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Consider the second-order linear delay differential equation x′′(t) + p(t)x(τ(t)) = 0, t ≥ t0, where
p ∈ C([t0,∞),R+), τ ∈ C([t0,∞),R), τ(t) is nondecreasing, τ(t) ≤ t for t ≥ t0 and limt→∞τ(t) =
∞, the (discrete analogue) second-order difference equation Δ2x(n) + p(n)x(τ(n)) = 0, where
Δx(n) = x(n + 1) − x(n), Δ2 = Δ ◦ Δ, p : N → R

+, τ : N → N, τ(n) ≤ n − 1, and
limn→∞τ(n) = +∞, and the second-order functional equation x(g(t)) = P(t)x(t) + Q(t)x(g2(t)),
t ≥ t0, where the functions P , Q ∈ C([t0,∞),R+), g ∈ C([t0,∞),R), g(t)/≡ t for t ≥ t0, limt→∞g(t) =
∞, and g2 denotes the 2th iterate of the function g, that is, g0(t) = t, g2(t) = g(g(t)), t ≥ t0.
The most interesting oscillation criteria for the second-order linear delay differential equation,
the second-order difference equation and the second-order functional equation, especially in
the case where lim inft→∞

∫ t
τ(t)τ(s)p(s)ds ≤ 1/e and lim supt→∞

∫ t
τ(t)τ(s)p(s)ds < 1 for the

second-order linear delay differential equation, and 0 < lim inft→∞{Q(t)P(g(t))} ≤ 1/4 and
lim supt→∞{Q(t)P(g(t))} < 1, for the second-order functional equation, are presented.

1. Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions to the
second-order delay differential equation

x′′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

where p ∈ C([t0,∞),R+) (here R
+ = [0,∞)), τ ∈ C([t0,∞),R), τ(t) is nondecreasing, τ(t) ≤ t

for t ≥ t0, and limt→∞τ(t) = ∞, has been the subject of many investigations; see, for example,
[1–21] and the references cited therein.
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By a solution of (1) we understand a continuously differentiable function defined on
[τ(T0),∞) for some T0 ≥ t0 and such that (1) is satisfied for t ≥ T0. Such a solution is called
oscillatory if it has arbitrarily large zeros, and otherwise it is called nonoscillatory.

The oscillation theory of the (discrete analogue) second-order difference equation

Δ2x(n) + p(n)x(τ(n)) = 0, (1)′

where Δx(n) = x(n + 1) − x(n), Δ2 = Δ ◦ Δ, p : N → R
+, τ : N → N, τ(n) ≤ n − 1, and

limn→∞τ(n) = +∞, has also attracted growing attention in the recent few years. The reader is
referred to [22–26] and the references cited therein.

By a solution of (1) we mean a sequence x(n) which is defined for n ≥ min {τ(n) :
n ≥ 0} and which satisfies (1)′ for all n ≥ 0. A solution x of (1)′ is said to be oscillatory if the
terms x of the solution are neither eventually positive nor eventually negative. Otherwise the
solution is called nonoscillatory.

The oscillation theory of second-order functional equations of the form

x
(
g(t)
)
= P(t)x(t) +Q(t)x

(
g2(t)

)
, t ≥ t0, (1)′′

where P,Q ∈ C([t0,∞),R+), g ∈ C([t0,∞),R) are given real-valued functions, x is an
unknown real-valued function, g(t)/≡ t for t ≥ t0, limt→∞g(t) = ∞, and g2 denotes the 2nd
iterate of the function g, that is,

g0(t) = t, g2(t) = g
(
g(t)
)
, t ≥ t0, (1.1)

has also been developed during the last decade. We refer to [27–35] and the references cited
therein.

By a solution of (1)′′ we mean a real-valued function x : [t0,∞) → R such that
sup{|x(s)| : s ≥ t∗} > 0 for any t∗ ≥ t0 and x satisfies (1)′′ on [t0,∞).

In this paper our purpose is to present the state of the art on the oscillation of all
solutions to (1), (1)′, and (1)′′, especially in the case where

lim inf
t→∞

∫ t

τ(t)
τ(s)p(s)ds ≤ 1

e
, lim sup

t→∞

∫ t

τ(t)
τ(s)p(s)ds < 1 (1.2)

for (1), and

0 < lim inf
t→∞

{
Q(t)P

(
g(t)
)} ≤ 1

4
, lim sup

t→∞

{
Q(t)P

(
g(t)
)}

< 1 (1.3)

for (1)′′.
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2. Oscillation Criteria for (1)

In this section we study the second-order delay equation (1). For the case of ordinary
differential equations, that is, when τ(t) ≡ t, the history of the problem began as early
as in 1836 by the work of Sturm [16] and was continued in 1893 by Kneser [8]. Essential
contribution to the subject was made by E. Hille, A. Wintner, Ph. Hartman, W. Leighton, Z.
Nehari, and others (see the monograph by Swanson [17] and the references cited therein). In
particular, in 1948 Hille [7] obtained the following well-known oscillation criteria. Let

lim sup
t→∞

t

∫+∞

t

p(s)ds > 1 (2.1)

or

lim inf
t→∞

t

∫+∞

t

p(s)ds >
1
4
, (2.2)

the conditions being assumed to be satisfied if the integral diverges. Then (1) with τ(t) ≡ t is
oscillatory.

For the delay differential equation (1), earlier oscillation results can be found in the
monographs by Myshkis [14] and Norkin [15]. In 1968 Waltman [18] and in 1970 Bradley [1]
proved that (1) is oscillatory if

∫+∞
p(t)dt = +∞. (2.3)

Proceeding in the direction of generalization of Hille’s criteria, in 1971 Wong [20] showed
that if τ(t) ≥ αt for t ≥ 0 with 0 < α ≤ 1, then the condition

lim inf
t→∞

t

∫+∞

t

p(s)ds >
1
4α

(2.4)

is sufficient for the oscillation of (1). In 1973 Erbe [2] generalized this condition to

lim inf
t→∞

t

∫+∞

t

τ(s)
s

p(s)ds >
1
4

(2.5)

without any additional restriction on τ . In 1987 Yan [21] obtained some general criteria
improving the previous ones.

An oscillation criterion of different type is given in 1986 by Koplatadze [9] and in 1988
by Wei [19], where it is proved that (1) is oscillatory if

lim sup
t→∞

∫ t

τ(t)
τ(s)p(s)ds > 1 (C1)
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or

lim inf
t→∞

∫ t

τ(t)
τ(s)p(s)ds >

1
e
. (C2)

The conditions (C1) and (C2) are analogous to the oscillation conditions (see [36])

A := lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1, (H1)

α := lim inf
t→∞

∫ t

τ(t)
p(s)ds >

1
e
, (H2)

respectively, for the first-order delay equation

x′(t) + p(t)x(τ(t)) = 0. (2.6)

The essential difference between (2.1), (2.2), and (C1), (C2) is that the first two can
guarantee oscillation for ordinary differential equations as well, while the last two work only
for delay equations. Unlike first-order differential equations, where the oscillatory character
is due to the delay only (see [36]), equation (1) can be oscillatory without any delay at all,
that is, in the case τ(t) ≡ t. Figuratively speaking, two factors contribute to the oscillatory
character of (1): the presence of the delay and the second-order nature of the equation. The
conditions (2.1), (2.2), and (C1), (C2) illustrate the role of these factors taken separately.

In 1999 Koplatadze et al. [11] derived the following.

Theorem 2.1 (see [11]). Let

lim sup
t→∞

{

τ(t)
∫+∞

t

p(s)ds +
∫ t

τ(t)
τ(s)p(s)ds + [τ(t)]−1

∫ τ(t)

0
sτ(s)p(s)ds

}

> 1. (2.7)

Then (1) is oscillatory.

The following corollaries being more convenient for applications can be deduced from
this theorem.

Corollary 2.2 (see [11]). Let

lim sup
t→∞

τ(t)
∫+∞

t

p(s)ds + lim inf
t→∞

t−1
∫ t

0
sτ(s)p(s)ds > 1 (2.8)

or

lim inf
t→∞

τ(t)
∫+∞

t

p(s)ds + lim sup
t→∞

t−1
∫ t

0
sτ(s)p(s)ds > 1. (2.9)

Then (1) is oscillatory.
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Corollary 2.3 (see [11]). Let

lim sup
t→∞

τ(t)
∫+∞

t

p(s)ds > 1 (2.10)

or

lim sup
t→∞

t−1
∫ t

0
sτ(s)p(s)ds > 1. (2.11)

Then (1) is oscillatory.

In the case of ordinary differential equations (τ(t) ≡ t) the following theorem was
given in [11].

Theorem 2.4 (see [11]). Let τ(t) ≡ t and

lim sup
t→∞

{

t

∫+∞

t

p(s)ds + t−1
∫ t

0
s2p(s)ds

}

> 1. (2.12)

Then (1) is oscillatory.

In what follows it will be assumed that the condition

∫+∞
τ(s)p(s)ds = +∞ (2.13)

is fulfilled. As it follows from Lemma 4.1 in [10], this condition is necessary for (1) to be
oscillatory. The study being devoted to the problem of oscillation of (1), the condition (2.13)
does not affect the generality.

Here oscillation results are obtained for (1) by reducing it to a first-order equation.
Since for the latter the oscillation is due solely to the delay, the criteria hold for delay
equations only and do not work in the ordinary case.

Theorem 2.5 (see [12]). Let (2.13) be fulfilled and let the differential inequality

x′(t) +

(

τ(t) +
∫ τ(t)

T

ξτ(ξ)p(ξ)dξ

)

p(t)x(τ(t)) ≤ 0 (2.14)

have no eventually positive solution. Then (1) is oscillatory.

Theorem 2.5 reduces the question of oscillation of (1) to that of the absence of
eventually positive solutions of the differential inequality

x′(t) +

(

τ(t) +
∫ τ(t)

T

ξτ(ξ)p(ξ)dξ

)

p(t)x(τ(t)) ≤ 0. (2.15)
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So oscillation results for first-order delay differential equations can be applied since the
oscillation of the equation

u′(t) + g(t)u(δ(t)) = 0 (2.16)

is equivalent to the absence of eventually positive solutions of the inequality

u′(t) + g(t)u(δ(t)) ≤ 0. (2.17)

This fact is a simple consequence of the following comparison theorem deriving the
oscillation of (2.16) from the oscillation of the equation

v′(t) + h(t)v(σ(t)) = 0. (2.18)

We assume that g, h : R+ → R+ are locally integrable, δ, σ : R+ → R are continuous,
δ(t) ≤ t, σ(t) ≤ t for t ∈ R+, and δ(t) → +∞, σ(t) → +∞ as t → +∞.

Theorem 2.6 (see [12]). Let

g(t) ≥ h(t), δ(t) ≤ σ(t), for t ∈ R+, (2.19)

and let (2.18) be oscillatory. Then (2.16) is also oscillatory.

Corollary 2.7 (see [12]). Let (2.16) be oscillatory. Then the inequality (2.17) has no eventually
positive solution.

Turning to applications of Theorem 2.5, we will use it together with the criteria (H1)
and (H2) to get the following.

Theorem 2.8 (see [12]). Let

K := lim sup
t→∞

∫ t

τ(t)

(

τ(s) +
∫ τ(s)

0
ξτ(ξ)p(ξ)dξ

)

p(s)ds > 1 (C3)

or

k := lim inf
t→∞

∫ t

τ(t)

(

τ(s) +
∫ τ(s)

0
ξτ(ξ)p(ξ)dξ

)

p(s)ds >
1
e
. (C4)

Then (1) is oscillatory.

To apply Theorem 2.5 it suffices to note that (i) equation (2.13) is fulfilled since
otherwise k = K = 0; (ii) since τ(t) → +∞ as t → +∞, the relations (C4) and (C4) imply
the same relations with 0 changed by any T ≥ 0.
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Remark 2.9 (see [12]). Theorem 2.8 improves the criteria (C1), (C2) by Koplatadze [9] andWei
[19] mentioned above. This is directly seen from (C3), (C4) and can be easily checked if we
take τ(t) ≡ t−τ0 and p(t) ≡ p0/(t−τ0) for t ≥ 2τ0, where the constants τ0 > 0 and p0 > 0 satisfy

τ0p0 <
1
e
. (2.20)

In this case neither of (C1), (C2) is applicable for (1) while both (C3), (C4) give the positive
conclusion about its oscillation. Note also that this is exactly the case where the oscillation is
due to the delay since the corresponding equation without delay is nonoscillatory.

Remark 2.10 (see [12]). The criteria (C3), (C4) look like (H1), (H2) but there is an essential
difference between them pointed out in the introduction. The condition (H2) is close to the
necessary one, since according to [9] if A ≤ 1/e, then (2.16) is nonoscillatory. On the other
hand, for an oscillatory equation (1) without delay we have k = K = 0. Nevertheless, the
constant 1/e in Theorem 2.8 is also the best possible in the sense that for any ε ∈ (0, 1/e] it
cannot be replaced by 1/e − ε without affecting the validity of the theorem. This is illustrated
by the following.

Example 2.11 (see [12]). Let ε ∈ (0, 1/e], 1 − eε < β < 1, τ(t) ≡ αt, and p(t) ≡ β(1 − β)α−βt−2,
where α = e1/(β−1). Then (C4) is fulfilled with 1/e replaced by 1/e − ε. Nevertheless (1) has a
nonoscillatory solution, namely, u(t) ≡ tβ. Indeed, denoting c = β(1 − β)α−β, we see that the
expression under the limit sign in (C4) is constant and equals αc| lnα|(1 + αc) = (β/e)(1 +
(β(1 − β))/e) > β/e > 1/e − ε.

Note that there is a gap between the conditions (C3), (C4) when 0 ≤ k ≤ 1/e, k <
K. In the case of first-order equations (cf., [36–48]), using results in this direction, one can
derive various sufficient conditions for the oscillation of (1). According to Remark 2.9, neither
of them can be optimal in the above sense but, nevertheless, they are of interest since they
cannot be derived from other known results in the literature. We combine Theorem 2.5 with
Corollary 1 [40] to obtain the following theorem.

Theorem 2.12 (see [12]). Let K and k be defined by (C3), (C4), 0 ≤ k ≤ 1/e, and

K > k +
1

λ(k)
− 1 − k −

√
1 − 2k − k2

2
, (C9)

where λ(k) is the smaller root of the equation λ = exp(kλ). Then (1) is oscillatory.

Note that the condition (C9) is analogous to the condition (C9) in [40].

3. Oscillation Criteria for (1)′

In this section we study the second-order difference equation (1)′, where Δx(n) = x(n + 1) −
x(n), Δ2 = Δ ◦Δ, p : N → R+, τ : N → N, τ(n) ≤ n − 1, and limn→∞τ(n) = +∞.
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In 1994, Wyrwińska [26] proved that all solutions of (1)′ are oscillatory if

lim sup
n→∞

⎧
⎨

⎩

n∑

i=τ(n)

[τ(i) − 2]p(i) + [τ(n) − 2]
∞∑

i=n+1

p(i)

⎫
⎬

⎭
> 1, (C1)

′

while, in 1997, Agarwal et al. [22] proved that, in the special case of the second-order
difference equation with constant delay

Δ2x(n) + p(n)x(n − k) = 0, k ≥ 1, (1)′c

all solutions are oscillatory if

lim inf
n→∞

n−1∑

i=n−k
(i − k)p(i) > 2

(
k

k + 1

)k+1

. (3.1)

In 2001, Grzegorczyk and Werbowski [23] studied (1)′c and proved that under the
following conditions

lim sup
n→∞

{
n∑

i=n−k
(i − n + k + 1)p(i) +

[

(n − k − 2) +
n−k−1∑

i=n1

(i − k)2p(i)

]

×
∞∑

i=n+1

p(i)

}

> 1,

for some n1 > n0,

(3.2)

or

lim inf
n→∞

n−1∑

i=n−k
(i − k − 1)p(i) >

(
k

k + 1

)k+1

(C2)
′

all solutions of (1)′c are oscillatory. Observe that the last condition (C2)
′ may be seen as the

discrete analogue of the condition (C2).
In 2001 Koplatadze [24] studied the oscillatory behaviour of all solutions to (1)′ with

variable delay and established the following.

Theorem 3.1 (see [24]). Assume that

inf

{
1

1 − λ
lim inf
n→∞

n−λ
n∑

i=1

ip(i)τλ(i) : λ ∈ (0, 1)

}

> 1,

lim inf
n→∞

n−1
n∑

i=1

ip(i)τ(i) > 0.

(3.3)

Then all solutions of (1)′ oscillate.
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Corollary 3.2 (see [24]). Let α > 0 and

lim inf
n→∞

n−1
n∑

i=1

i2p(i) > max
{
α−λλ(1 − λ) : λ ∈ [0, 1]

}
. (3.4)

Then all solutions of the equation

Δ2x(n) + p(n)x([αn]) = 0, n ≥ max
{
1,

1
α

}
, n ∈ N (3.5)

oscillate.

Corollary 3.3 (see [24]). Let n0 be an integer and

lim inf
n→∞

n−1
n∑

i=1

i2p(i) >
1
4
. (3.6)

Then all solutions of the equation

Δ2x(n) + p(n)x(n − n0) = 0, n ≥ max{1, n0 + 1}, n ∈ N (3.7)

oscillate.

In 2002 Koplatadze et al. [25] studied (1)′ and established the following.

Theorem 3.4 (see [25]). Assume that

lim inf
n→∞

τ(n)
n

= α ∈ (0,∞), (3.8)

lim inf
n→∞

n
∞∑

i=n

p(i) > max
{
α−λλ(1 − λ) : λ ∈ [0, 1]

}
. (3.9)

Then all solutions of (1)′ oscillate.

In the case where α = 1, the following discrete analogue of Hille’s well-known
oscillation theorem for ordinary differential equations (see (2.2)) is derived.

Theorem 3.5 (see [25]). Let n0 be an integer and

lim inf
n→∞

n
∞∑

i=n

p(i) >
1
4
. (3.10)
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Then all solutions of the equation

Δ2x(n) + p(n)x(n − n0) = 0, n ≥ n0, (3.11)

oscillate.

Remark 3.6 (see [25]). As in case of ordinary differential equations, the constant 1/4 in (3.10)
is optimal in the sense that the strict inequality cannot be replaced by the nonstrict one. More
than that, the same is true for the condition (3.9) as well. To ascertain this, denote by c the
right-hand side of (3.9) and by λ0 the point where the maximum is achieved. The sequence
x(n) = nλ0 obviously is a nonoscillatory solution of the equation

Δ2x(n) + p(n)x([αn]) = 0, (3.12)

where p(n) = −Δ2(nλ0)/[αn]λ0 and [α] denotes the integer part of α. It can be easily calculated
that

p(n) = − c

n2
+ o

(
1
n2

)
as n −→ ∞. (3.13)

Hence for arbitrary ε > 0, p(n) ≥ (c − ε)/n2 for n ∈ Nn0 with n0 ∈ N sufficiently large. Using
the inequality

∑∞
i=n i

2 ≥ n−1 and the arbitrariness of ε, we obtain

lim inf
n→∞

n
∞∑

i=n

p(i) ≥ c. (3.14)

This limit cannot be greater than c by Theorem 3.4. Therefore it equals c and (3.9) is violated.

4. Oscillation Criteria for (1)′′

In this section we study the functional equation (1)′′.
In 1993 Domshlak [27] studied the oscillatory behaviour of equations of this type. In

1994, Golda and Werbowski [28] proved that all solutions of (1)′′ oscillate if

A := lim sup
t→∞

{
Q(t)P

(
g(t)
)}

> 1 (C1)
′′

or

a := lim inf
t→∞

{
Q(t)P

(
g(t)
)}

>
1
4
. (C2)

′′
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In the same paper they also improved condition (C1)
′′ to

lim sup
t→∞

⎧
⎨

⎩
Q(t)P

(
g(t)
)
+

k∑

i=0

i∏

j=0

Q
(
gj+1(t)

)
P
(
gj+2(t)

)
⎫
⎬

⎭
> 1, (4.1)

where k ≥ 0 is some integer.
In 1995, Nowakowska and Werbowski [29] extended condition (C1)

′′ to higher-order
linear functional equations. In 1996, Shen [30], in 1997, Zhang et al. [35], and, in 1998, Zhang
et al. [34] studied functional equations with variable coefficients and constant delay, while in
1999, Yan and Zhang [33] considered a system with constant coefficients.

It should be noted that conditions (C1)
′′ and (C2)

′′ may be seen as the analogues of the
oscillation conditions (C1) and (C2) for (1) and (C1)

′ and (C2)
′ for (1)′.

As far as the lower bound 1/4 in the condition (C2)
′′ is concerned, as it was pointed out

in [28], it cannot be replaced by a smaller number. Recently, in [32], this fact was generalized
by proving that

Q(t)P
(
g(t)
) ≤ 1

4
, for large t, (N1)

′

implies that (1)′′ has a nonoscillatory solution.
It is obvious that there is a gap between the conditions (C1)

′′ and (C2)
′′ when the limit

limt→∞{Q(t)P(g(t))} does not exist. How to fill this gap is an interesting problem. Here we
should mention that condition (4.1) is an attempt in this direction. In fact, from condition
(4.1) we can obtain (see [31]) that all solutions of (1)′′ oscillate if 0 ≤ a ≤ 1/4 and

A >
1 − 2a
1 − a

. (4.2)

In 2002, Shen and Stavroulakis [31] proved the following.

Theorem 4.1 (see [31]). Assume that 0 ≤ a ≤ 1/4 and that for some integer k ≥ 0

lim sup
t→∞

⎧
⎨

⎩
aQ(t)P

(
g(t)
)
+

k∑

i=0

ai
i∏

j=0

Q
(
gj+1(t)

)
P
(
gj+2(t)

)
⎫
⎬

⎭
> 1, (4.3)

where a = ((1 +
√
1 − 4a)/2)

−1
. Then all solutions of (1)′′ oscillate.

Corollary 4.2 (see [31]). Assume that 0 ≤ a ≤ 1/4 and

A >

(
1 +

√
1 − 4a
2

)2

. (4.4)

Then all solutions of (1)′′ oscillate.
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Remark 4.3 (see [31]). It is to be noted that as a → 0 the condition (4.3) reduces to the
condition (4.1) and the conditions (4.4) and (4.2) reduce to the condition (C1)

′′. However
the improvement is clear as 0 < a ≤ 1/4 because

1 >
1 − 2a
1 − a

>

(
1 +

√
1 − 4a
2

)2

. (4.5)

It is interesting to observe that when a → 1/4 condition (4.4) reduces to

A > 1/4, (4.6)

which cannot be improved in the sense that the lower bound 1/4 cannot be replaced by a
smaller number.

Example 4.4 (see [31]). Consider the equation

x
(
t − 2sin2t

)
= x(t) +

(
1
4
+ qcos2t

)
x
(
t − 2sin2t − 2sin2

(
t − 2sin2t

))
, (4.7)

where g(t) = t − 2sin2t, P(t) ≡ 1, Q(t) = 1/4 + qcos2t, and q > 0 is a constant. It is easy to see
that

a = lim inf
t→∞

(
1
4
+ qcos2t

)
=

1
4
,

A = lim sup
t→∞

(
1
4
+ qcos2t

)
=

1
4
+ q >

1
4
.

(4.8)

Thus, by Corollary 4.2 all solutions of (4.7) oscillate. However, the condition (C1)
′′ is satisfied

only for q > 3/4, while the condition (4.2) is satisfied for (much smaller) q > 5/12.
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