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We will establish a new interval oscillation criterion for second-order half-linear dynamic equation
(r(t)[xΔ(t)]α)Δ + p(t)xα(σ(t)) = f(t) on a time scale T which is unbounded, which is a extension
of the oscillation result for second order linear dynamic equation established by Erbe et al. (2008).
As an application, we obtain a sufficient condition of oscillation of the second-order half-linear
differential equation ([x′(t)]α)′ + c sin txα(t) = cos t, where α = p/q, p, q are odd positive integers.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by
Hilger in his Ph.D. thesis [1] in order to unify continuous and discrete analysis. Not only can
this theory of so-called “dynamic equations” unify the theories of differential equations and
of difference equations, but also it is able to extend these classical cases to cases “in between,”
for example, to so-called q-difference equations. A time scale T is an arbitrary closed subset
of the reals, and the cases when this time scale is equal to the reals or to the integers represent
the classical theories of differential and of difference equations. Many other interesting time
scales exist, and they give rise to plenty of applications, among them the study of population
dynamic models (see [2]). A book on the subject of time scale by Bohner and Peterson [2]
summarizes and organizes much of the time scale calculus (see also [3]). For the notions
used below, we refer to [2] and to the next section, where we recall some of the main tools
used in the subsequent sections of this paper.

In the last years, there has been much research activity concerning the oscillation
and nonoscillation of solutions of some dynamic equations on time scales, and we refer the
reader to the paper [4–6]. Following this trend, in this paper we will provide some sufficient
conditions for oscillation of second-order half-linear dynamic equation.
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Consider the second-order half-linear dynamic equation

(
r(t)
[
xΔ(t)

]α)Δ
+ p(t)xα(σ(t)) = f(t) (1.1)

on a time scale T which is unbounded above, r(t), p(t), and f(t) are rd-continuous functions.
α is a quotient of odd positive integer. When α = 1, (1.1) is the second-order linear dynamic
equation

(
r(t)
(
xΔ(t)

))Δ
+ p(t)x(σ(t)) = f(t). (1.2)

In [7], by using the Riccati substitution the authors established a interval oscillation
criterion, that is, a criterion given by the behavior of p(t) and q(t) on a sequence of
subintervals of [a,∞)

T
. In this paper, we extend the result of [7] to the second-order half-

linear dynamic (1.1). As a application, we prove the equation

([
x′(t)
]α)′ + c sin txα(t) = cos t (1.3)

is oscillatory, if c ≥ c0, where α = p/q, p, q are odd positive integers and c0 is defined in
Example 3.1.

For completeness, (see [2, 3] for elementary results for the time scale calculus), we
recall some basic results for dynamic equations and the calculus on time scales. Let T be a
time scale (i.e., a closed nonempty subset of R) with supT = ∞. The forward jump operator
is defined by

σ(t) = inf{s ∈ T : s > t} (1.4)

and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t}, (1.5)

where sup ∅ = infT, where ∅ denotes the empty set. If σ(t) > t, we say t is right-scattered,
while if ρ(t) < t, we say t is left-scattered. If σ(t) = t, we say t is right-dense, while if ρ(t) = t
and t /= infT, we say t is left-dense. Given a time scale interval [c, d]

T
:= {t ∈ T : c ≤ t ≤ d}

in T the notation [c, d]κ
T
denotes the interval [c, d]

T
in case ρ(d) = d and denotes the interval

[c, d)
T
in case ρ(d) < d. The graininess function μ for a time scaleT is defined by μ(t) = σ(t)−t,

and for any function f : T → R the notation fσ(t) denotes f(σ(t)). We say that x : T → R is
differentiable at t ∈ T provided that

xΔ(t) := lim
s→ t

x(t) − x(s)
t − s

(1.6)
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exists, when σ(t) = t (here by s → t it is understood that s approaches t in the time scale)
and when x is continuous at t and σ(t) > t,

xΔ(t) :=
x(σ(t)) − x(t)

μ(t)
. (1.7)

Note that if T = R, then the delta derivative is just the standard derivative, and when T = Z

the delta derivative is just the forward difference operator. Hence, our results contain the
discrete and continuous cases as special cases and generalize these results to arbitrary time
scales (e.g., the time scale qN0 := {1, q, q2, . . .}which is very important in quantum theory [8]).

2. Main Theorem

Theorem 2.1. Assume that given any T ∈ [a,∞)
T
, there exists points T ≤ s1 < t1 ≤ s2 < t2 such

that

f(t)

⎧
⎨
⎩
≤ 0, t ∈ [s1, t1]T

,

≥ 0, t ∈ [s2, t2]T
.

(2.1)

Further assume that there exists a function u ∈ C1
rd

such that for i = 1, 2, one has

Qi[u] :=
∫ ti
si

[
r(t)
(
uΔ(t)

)α+1 − p(t)(uσ(t))α+1
]
Δt (2.2)

satisfies Qi[u] ≤ 0, and u(t)/≡ 0 on [si, ti]T
, with u(si) = 0 = u(ti). Then the dynamic (1.1) is

oscillatory on [a,∞)
T
.

Remark 2.2. When α = 1, the above theorem becomes [7, Theorem 2.1].

Proof. Assume that (1.1) is nonoscillatory. Then there is a solution x(t) of (1.1) and a T ∈
[a,∞)

T
such that x(t) is of one sign on [T,∞)

T
. We consider the case x(t) > 0 on [T,∞)

T
.

Make the substitution

ω(t) = r(t)

[
xΔ(t)
x(t)

]α
uα+1(t), t ∈ [T,∞)

T
. (2.3)
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Then, for t ∈ [s1, t1]T
(note that f(t) ≤ 0 on [s1, t1]T

),

ωΔ(t) =

[
r(t)

(
xΔ(t)
x(t)

)α]Δ
uα+1(σ(t)) + r(t)

[
xΔ(t)
x(t)

]α(
uα+1(t)

)Δ

= −p(t)uα+1(σ(t)) + r(t)
(
uΔ(t)

)α+1
+

f(t)
xα(σ(t))

uα+1(σ(t))

− r(t)

[(
uΔ(t)

)α+1 −
(

xΔ(t)
x(t)

)α(
uα+1(t)

)Δ
+

(
xΔ(t)

)α(xα(t))Δ

xα(t)xα(σ(t))
uα+1(σ(t))

]

≤ −p(t)uα+1(σ(t)) + r(t)
(
uΔ(t)

)α+1

− r(t)

[(
uΔ(t)

)α+1 −
(

xΔ(t)
x(t)

)α(
uα+1(t)

)Δ
+

(
xΔ(t)

)α(xα(t))Δ

xα(t)xα(σ(t))
uα+1(σ(t))

]
.

(2.4)

If we define

F(t) := r(t)

[(
uΔ(t)

)α+1 −
(

xΔ(t)
x(t)

)α(
uα+1(t)

)Δ
+

(
xΔ(t)

)α(xα(t))Δ

xα(t)xα(σ(t))
uα+1(σ(t))

]
, (2.5)

then we have

ωΔ(t) ≤ −p(t)uα+1(σ(t)) + r(t)
(
uΔ(t)

)α+1 − F(t), t ∈ [s1, t1]T
. (2.6)

(i) Suppose that t ∈ [s1, t1]T
is right-dense. Then,

(
uα+1(t)

)Δ
= (α + 1)uα(t)uΔ(t), (2.7)

so we have

F(t) = (α + 1)r(t)

⎡
⎢⎣
(
uΔ(t)

)α+1
α + 1

− uΔ(t)

[
xΔ(t)u(t)

x(t)

]α
+

[(
xΔ(t)u(t)/x(t)

)α ](α+1)/α

(α + 1)/α

⎤
⎥⎦. (2.8)

We use Young’s inequality [9], which says that

|A|p
p

−AB +
|B|q
q

≥ 0, p > 1, q > 1,
1
p
+
1
q
= 1, (2.9)

with equality if and only if B = Aα, α := p/q.
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So if we let

A = uΔ(t), B =

[
xΔ(t)u(t)

x(t)

]α
, p = α + 1, q =

α + 1
α

, (2.10)

then we have F(t) ≥ 0, t ∈ [s1, t1]T
, and

F(t) = 0, iff
xΔ(t)u(t)

x(t)
= uΔ(t). (2.11)

(ii) Suppose next that t ∈ [s1, t1)T
is right-scattered and u(t)/= 0. Then,

xΔ(t) =
x(σ(t)) − x(t)

μ(t)
, (xα(t))Δ =

xα(σ(t)) − xα(t)
μ(t)

,

uΔ(t) =
u(σ(t)) − u(t)

μ(t)
,

(
uα+1(t)

)Δ
=

uα+1(σ(t)) − uα+1(t)
μ(t)

.

(2.12)

Let us put a := u(σ(t))/u(t), b := x(σ(t))/x(t). Then we have

F(t) =
r(t)uα+1(t)
μα+1(t)

f(a, b), (2.13)

where f(a, b) := (1 − a−1)α+1 − (b − 1)α(1 − a−(α+1)) + (b − 1)α(1 − b−α).
Note that f(b, b) = 0 and

∂f

∂a
(a, b) =

(α + 1)a−2

aα

[
(a − 1)α − (b − 1)α

]
. (2.14)

It follows that if a > b, then ∂f/∂a > 0, and so f(a, b) > 0. Likewise, if a < b, then ∂f/∂a < 0,
and so f(a, b) > 0.

In other words, f(a, b) ≥ 0 and

f(a, b) = 0 ⇐⇒ a = b ⇐⇒ u(σ(t))
u(t)

=
x(σ(t))
x(t)

⇐⇒ xΔ(t)
x(t)

=
uΔ(t)
u(t)

. (2.15)

(iii) Suppose next that t ∈ [s1, t1)T
is right-scattered but u(t) = 0. It is easy to get that

F(t) =
r(t)uα+1(σ(t))

μα+1(t)

[
1 −
(
1 − x(t)

x(σ(t))

)α]
. (2.16)

So F(t) ≥ 0 and

F(t) = 0 ⇐⇒ u(σ(t)) = 0 ⇐⇒ xΔ(t)u(t)
x(t)

= uΔ(t). (2.17)
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From (i), (ii), and (iii), we get that F(t) ≥ 0, t ∈ [s1, t1)T
and

F(t) = 0, iff
xΔ(t)u(t)

x(t)
= uΔ(t). (2.18)

Integrating (2.6) from s1 to t1 (using u(s1) = u(t1) = 0), we get that

0 ≤
∫ t1
s1

[
r(t)
(
uΔ(t)

)α+1 − p(t)uα+1(σ(t))
]
Δt −

∫ t1
s1

F(t)Δt. (2.19)

Since Q1[u] ≤ 0, we obtain that

∫ t1
s1

F(t)Δt ≤ 0. (2.20)

From (2.18) and F(t) ≥ 0, t ∈ [s1, t1]T
, we get that F(t) ≡ 0, t ∈ [s1, t1)T

. That is,

xΔ(t)u(t)
x(t)

= uΔ(t). (2.21)

So,

(
u(t)
x(t)

)Δ

= 0. (2.22)

Hence u(t)/x(t) = C. From u(s1) = 0, we get that u(t) ≡ 0, t ∈ [s1, t1]T
, which is a

contradiction.

3. Example

Example 3.1. Consider the second-order half-linear differential equation

([
x′(t)
]α)′ + c sin txα(t) = cos t, (3.1)

where α = p/q, p, q are odd positive integers. Let

u(t) =

⎧
⎪⎨
⎪⎩
sinq2t, 2kπ +

π

2
≤ t ≤ 2kπ + π,

−sinq2t, 2(k + 1)π ≤ t ≤ 2(k + 1)π +
π

2
,

k ∈ N0, (3.2)
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and [s1, t1] = [2kπ + π/2, 2kπ + π]. We have

Q1[u] :=
∫2kπ+π
2kπ+π/2

[(
u′(t)
)(p+q)/q − c sin tu(p+q)/q(t)

]
dt

=
∫π
π/2

{[
2q sinq−12t cos 2t

](p+q)/q − c sin t sinp+q2t
}
dt

=
∫π/2
0

{[
2q sinq−12s cos 2s

](p+q)/q − c cos s sinp+q2s
}
ds

=
1
2

∫π
0

[
2q sinq−1t cos t

](p+q)/q
dt − 2p+qc

∫π/2
0

sinp+qt cosp+q+1t dt

=
1
2

∫π/2
0

[
2q sinq−1t cos t

](p+q)/q
dt +

1
2

∫π/2
0

[
2q cosq−1t sin t

](p+q)/q
dt

− 2p+qc
Γ
((
p + q + 1

)
/2
)
Γ
((
p + q + 2

)
/2
)

2Γ
(
p + q + 3/2

)

=
1
2
(
2q
)(p+q)/q Γ

((
p + q

)
/2 − p/2q

)
Γ
(
1 + p/2q

)

Γ
((
p + q

)
/2 + 1

)

− 2p+qc
Γ
((
p + q + 1

)
/2
)
Γ
((
p + q + 2

)
/2
)

2Γ
(
p + q + 3/2

) .

(3.3)

Noticing that p + q is even number and

Γ
(
p + q

2
+

p

2q

)
=
(
p + q

2
− 1 +

p

2q

)(
p + q

2
− 2 +

p

2q

)
· · ·
(
1 +

p

2q

)
Γ
(
1 +

p

2q

)
, (3.4)

using the following formula (see [10])

Γ(n + z)Γ(n − z) =
πz

sinπz
[(n − 1)!]2

n−1∏
k=1

(
1 − z2

k2

)
, Γ
(
n +

1
2

)
=

(2n − 1)!!
2n

√
π, (3.5)
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we get that

Q1[u] =
1
2
(
2q
)(p+q)/q Γ

((
p + q

)
/2 − p/2q

)
Γ
((
p + q

)
/2 + p/2q

)
((
p + q

)
/2 − 1 + p/2q

)((
p + q

)
/2 − 2 + p/2q

) · · · (1 + p/2q
)((

p + q
)
/2
)
!

− 2p+qc

((
p + q − 1

)
!!/2(p+q)/2

)√
π · ((p + q

)
/2
)
!((

2
(
p + q + 1

) − 1
)
!!/2p+q

)√
π

=
1
2
(
2q
)(p+q)/q

((
pπ/2q

)
/ sin
(
pπ/2q

))[((
p + q

)
/2 − 1

)
!
]2∏(p+q)/2−1

k=1

[
1 − p2/4k2q2

]
((
p + q

)
/2 − 1 + p/2q

)((
p + q

)
/2 − 2 + p/2q

) · · · (1 + p/2q
)((

p + q
)
/2
)
!

− 23(p+q)/2c

(
p + q − 1

)
!!(

2
(
p + q

)
+ 1
)
!!

(
p + q

2

)
!

(3.6)

It is easy to see that Q2[u] = Q1[u], so from (3.6), we obtain that when

c ≥ pπ
(
2q
)A/q2−3A/2(2A + 1)!![(A/2 − 1)!]2

∏A/2−1
k=1

[
1 − p2/4k2q2

]

4q sin
(
pπ/2q

)(
p + q − 1

)
!!
(
A/2 − 1 + p/2q

)(
A/2 − 2 + p/2q

) · · · (1 + p/2q
)
[(A/2)!]2

,

(3.7)

where A denotes (p + q). , equation (3.1) is oscillatory.
In particular, take p = 1, q = 3. From (3.7), we get that when

c ≥ 525π 3
√
6

512
, (3.8)

the second-order half-linear equation

([
x′(t)
]1/3)′ + c sin tx1/3(t) = cos t (3.9)

is oscillatory.

Example 3.2. Consider the second-order half-linear difference equation

Δ
(
[Δx(n)]α

)
+ p(n)xα(n + 1) = nβf(n), (3.10)

where p(n) = c(−1)n, α is a quotient of odd positive integers, β ∈ R,

f(n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, n = 4k or 4k + 2,

1, n = 4k + 1,

−1, n = 4k + 3,

k ∈ N0, (3.11)
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Let u(n) = f(n), t ∈ N0, and note that

f(n) =

⎧
⎨
⎩
≥ 0, n = 4k, 4k + 1, 4k + 2k ∈ N0,

≤ 0, n = 4k + 2, 4k + 3, 4k + 4 ∈ N0.
(3.12)

Furthermore, we have (note that (−1)α+1 = 1)

Q1[u] :=
∫2k+2
2k

[(
uΔ(n)

)α+1 − p(n)uα+1(n + 1)
]
Δn

= [u(2k + 1) − u(2k)]α+1 − p(2k)uα+1(2k + 1)

+ [u(2k + 2) − u(2k + 1)]α+1 − p(2k + 1)uα+1(2k + 2)

= 2 − c.

(3.13)

Therefore, if c ≥ 2, then (3.10) is oscillatory.

Example 3.3. Consider the second-order half-linear q-difference equation

([
xΔ(t)

]α)Δ
+ p(t)xα(qt) = tβf(t), (3.14)

where p(t) = c(−1)n, t = qn ∈ T = qN0 , q > 1, c > 0, β ∈ R. α is a quotient of odd positive
integers.

f(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, t = qn, n = 4k or 4k + 2,

1, t = qn, n = 4k + 1,

−1, t = qn, n = 4k + 3,

k ∈ N0, (3.15)

Let u(t) = f(t), t = qn ∈ T. We have

Q1[u] :=
∫q4k+2

q4k

[(
uΔ(t)

)α+1 − p(t)uα+1(qt)
]
Δt

=

⎧
⎨
⎩

[
u(q4k+1) − u(q4k)

q4k(q − 1)

]α+1
− cuα+1

(
q4k+1
)
⎫
⎬
⎭q4k

(
q − 1
)

+

⎧
⎨
⎩

[
u(q4k+2) − u(q4k+1)

q4k+1(q − 1)

]α+1
+ cuα+1

(
q4k+2
)
⎫
⎬
⎭q4k+1

(
q − 1
)

=

[
1

q4k(α+1)
(
q − 1
)α+1 − c +

q

q(4k+1)(α+1)
(
q − 1
)α+1
]
q4k
(
q − 1
)
.

(3.16)
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Similarly, we have

Q2[u] :=
∫q4k+4

q4k+2

[(
uΔ(t)

)α+1 − p(t)uα+1(qt)
]
Δt

=

[
1

q(4k+2)(α+1)
(
q − 1
)α+1 − c +

q

q(4k+3)(α+1)
(
q − 1
)α+1
]
q4k+2
(
q − 1
)
.

(3.17)

Therefore, if c > 0, then Q1[u] ≤ 0, Q2[u] ≤ 0, for large k. So (3.14) is oscillatory.

Many other interesting examples can be similarly given.
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Birkhäuser, Boston, Mass, USA, 2001.

[3] M. Bohner and A. Peterson, Eds., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston,
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