that

(cpe.q) + B((w,p), (v.q)) = (f,9), Y(v.q) eVxW, (2.11)
p(x,0) =po(x), VYxe€Q. (2.12)

For convenience, we state the Gronwall Lemma that will be used later.

Lemma 2.1. Let g(t),1(t), and é(t) be three nonnegative functions satisfying, for t € [0,T],

B +G(H)<C+ ﬂ Ids + f; gt ds, (2.13)

where G(t) is a nonnegative function on [0, T] and C is a number. Then

() +G(t) < <C + J.;lds> exp <JZ gds>, te[0,T]. (2.14)
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Lemma 2.2. In addition to the assumptions (2.4) and (2.5), if

¢ 1/2
lIpolly + <f0 IIf(S)II?JdS> <C, telo,T], (2.15)
then the following stability estimate holds

sup ([|p(s)][5 + Ilu(s)1I7) +f (lp(s)1l5 + Ira(s)1l + idiv u(s)[l3 ) ds < C, (216)

0<s<t 0
fort e [0,T].
Proof. We divide the proof into three parts.

(1) Taking g = p and v = u in (2.8) and (2.9), respectively, and adding the resulting
equations, we obtain

1d 5 1 ~
Ea”\/zr’”é + <K 1u,U> =(fp)+ E(Ctp,]ﬁ> < ”c 1/2f||0||\/5p||0 +Cllp 3, (2.17)
which, along with Gronwall’s inequality, (2.4), and (2.5), gives
t
sup|[p(s)]lo +f lu(s)llgds <C, te[0,T]. (2.18)
O<sst 0

(2) Taking g = p; in (2.8), differentiating (2.9) with respect to t, taking v = u, and adding
the resulting equations, we see that

1d 2
IVepllo + 52 | VE |, = (£p) < [[ 72| I1verillo (2.19)
0 0
which, along with Gronwall’s inequality, (2.4), and (2.5), implies
> [ 2
sup|lu(s)|ls +f llpe(s)||,ds <C, te[0,T]. (2.20)
0<s<t 0

(3) Taking g = divu in (2.8), we obtain

Idivull = (f,diva) = (cpr, divu) < (|| £]l, + lepello) I1div ull, (2.21)
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which, along with (2.20), yields

t
f |divu(s)|5ds < C. (2.22)
0

The proof has been completed. O

3. The Stabilized Mixed Finite Element Method

For h > 0, we introduce finite-dimensional subspaces (V,,W;) C (V,W), which are
associated with I'y, a triangulation of Q into triangles, assumed to be regular in the usual
sense [1, 23]. This paper focuses on the unstable velocity-pressure pair of the lowest equal-
order finite element spaces:

V), = {v €V :v|; € (P(T))? VT € rh},
(3.1)
Wh={qeW:qly € P(T), VT €T} }.

As noted earlier, this choice of the approximate spaces Vj, and W), does not satisfy the
inf-sup condition uniformly in h [10]:

di
sup- (VY. ) (divv, q)

Vg e W, (32)
vevy, ”V“H div;Q)

where the constant > 0 is independent of h. The pressure projection stabilization method for
elliptic problems and the Stokes and Navier-Stokes problems [10, 12, 15, 20] will be adopted.
LetIT, : W — W}, be the standard Lz-projection, which satisfies

(p.q) = (Thip,q), YpeW, ge Wy,
”HhP“o S VpeW,

(3.3)

where W, = {g € W : gl € Py(T), VT € T}}. We introduce the pressure projection
stabilization term

G(p,q) = (p-Tlwp,q-Tlhq), p,qeW. (3.4)

Now, the stabilized mixed finite element method reads as follows: for any ¢t € [0,T], find
up(t) € Vi, and py(t) € Wy, such that

(cpnt,q) + (divuy, q) + G(pr,q) = (f,q9), Yq€Wh,

1 (3.5)
<K’ uh,v> - (pn,divv) =0, VYveVy
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Introduce the bilinear form

B((wn ), (v,4)) = (K™, v) = (pi, div) + (div s, ) + G(pw ),

(an,pn), (v,q) € Vi x W

(3.6)

Using this notation, the stabilized mixed method of problem (2.8) and (2.9) reads as follows:
find (up, pr) € Vi, x Wy, t € [0,T], such that, for all (v, q) € V, x W,
(cput, @) + B((un pn), (v,4)) = (£,4), (3.7)
pr(0) = pon, (3.8)
where pg is a proper approximation of py in Wj,. The next theorem can be found in [20],
which shows the well-posedness of problem (3.7).

Theorem 3.1. Under the assumption (2.5) and with (Vy,, Wy,) defined as above, there exist positive
constants C and P, independent of h, such that

|B((an pn), (Vi gn))| < C(||“h||H<div;sz> + ||Ph||o> X <||"h||H<div;sz> + ||qh||0), (3.9)

|B((un, pr), (Vi qn))|
qh“()

> ﬂ(lluhl|H(div;g)+ lpn ||0> Y (un, pr), (Vi, qn) € (Vi, Wh).
(3.10)

wnanevuwy  IVilla@iva) + |

4. Error Analysis

To derive error estimates for the mixed finite element solution (uy, pr), we define the mixed
method elliptic projection operator (Ry, Qn) : (V,W) — (Vy, Wy) by

B((Ru(v,q),Qn(v.4)), (Vi qn)) = B((v,q9), (Vi qn)), @)
Y(v,q) € (V,W), (Vi qn) € (Vin, Wp), '

which is well defined by Theorem 3.1 and satisfies the following approximation properties,
where we define (uon, pon) = (Rn(uo, po), Qn(uo, po)) for simplicity of the presentation. The
elliptic projection corresponds to the elliptic problem (without the time differentiation term)
of the system (2.8) and (2.9).

Lemma 4.1. Under the assumption of Theorem 3.1, the projection operator (Ry,, Qp) satisfies

[[v = Ru(v, q)”H(div;Q) +|la=Qu(v.9) |y < Ch(lIvlly + lIdiv vily + [[q]],),  Y(v.q) € (V,W).
(4.2)
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Proof. Let Ij, denote the standard P;-interplant. Then we see from the definition of (R, Qp),
the triangle inequality, (3.9), and (3.10) that

v =R (v, @) |sxaivsery + 19 = Qu(v. @) [l
< v = IVl + 19 =Tl + 109 = Ru (0, 9) agaiviey + 1T = Qn (v, @)llo
<V = Invllgaive) + |19 - k||

|B((Inv ~ Ri(v, ), TThg = Qu(v,q)), (xu, yn))|

+ [5*1 sup
(%nyn) €(Vi, W) (X1l Erdivi) + ||}/h| 0
(4.3)
<V = Invlgaive) + |19 - k||
fp sup |B((v — Inv, 4 ~T1nq), (Xn, yn)) |
(Xh,yh)e(vh,Wh) ”thH(diV?Q) + ”}/h ”0
< C(Iv = Iivllaaivey *+ 14 - gl )
< Ch(|Ivlly + div v, +||4]|,),
which completes the proof. O
Lemma 4.2. Under the assumptions of Lemma 2.2 and Theorem 3.1, it holds that
, [
Ip) - Pl + [ 1u(e) - wio)lds <, 10,7 (44)
0
Proof. Subtracting (3.7) from (2.11) with (v, g) = (v, gn), we have
(clpt =P, an) + B((a~un,p=pn), (Vi qn)) = G(p,qn), (4.5)

for all (v, qn) € (Vi, Wh). Setting (€n, 111) = (Ru(u, p) — un, Qu(w, p) — pn), E = p — Qu(u,p),
and (vy, gn) = 2(ep, 1) in (4.5) and using (4.1), we see that

d
T lIv/emll; + 2<K_1€h/ €h> +2G (1, 1) = =2(cEx, 1n) + (cifn, 1n)
(4.6)

< 2”6‘1/25”0“\51111”0 + (e, 1n)-

Then, by integrating (4.6) from 0 to t and noting that 77, (0) = 0, we obtain

t t t
[ f ((Ken en) +G(nm))ds < c<f IE|3ds + f ||qh||§ds>. 4.7)
0 0 0
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Applying Lemmas 2.1, 2.2, and 4.1 to (4.7) gives

||72h||3 + f;((Kleh, €h> +G(1n, rzh)>ds < Ch?. (4.8)

As a result, (4.4) follows from Lemma 4.1 and the triangle inequality. O

Lemma 4.3. Under the assumption of Lemma 2.2 and Theorem 3.1, it holds that
' 2
lu(t) —un(t)|lg + f llp: — pue||"ds < CH*, te[0,T]. (4.9)
0

Proof. Differentiating the term (K~!(u —uy), vi) — (p — pn, div vy) in (4.5) with respect to time
t and taking (vi, gn) = (€n, i) in (4.5), we see that

1d

l|venuls + T <<K_1€h/ €h> + G (1, nh)> = —(cEt, 1ut)- (4.10)

Using the Young inequality, we have
d -
lmally + 2 (K ensen) + Gmmi) ) < CIE. (411)

Then, integrating (4.11) from O to ¢ and using Lemma 4.1, we obtain
t ) t
(Ken en) + G m) + f |70 ]|2ds < C f |IE|2ds < CH?, (4.12)
0 0

which, together with Lemma 4.1 and the triangle inequality, implies (4.9). O

Theorem 4.4. Under the assumptions (2.4), (2.5), and (2.15), it holds that

la(®) —wn(®ll + lp®) = pu(®H)|l, < Ch, te[0,T]. (4.13)

This theorem follows from Lemmas 4.2 and 4.3.
Next, we will estimate [[u(t) — u; ()|l ggiv.q)- For this, we assume

T 1/2
lIpollo + <L ||ft(t)||§dt> <C (4.14)

Differentiating (2.8) and (2.9) with respect to t, the following result follows from a similar
proof to that of Lemma 2.2.
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Lemma 4.5. Under the assumptions (2.4), (2.5), and (4.14), the following estimate holds

T
sup ([lp(®l; + I (O1) + f (Ipe® 15+ eI + Idiv ) de < €. (4.15)

<t<

Lemma 4.6. Under the assumptions of Lemma 4.5, it holds that
5 t
IWAﬂ—mxmu+fnmwyﬂmwm&&scw,te[aﬂ. (4.16)
0

Proof. Differentiating (4.5) with respect to time ¢, using (4.1), and taking (vi, gn) = 2(€nt, Nnt)
give

d
I || \/Eﬂht ”é + 2<K_1€ht/ €ht> + ZG(ﬂht/ Uht) =-2 (CtEt/ Uht) - Z(CEtt/ ﬂht) - (Ctﬂht/ Uht) (417)

< C(IEllo + N Eeello + 17mello) Nl7zme -

Then, by integrating (4.17) from 0 to t, we see that

t
0

t
el + f0<<Kleht, ent) + G (1, 1) )ds < cf (NEG + IEally + 7]l )ds.  (4.18)

Applying Lemmas 2.1, 4.1, and 4.5 to (4.18) gives
t
”ﬂhtné + f <<K71€ht, €ht> + G(T]ht, qht)>ds < Chz. (4.19)
0

As aresult, (4.16) comes from Lemma 4.1 and the triangle inequality. O

Lemma 4.7. Under the assumptions of Lemma 4.5, it holds that
llu - upllg@ive) <Ch, te[0,T]. (4.20)

Proof. It follows from the inf-sup condition (3.10), Theorem 3.1, and (4.5) that

B 7 7 7
lelo + Idivenl + lmll, <p sup DA (o)
eV IValla@ivo) + lwnlly (4.21)

< Cllpe = puell-

Consequently, using Lemmas 4.1 and 4.6 and the triangle inequality, we complete the proof.
O
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Theorem 4.8. Under the assumptions (2.4), (2.5), (2.15), and (4.14), it holds that, for t € [0,T],
[u(t) —un(®)ll + ldiv(u(t) —un()llo + |[p(H) = pu(®)]|, < Ch. (4.22)

This theorem follows from Lemmas 4.2 and 4.7.

The result in Theorem 4.8 is optimal for u in the divergence norm and suboptimal for
u and p in the L?-norm in terms of the convergence rates. These are the best estimates one can
obtain with method (3.7). The reason is that the approximation property of the lower-order
space W, always pollutes the global accuracy.

5. Superconvergence
Set

en(t) =Iu(p(t) —pu(t)), te€[0,T] (5.1)

Then, by the definition of the projection operator I'l; and the fact that div 'V, = W), the error
equation (4.5) can be written as

(clpr —pne], qn) + B((u—up,en), (Vi,qn)) =GP, qn), (Vi qn) € (Vi, Wh). (5.2)
We recall the projection operator (4.1) as follows:

B((v - Ru(v,9),TTh(q - Qn(v,9))), (Vi qn)) = G(q,9n),

(5.3)
Y(v,q) € (V,W), (Vi qn) € (Vi, Wh).
Under the assumption of Lemma 2.2, it follows from [20] that
I3 (p ~ Qu(w, p)) ||, < CH2. (5:4)

For simplicity of the presentation, we assume that the coefficient ¢ is piecewise constant in
the next theorem; for a variable coefficient ¢ the same result holds if it is projected into the

space W), using the projection operator ITj,.

Theorem 5.1. Under the assumptions (2.4), (2.5), and (2.15), it holds that
1T (p(t) = pr()) ||, < CH?,  t€[0,T]. (5.5)

Proof. Setting (e, 1n) = (Ru(u,p) — un, Qn(w,p) — pn), E = p — Qu(u,p), and (vu, gn) =
2(en, I1pny) in (5.2) and using (5.3), we see that

d
2 lVertuml[g +2(Ken en) < CITTE o[ TTargal. (5.6)
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Table 1: Errors and convergence rates for the velocity.

1/h uj: error u;: rate ug;y error ug;y rate
8 0.0626682 0.0953064

16 0.0175218 1.83858 0.0514547 0.889269
24 0.00819644 1.87377 0.0355113 0.914632
32 0.0047615 1.88798 0.027229 0.923136
40 0.00311895 1.89594 0.0221371 0.927761

Then, by integrating (5.6) from 0 to t and noting that 77, (0) = 0, we obtain

t t t
(| T | + f <K,1€h, eh>ds < c< f T, E¢ || 2ds + f ||nhqh||§ds>. (5.7)
0 0 0
Applying Lemmas 2.1 and 2.2 and (5.4) to (5.7) gives
,
([T |12 + fo (K~en en)ds < Ch'. (5.8)
As aresult, (5.5) comes from (5.4) and the triangle inequality. O

6. Numerical Results

Numerical results are presented to check the theory developed in the previous sections. In
all the experiments, the triangulations I';, are based on the partition of the unit square Q =
[0,1] x [0,1] into triangles. In the first example, the accuracy of the stabilized mixed finite
element method is checked; in the second example, a single-phase flow problem is calculated
using this method.

6.1. Accuracy

The purpose of this example is to check the convergence rates for the solution p and u. Here,
let ¢ = 1 and the coefficient tensor K be the identity tensor. We choose the exact solution as
follows:

p(x,y) = x*(x = 1)y (y — 1) cos(t). (6.1)

The numerical experiments have been performed by using the equal-order finite
element pair P — P; for velocity and pressure, as defined in the third section. The backward
Euler scheme is used for the time discretization. To check the numerical accuracy in space,
we use a small time step dt = 0.0005; the final time is T = 1.

Detailed numerical results are shown in Tables 1 and 2, which clearly present the
expected convergence rates. In these tables, the p;2 error, for example, is defined by

pre error = ||p - pu||,- (6.2)
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Table 2: Errors and convergence rates for the pressure.

1/h pr2 error pr> rate IT};2 error I1,;2 rate
8 0.0303817 0.0200016

16 0.00742562 2.03262 0.00464606 2.10603

24 0.00328428 2.01198 0.00203124 2.04055

32 0.00184548 2.00363 0.00113789 2.01428

40 0.00118171 1.9977 0.000728781 1.99673

Table 3: Parameters for a reservoir.

Item Description Unit Value
k Permeability md 88.7
U Oil viscosity cp 10
H Thickness ft 100
c Compressibility 1/psi 0.0002
¢ Porosity fraction 0.2
Po Initial pressure psia 4,000
q Oil flow rate STB/D 400
Tw Radius of wellbore ft 0.25
B Oil FVF RB/STB 1

ac Transmissibility conversion factor — 1.127
Be Volume conversion factor — 5.614583
Xmax Length in the x-direction ft 4,000
Ymax Length in the y-direction ft 4,000

A selected numerical pressure and velocity for this example at T = 1 are shown in Figure 1.
From these tables, better computational results, up to the convergence of order O(h?) for p
and u in the L?-norm, occur.

6.2. A Single-Phase Flow Problem

Here, we consider the unsteady-state single-phase flow of oil taking place in a two-
dimensional, homogeneous, isotropic, horizontal reservoir, with its property parameters
given in Table 3 [22]. At the internal boundary, there is a well producing at a constant flow
rate. On the other hand, at the external boundary, the pressure remains constant.

The basic differential equation describing this reservoir is

Beack ot 0x2  oy?’ '

In Figure 2, we display the rectangular domain, boundary conditions, and mesh adopted in
the simulation.

In Figures 3 and 4, the numerical results are shown. Figures 3(a)-3(c) show the
variation of the pressure with respect to time; Figure 4 gives the pressure distribution in
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(a) The pressure and velocity

P_err

-0.0001

(b) The pointwise pressure error

Figure 1: Numerical results on a 32 x 32 uniform triangular mesh.

the reservoir at r = r, and r = 200 ft after 20 days. The pressure decreases as time progresses,
which is reasonable; as the well produces, the reservoir pressure decreases.

7. Conclusions

A stabilized mixed finite element method for an unsteady-state single-phase flow problem in
a porous medium has been developed and analyzed. An optimal error estimate in divergence
norm for the velocity and suboptimal error estimates in the L?>-norm for both velocity and
pressure have been proven. A superconvergence result for the pressure has been obtained as
well. The numerical results to check the accuracy of this method and calculate single-phase
flow have been presented.
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Figure 2: Conditions adopted in simulation.
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Figure 3: Numerical results (pressure contours) with respect to time.
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