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This paper provides the analytic solution to the partial differential equation for the value of a
convertible bond. The equation assumes a Vasicek model for the interest rate and a geometric
Brownian motion model for the stock price. The solution is obtained using integral transforms.

This work corrects errors in the original paper by Mallier and Deakin [1] on the Green’s
function for the Vasicek convertible bond equation. One error involves subtle points of the
inverse Laplace transform. We show that the solution of
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in the log stock variables x = logS and x̃ = log ˜S is
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where V = V0(S, r) at τ = 0 and the Green’s function (GF) is

G(r, r̃, x − x̃) = exp(F)N(w,Ξ)N(α,Φ). (3)
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The normal distribution with variance w and argument Ξ is here denoted by
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In the case of the convertible bond, the initial condition V0 in (2) is independent of r̃.
Integrating (2) in r̃, we obtain the simpler Green’s function

G(r, τ, x − x̃) = exp(F(r, τ))N(v(τ), x̃ − x −D(r, τ)). (10)

The parameters in the solution have the range of values: σ > 0, c > 0, |ρ| < 1, while a and b
are arbitrary since the solutions are analytic in a and b.

To prove (3), we assume V to be bounded as S → 0 and Sc0V , where co is a positive
constant, is bounded as S → ∞ so that the Mellin transform of V exists. Once the solution
is determined, the initial condition may be extended to include the more general case where
the integral (2) exists (e.g., V0 = max(S, 1)). In the derivation of the solution, the condition
b > 0 is assumed in (1).

To solve for V in (1), the Mellin and Laplace transform ̂V (p) := M[V ] and V (z) :=
L[ ̂V ] (equations (2.6), (2.7) in [1]) are applied to obtain the ODE
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V = −M[V0(S, r)]. (11)
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The general homogeneous solution ([2, 3] Section V.I, page 249) of (11) is
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and F is the general solution of the confluent hypergeometric equation ([2, 3] Section V.I).
The general solution (12) in terms of the parabolic cylinder function Dν(u) ([2, 3] Section
V.II, page 117), with arbitrary constants C1 and C2 (ν /= 0, 1, . . .), is

Vh = exp

(

−
(

1 + p
)

r

b

)

2−ν/2e(u
2/4)(C1Dν(u) + C2Dν(−u)). (15)

Replacing M[V0(S, r)] in (11) by the delta function δ(r − r̃) (c.f., (20) for details), the GF for
(11) has the form

G1(r, r̃) = 2c−2h1(r)h2(r̃)W−1[h1(r̃), h2(r̃)], r > r̃, (16)

where hj are appropriate homogeneous solutions in (15), W is the Wronskian, and G1 for
r < r̃ is defined by interchanging r and r̃ in hj , but not inW .

For the existence and the evaluation of the inverse Laplace transform (ILT) of G1, the
asymptotic expansion, valid for large (−ν) in the sector | arg(−ν)| < π ,

Γ(−ν)Dν(v(r))Dν(−w(r̃)) ∼
(
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)−1/2
exp
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is required where v(r) = ±u(r) and w(r̃) = ±u(r̃). The expansion for the Gamma function is
given in ([2, 3] Section V.I, page 47). The expansion with a restricted domain for the parabolic
cylinder function appears in [2, 3] (Section V.I, page 249 (8)) and the general case is proved
by applying the Method of Steepest Descent to the integral representation ([4, 5], page 349).
The solutions hi in (16) must be chosen such that G1 has an ILT that exists for all r and r̃. For
the general case, we define hi in (15) by replacing Cj by Cij . There are four terms in (16), only
one for which the ILT exists: C12 = C21 = 0, v −w = (2b)1/2|r − r̃|/c in (17). Thus,

G1 = g1(r)g2(r̃)c−1(bπ)
−1/2Γ(−ν)Dν(u(r))Dν(−u(r̃)), r > r̃, (18)

where gj(r) = exp[(−1)j((1+p)r/b−u2(r)/4)]. For r < r̃,G1 is defined by interchanging r and
r̃ in Dν. However, to explain the results in [1], we compare (2.16) to (16, 20) so that h1 ∝ V2

and h2 ∝ V1 in (2.13) (change sign on RHS of (2.14), (2.16)). Consequently, h1 and h2 are
defined in (15) by taking (C1 = 0, C2 = 1) and (C1 = −1, C2 = 1), respectively. The modified
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GF is Gm
1 := −G∗

1 + Gs
1 where G∗

1 and Gs
1 are defined from G1 by changing u to −u and u(r) to

−u(r), respectively.
As outlined in [1], the ILT G2 := L−1(G1) ((2.17), [1]) is equal to the contributions

from the simple poles of Γ(−ν) at ν = n (n = 0, 1 . . .). G2 is equal to a sum involving Hermite
polynomials ([2, 3] Section V.II, page 194 (22)) so that
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where sm = um(r) + um(r̃), η = τc2 sinh(bτ)/(bτ), λ = (2/(bτ))tanh(bτ/2). The semicircle’s
contribution to G2 goes to zero as the radius goes to infinity follows from the approximation
of G1 in (18) via (17). For the modified GF, Gm
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The last step is to evaluate the inverseMellin transforms (IMT; (2.18), [1])G3 := M−1G2

and, for the modified GF,Gm
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2. To do this, the argument of the
exponential in G2 and Gs

2 is expressed in the form αp2/2 + βp + γ , and formula (2.29) in [1]
is applied. For G2, α is given by (7). For Gs

2, α := αs is given by (7) where tanh is replaced by
coth. Correcting the error in [1] (page 228, L.-4, (+) to (−)), then 2α+ = α and 2α− = αs,where
α± appear in (2.27) and (2.33). Assuming that (c/b + ρσ)/= 0, then there is a positive number
τo such that α− < 0 for 0 < τ < τo. Thus the IMT of Gs

2 does not exist for 0 < τ < τo, and G1 in
(18) is the correct Green’s function. For G3, we have G3 = exp γN(η, r̃ − r)N(α, β− logS). The
variables (V , V0, G1) and (V, V0, G3) are connected by
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Using the convolution theorem ((2.30), [1]), the solution is (2), where
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dm = qm(r) + qm(r̃), and q(r) = (rb2 − ab + c2)/c2. Extensive algebraic manipulations are
required to expressG in (21) in the final form (3). The Green’s function in (3) has the expected
property: G → δ(r − r̃)δ(x − x̃) and V (S, r, τ) → V0(S, r) as τ → 0 in (2).
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[2] A. Erdélyi, W. Magnus, F. Oberhettinger, et al.,Higher Transcendental Functions. Vol. I, Robert E. Krieger,
Melbourne, Fla, USA, 1981.
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