
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 385048, 12 pages
doi:10.1155/2010/385048

Research Article
Nontrivial Solution for a Nonlocal Elliptic
Transmission Problem in Variable Exponent
Sobolev Spaces

Bilal Cekic and Rabil A. Mashiyev

Department of Mathematics, Dicle University, 21280 Diyarbakir, Turkey

Correspondence should be addressed to Bilal Cekic, bilalcekic@gmail.com

Received 5 May 2010; Accepted 19 December 2010

Academic Editor: Stephen Clark

Copyright q 2010 B. Cekic and R. A. Mashiyev. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

In this paper, by means of adequate variational techniques and the theory of the variable exponent
Sobolev spaces, we show the existence of nontrivial solution for a transmission problem given
by a system of two nonlinear elliptic equations of p(x)-Kirchhoff type with nonstandard growth
condition.

1. Introduction

Let Ω be smooth bounded domain of R
n, n ≥ 2, and let Ω1 ⊂ Ω be a subdomain with smooth

boundary Σ satisfying Ω1 ⊂ Ω. Writing Γ = ∂Ω and Ω2 = Ω \ Ω1 we have Ω = Ω1 ∪ Ω2 and
∂Ω2 = Σ ∪ Γ (Figure 1).

We are concerned with the existence of positive solutions to the following system of
nonlinear elliptic equations:

−M
(∫

Ω1

1
p(x)

|∇u|p(x)dx
)

div
(
|∇u|p(x)−2∇u

)
= f(x, u), in Ω1,

−N
(∫

Ω2

1
p(x)

|∇υ|p(x)dx
)

div
(
|∇υ|p(x)−2∇υ

)
= g(x, υ), in Ω2,

υ = 0, on Γ,

(P)
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with the transmission conditions

M

(∫
Ω1

|∇u|p(x)dx
)
∂u

∂η
=N

(∫
Ω2

|∇υ|p(x)dx
)
∂υ

∂η
, on Σ

u = υ, on Σ,

(1.1)

where M and N are positive continuous functions, η is outward normal to Ω2 and is
inward to Ω1, and p(x) ∈ C(Ω). By means of adequate variational techniques and the
theory of the variable exponent Sobolev spaces, we show the existence of nontrivial solution
for a transmission problem given by a system of two nonlinear elliptic equations of p(x)-
Kirchhoff type with nonstandard growth condition. We investigate the problem (P) when
f(x, u) = λ1|u|q(x)−2u, g(x, υ) = λ2|υ|q(x)−2υ, where λ1, λ2 > 0 and p(x), q(x) ∈ C(Ω) such that
1 < q(x) < p∗(x) for all x ∈ Ω, where p∗(x) = np(x)/n − p(x) if p(x) < n or p∗(x) = +∞ if
p(x) ≥ n.

The operator −div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian which is a natural
generalization of the p-Laplacian when p(x) ≡ p > 1 (a constant). The p(x)-Laplacian
possesses more complicated nonlinearities than the p-Laplacian; for example, it is inho-
mogeneous. The study of various mathematical problems with variable exponent growth
condition has received considerable attention in recent years. These problems are interesting
in applications and raise many difficult mathematical problems. One of the most studied
models leading to problem of this type is the model of motion of electrorheological fluids,
which are characterized by their ability to drastically change the mechanical properties
under the influence of an exterior electromagnetic field [1, 2]. Problems with variable
exponent growth conditions also appear in the mathematical modeling of stationary thermo-
rheological viscous flows of non-Newtonian fluids and in the mathematical description of the
processes filtration of an ideal barotropic gas through a porous medium [3].

Transmission problems arise in several applications in physics and biology. For
instance, one of the important problems of the electrodynamics of solid media is the
electromagnetic process research in ferromagnetic media with different dielectric constants.
These problems appear as well as in solid mechanics if a body consists of composite
materials. The existence and regularity results for linear transmission problems are well
known, and a complete study can be found in [4]. We refer the reader to [5] for nonlinear
elliptic transmission problems, to [6] for a nonlinear nonlocal elliptic transmission problem.
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Furthermore, uniqueness and regularity of the solutions to the thermoelastic transmission
problem were investigated in [7].

We note that problem (P) with the transmission condition is a generalization of the
stationary problem of two wave equations of Kirchhoff type,

utt −M
(∫

Ω1

|∇u|2dx
)
Δ2u = f(x, u) in Ω1,

υtt −N
(∫

Ω2

|∇υ|2dx
)
Δ2υ = g(x, υ) in Ω2,

(1.2)

which models the transverse vibrations of the membrane composed by two different
materials in Ω1 and Ω2. Controllability and stabilization of transmission problems for the
wave equations can be found in [8, 9]. We refer the reader to [10] for the stationary problems
of Kirchhoff type, to [11] for elliptic equation p-Kirchhoff type, and to [12, 13] for p(x)-
Kirchhoff type equation.

2. Auxiliary Results

We recall in what follows some definitions and basic properties of variable exponent
Lebesgue and Sobolev spaces Lp(x)(Ω), W1,p(x)(Ω), and W

1,p(x)
0 (Ω). In that context we refer

to [14, 15] for the fundamental properties of these spaces.
By Ω we always denote a nonempty open subset of R

n. Set

C+

(
Ω
)
=
{
h;h ∈ C

(
Ω
)
, h(x) > 1 ∀x ∈ Ω

}
. (2.1)

For any h ∈ C+(Ω) we define

h1 := inf
x∈Ω

h(x), h2 := sup
x∈Ω

h(x). (2.2)

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions
u : Ω → R for which the modular

ρp(x),Ω(u) =
∫
Ω
|u(x)|p(x)dx (2.3)

is finite. We define the Luxemburg norm on this space by the formula

‖u‖p(x),Ω = inf
{
δ > 0 : ρp(x),Ω

(
u

δ

)
≤ 1

}
. (2.4)
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Equipped with this norm, Lp(·)(Ω) is a separable and reflexive Banach space. Define the
variable exponent Sobolev spaceW1,p(x)(Ω) by

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)

}
, (2.5)

and the norm

‖u‖1,p(x),Ω = ‖u‖p(x),Ω + ‖∇u‖p(x),Ω, ∀u ∈W1,p(x)(Ω) (2.6)

makesW1,p(x)(Ω) a separable and reflexive Banach space. The spaceW1,p(x)
0 (Ω) is denoted by

the closure of C∞
0 (Ω) inW1,p(x)(Ω).W1,p(x)

0 (Ω) is a separable and reflexive Banach space.

Proposition 2.1 (see [14, 15]). Let p ∈ C+(Ω). Then conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where
1/p(x) + 1/q(x) = 1. For any u ∈ Lp(x)(Ω) and υ ∈ Lq(x)(Ω), one has

∣∣∣∣
∫
Ω
uυdx

∣∣∣∣ ≤ 2‖u‖p(x),Ω ‖υ‖q(x),Ω. (2.7)

The next proposition illuminates the close relation between the ‖ · ‖p(x),Ω and the
convex modular ρp(x),Ω.

Proposition 2.2 (see [14, 15]). If u ∈ Lp(x)(Ω), then one has

(i) ‖u‖p(x),Ω < 1(= 1;> 1) ⇔ ρp(x),Ω(u) < 1 (= 1;> 1),

(ii) ‖u‖p(x),Ω > 1 ⇒ ‖u‖p1
p(x),Ω ≤ ρp(x),Ω(u) ≤ ‖u‖p2

p(x),Ω,

(iii) ‖u‖p(x),Ω < 1 ⇒ ‖u‖p2
p(x),Ω ≤ ρp(x),Ω(u) ≤ ‖u‖p1

p(x),Ω,

(iv) ‖u‖p(x),Ω = a > 0 ⇔ ρp(x),Ω(u/a) = 1.

Proposition 2.3 (see [14, 15]). If u, un ∈ Lp(x)(Ω), n = 1, 2, . . ., then the following statements are
equivalent to each other:

(i) limn→∞‖un − u‖p(x),Ω = 0;

(ii) limn→∞ρp(x),Ω(un − u) = 0;

(iii) un → u in measure in Ω and limn→∞ρp(x),Ω(un) = ρp(x),Ω(u).

Proposition 2.4 (see [14]). In W
1,p(x)
0 (Ω) the Poincaré inequality holds, that is, there exists a

positive constant C such that

‖u‖p(x),Ω ≤ C‖∇u‖p(x),Ω, ∀u ∈W1,p(x)
0 (Ω). (2.8)

Consequently, ‖u‖1,p(x),Ω = ‖|∇u|‖p(x),Ω are equivalent norms onW1,p(x)
0 (Ω). In what follows,

W
1,p(x)
0 (Ω), with p ∈ C+(Ω), will be considered as endowed with the norm ‖u‖1,p(x). We will use

‖u‖1,p(x),Ω = ‖∇u‖p(x),Ω for u ∈W1,p(x)
0 (Ω) in the following discussions.
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Proposition 2.5 (see [14, 16]). Assume that Ω is bounded, the boundary of Ω possesses the cone
property and p ∈ C+(Ω). If q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the embedding
W1, p(x)(Ω) ↪→ Lq(x)(Ω) is the compact and continuous.

Lemma 2.6 (see [17]). Assume that Ω is bounded and has a Lipschitz boundary with the cone
property and p ∈ C+(Ω). Then there is a continuous boundary trace embedding W1,p(·)(Ω) ↪→
Lp(·)(∂Ω).

Lemma 2.7 (see [17]). For any u ∈W1,p(x)(Ω), let

‖u‖∂ := ‖∇u‖p(x),Ω + ‖u‖p(x),∂Ω. (2.9)

Then, ‖u‖∂ is a norm onW1,p(x)(Ω), equivalent to the standard norm ofW1,p(x)(Ω).

Our analysis is based on the Sobolev space

E =
{
(u, υ) ∈W1,p(x)(Ω1) ×W1,p(x)

Γ (Ω2) : u = υ on Σ
}
, (2.10)

where

W
1,p(x)
Γ (Ω2) =

{
υ ∈W1,p(x)(Ω2) : υ = 0 on Γ

}
. (2.11)

Then, we have following lemma that will permit the variational setting of the problem (P).

Lemma 2.8. E is a closed subspace ofW1,p(x)(Ω1) ×W1,p(x)(Ω2), and

‖(u, υ)‖E = ‖∇u‖p(x),Ω1
+ ‖∇υ‖p(x),Ω2

(2.12)

defines a norm in E, equivalent to the standard norm ofW1,p(x)(Ω1) ×W1,p(x)(Ω2).

Proof. It is clear that (2.12) defines a seminorm. Then suppose that ‖(u, υ)‖E = 0. Since
‖∇υ‖p(x),Ω2

defines a norm onW1,p(x)(Ω2) and Poincaré inequality holds inW1,p(x)(Ω2), thus

υ = 0. From transmission condition, u = υ on Σ, and therefore u ∈ W
1,p(x)
0 (Ω1). This shows

that (u, υ) = 0, and hence (2.12) defines a norm in E. Now, applying the trace theorem in
W1,p(x)(Ω2), there exists c > 0 such that for all υ ∈W1,p(x)

Γ (Ω2)

‖υ‖p(x),Σ ≤ C‖∇υ‖p(x),Ω2
. (2.13)

But it is known that ‖∇u‖p(x),Ω1
+ ‖u‖p(x),Σ defines an equivalent norm in W1,p(·)(Ω1) from

Lemma 2.7. Then combining these two remarks the result follows.
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3. Main Results

Let us precisely describe our assumptions in order to establish the main result. The energy
functional corresponding to problem (P) is defined as J : E → R,

J(u, υ) = M̂

(∫
Ω1

|∇u|p(x)
p(x)

dx

)
+ N̂

(∫
Ω2

|∇υ|p(x)
p(x)

dx

)

−
∫
Ω1

F(x, u)dx −
∫
Ω2

G(x, υ)dx,

(3.1)

where M̂(t) =
∫ t
0M(ξ)dξ, and F(x, u) =

∫u
0 f(x, ξ)dξ. It is not difficult to show that J ∈

C1(E,R), and as a matter of fact, J is of class C1 and weakly lower semicontinuous. In
particular we have, for all (u, v), (ϕ, ψ) ∈ E,

〈
J ′(u, υ),

(
ϕ, ψ

)〉

=M

(∫
Ω1

|∇u|p(x)
p(x)

dx

)∫
Ω1

|∇u|p(x)−2∇u∇ϕdx

+N

(∫
Ω2

|∇υ|p(x)
p(x)

dx

)∫
Ω2

|∇υ|p(x)−2∇υ∇ψdx −
∫
Ω1

f(x, u)ϕdx −
∫
Ω2

g(x, υ)ψdx.

(3.2)

We assume the following hypotheses forM andN.
There are positive constantsM1,M2,N1,N2, and α such that

(E1): M1t
α−1 ≤M(t) ≤M2t

α−1,

(E2): N1s
α−1 ≤N(s) ≤N2s

α−1

for all t, s > 0 and α ≥ 1.
Now we state our main result.

Theorem 3.1. Let us assume that (E1) and (E2) hold. If q2 < αp1, then the problem (P) with the
transmission condition has at least one nonnegative solution.

Lemma 3.2. There exists λ∗ > 0 such that for any λ1 + λ2 ∈ (0, λ∗) there exist ρ > 0 and r > 0 such
that

Jλ(u, υ) ≥ r, ∀(u, υ) ∈ E, with ‖(u, υ)‖E = ρ. (3.3)

Proof. Since q(x) < p∗(x) for all x ∈ Ω it follows that (Proposition 2.5)

‖u‖q(x),Ω1
≤ C1‖u‖1,p(x),Ω1

, ∀u ∈W1,p(x)(Ω1),

‖υ‖q(x),Ω2
≤ C2‖υ‖1,p(x),Ω2

, ∀υ ∈W1,p(x)(Ω2).
(3.4)
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By Lemma 2.8 we have

‖u‖q(x),Ω1
+ ‖υ‖q(x),Ω2

≤ C1‖u‖1,p(x),Ω1
+ C2‖υ‖1,p(x),Ω2

≤ C3‖(u, υ)‖E. (3.5)

We fix ρ ∈ (0, 1) such that ρ < 1/C3 . Then the above relation implies

‖u‖q(x),Ω1
+ ‖υ‖q(x),Ω2

< 1, ∀(u, υ) ∈ E. (3.6)

By Proposition 2.2(ii) and 2.5 and Lemma 2.8, we deduce that

∫
Ω1

|u|q(x)dx +
∫
Ω2

|v|q(x)dx ≤ ‖u‖q1q(x),Ω1
+ ‖v‖q1q(x),Ω2

≤ ‖u‖q(x),Ω1
+ ‖v‖q(x),Ω2

≤ C4

(
‖u‖1,p(x),Ω1

+ ‖v‖1,p(x),Ω2

)
(3.7)

≤ C5‖(u, v)‖E. (3.8)

Using (E1), (E2), Proposition 2.2(iii), and (3.8), we obtain that for any (u, υ) ∈ E with
‖(u, υ)‖E < 1 the following inequalities hold true:

Jλ(u, υ) = M̂

(∫
Ω1

|∇u|p(x)
p(x)

dx

)
+ N̂

(∫
Ω2

|∇υ|p(x)
p(x)

dx

)∫
Ω2

|∇υ|p(x)dx

− λ1
∫
Ω1

|u|q(x)
q(x)

dx − λ2
∫
Ω2

|υ|q(x)
q(x)

dx

≥M1

∫ (1/p2)ρp(x),Ω1 (∇u)

0
tα−1dt +N1

∫ (1/p2)ρp(x),Ω2 (∇u)

0
ηα−1dη

− λ1
q1

∫
Ω1

|u|q(x)dx − λ2
q1

∫
Ω2

|υ|q(x)dx

≥ M1

α

(
1
p2

∫
Ω1

|∇u|p(x)dx
)α

+
N1

α

(
1
p2

∫
Ω2

|∇υ|p(x)dx
)α

− λ1
q1

∫
Ω1

|u|q(x)dx − λ2
q1

∫
Ω2

|υ|q(x)dx

≥ min{M1, N1}
α
(
p2
)α (

‖∇u‖αp2p(x),Ω1
+ ‖∇υ‖αp2p(x),Ω2

)
− C5(λ1 + λ2)

q1
‖(u, υ)‖E

≥ 21−αp2 min{M1,N1}
α
(
p2
)α (

‖∇u‖p(x),Ω1
+ ‖∇υ‖p(x),Ω2

)αp2 − C5(λ1 + λ2)
q1

‖(u, υ)‖E

≥ 21−αp2 min{M1,N1}
α
(
p2
)α ‖(u, υ)‖αp2E − C5(λ1 + λ2)

q1
‖(u, υ)‖E.

(3.9)
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By the above inequality if we define

λ∗ =
21−αp2ραp2−1q1 min{M1,N1}

C5α
(
p2
)α , (3.10)

then for any λ1 + λ2 ∈ (0, λ∗) and (u, υ) ∈ E there exists r > 0 such that Jλ(u, υ) ≥ r > 0.
The proof of Lemma 3.2 is complete.

Lemma 3.3. There exists ϕ, φ ∈ E such that ϕ, φ ≥ 0 and ϕ, φ /= 0 and Jλ(tϕ, tφ) < 0 for t > 0 small
enough.

Proof. Let |Ω1| > 0 and |Ω2| > 0. Moreover, let choose ϕ, φ ∈ C∞
0 (Ω) and 0 ≤ ϕ(x) ≤ 1 in

Ω1, 0 ≤ φ(x) ≤ 1 in Ω2. Then, for any t ∈ (0, 1), by (E1) and (E2) it follows

Jλ
(
tϕ, tφ

)
= M̂

(∫
Ω1

∣∣t∇ϕ∣∣p(x)
p(x)

dx

)
+ N̂

(∫
Ω2

∣∣t∇φ∣∣p(x)
p(x)

dx

)

− λ1
∫
Ω1

∣∣tϕ∣∣q(x)
q(x)

dx − λ2
∫
Ω2

∣∣tφ∣∣q(x)
q(x)

dx

≤M2

∫ (1/p1)ρp(x),Ω1 (t∇ϕ)

0
sα−1ds +N2

∫ (1/p1)ρp(x),Ω2 (t∇φ)

0
ηα−1dη

− λ1
∫
Ω1

∣∣tϕ∣∣q(x)
q(x)

dx − λ2
∫
Ω2

∣∣tφ∣∣q(x)
q(x)

dx

≤ M2t
αp1

α
(
p1
)α ραp(x),Ω1

(∇ϕ) + N2t
αp1

α
(
p1
)α ραp(x),Ω2

(∇φ)

− λ1t
q2

q2
ρq(x),Ω1

(
ϕ
) − λ2t

q2

q2
ρq(x),Ω2

(
φ
)
.

(3.11)

Let

Rα =M2ρ
α
p(x),Ω1

(∇ϕ) +N2ρ
α
p(x),Ω2

(∇φ),
Sλ1,λ2 = λ1ρq(x),Ω1

(
ϕ
)
+ λ2ρq(x),Ω2

(
φ
)
.

(3.12)

Then

Jλ
(
tϕ, tφ

) ≤ tαp1

α
(
p1
)α Rα − tq2

q2
Sλ1,λ2 . (3.13)

Therefore, we conclude

Jλ
(
tϕ, tφ

)
< 0, (3.14)
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for 0 < t < σ1/αp1−q2 providing that

0 < σ < min

{
1,
α
(
p1
)α
Sλ1,λ2

q2Rα

}
. (3.15)

The proof of Lemma 3.3 is complete.

Proof of Theorem 3.1. From Lemma 3.3, we infer that there exists a ball centered at the origin
Bρ(0) ⊂ E, such that

inf
∂Bρ(0)

Jλ > 0. (3.16)

Furthermore, by Lemma 3.3, we know that there exists (ϕ,ω) ∈ E such that Jλ(tϕ, tω) < 0 for
t > 0 small enough. Therefore, considering also inequality (3.14), we obtain that

−∞ < c := inf
Bρ(0)

Jλ < 0. (3.17)

Let us choose ε > 0. Then, it follows that

0 < ε ≤ inf
∂Bρ(0)

Jλ − inf
Bρ(0)

Jλ. (3.18)

Now, if we apply the Ekeland’s variational principle [18] to the functional Jλ : Bρ(0) → R, it
follows that there exists (uε, υε) ∈ Bρ(0) such that

Jλ(uε, υε) < inf
Bρ(0)

Jλ + ε,

Jλ(uε, υε) < Jλ(u, υ) + ε‖(u − uε, υ − υε)‖E, uε /=u, υ /=υε.
(3.19)

By the fact that

Jλ(uε, υε) < inf
Bρ(0)

Jλ + ε < inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ, (3.20)

we can infer that (uε, υε) ∈ Bρ(0).
Now, let us defineΦλ : Bρ(0) → R byΦλ(u, υ) = Jλ(u, υ)+ε‖(u − uε, υ − υε)‖E. It is not

difficult to see that (uε, υε) is a minimum point of Φλ, and thus

Φλ(uε + t · τ, υε + t · σ) −Φλ(uε, υε)
t

≥ 0, (3.21)
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for t > 0 small enough and any (τ, σ) ∈ B1(0). By the above expression, we have

Jλ(uε + t · τ, υε + t · σ) − Jλ(uε, υε)
t

+ ε‖(τ, σ)‖E ≥ 0. (3.22)

Letting t → 0, we have

〈J ′λ(uε, υε), (τ, σ)〉 + ε‖(τ, σ)‖E > 0, (3.23)

and this implies that ‖J ′
λ
(uε, υε)‖ ≤ ε. So, we infer that there exists a sequence {ωn, νn} ⊂ Bρ(0)

such that

Jλ(ωn, νn) −→ c = inf
Bρ(0)

Jλ < 0, J ′λ(ωn, νn) −→ 0. (3.24)

It is obvious that {ωn, νn} is bounded in E. Therefore, there exists (ω, ν) ∈ E such
that, up to a subsequence, {ωn, νn} converges weakly to (ω, ν) in E and converges strongly to
ωn → ω in Lq(x)(Ω1) and νn → ν in Lq(x)(Ω2) (Proposition 2.5). Thus 〈J ′λ(un, υn), (un−u, υn−
υ)〉 → 0 and

〈J ′λ(ωn, νn), (ωn −ω, νn − ν)〉

=M

(∫
Ω1

|∇ωn|p(x)
p(x)

dx

)∫
Ω1

|∇ωn|p(x)−2∇ωn(∇ωn − ∇ω)dx

+N

(∫
Ω2

|∇νn|p(x)
p(x)

dx

)∫
Ω2

|∇νn|p(x)−2∇νn(∇νn − ∇ν)dx

− λ1
∫
Ω1

|ωn|q(x)−2ωn(ωn −ω)dx − λ2
∫
Ω2

|νn|q(x)−2νn(νn − ν)dx −→ 0.

(3.25)

By Proposition 2.1, it follows that

∣∣∣∣∣
∫
Ω1

|ωn|q(x)−2ωn(ωn −ω)dx
∣∣∣∣∣ ≤

∥∥∥|ωn|q(x)−1
∥∥∥
q′(x),Ω1

‖ωn −ω‖q(x),Ω1
,

∣∣∣∣∣
∫
Ω2

|νn|q(x)−2νn(νn − ν)dx
∣∣∣∣∣ ≤

∥∥∥|νn|q(x)−1∥∥∥
q′(x),Ω2

‖|νn − ν|‖q(x),Ω2
.

(3.26)

Since {ωn} converges strongly to ω in Lq(x)(Ω1), that is, ‖ωn −ω‖q(x),Ω1
→ 0 as n → ∞, we

get

∫
Ω1

|ωn|q(x)−2ωn(ωn −ω)dx −→ 0 (3.27)
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and similarly

∫
Ω2

|vn|q(x)−2νn(νn − ν)dx −→ 0. (3.28)

Hence,

M

(∫
Ω1

|∇ωn|p(x)
p(x)

dx

)∫
Ω1

|∇ωn|p(x)−2∇ωn(∇ωn − ∇ω)dx −→ 0,

N

(∫
Ω2

|∇νn|p(x)
p(x)

dx

)∫
Ω2

|∇νn|p(x)−2∇νn(∇νn − ∇ν)dx −→ 0.

(3.29)

From (E1) and (E2), it follows that

∫
Ω1

|∇ωn|p(x)−2∇ωn(∇ωn − ∇ω)dx −→ 0,

∫
Ω2

|∇νn|p(x)−2∇νn(∇νn − ∇ν)dx −→ 0.

(3.30)

Eventually, by [19, Theorem 3.1], we get that {ωn, νn} converges strongly to (ω, ν) in E, so we
conclude that (ω, ν) is a nontrivial weak solution for problem (P). The proof of Theorem 3.1
is complete.
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