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nutrients at the lowest level. There is also an interaction at the level of the two preys, in the sense
that the presence of one is advantageous to the other when nutrients are low. It is shown that
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bifurcation. The limit cycles are analysed using Floquet theory and are found to change from stable
to unstable as a solution branch is traversed.
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1. Introduction

In a recent paper, Stone [1] presented a mathematical model of a three-level trophic food
web involving ocean-dwelling microorganisms. It was his aim to explain the paradoxical
nature of Phytoplankton, which, when stressed by nutrient limitation, stimulates the growth
of Bacteria, a competitor for the nutrients, by releasing carbon which is then taken up by
the Bacteria. Stone [1] argued that this behaviour could be explained in terms of indirect
effects. This means that the relationship between two compartments of the model should
not be viewed in isolation but rather as part of the whole. His conclusion, drawn from a
simple mathematical examination, was that due to the success rate of the grazing Protozoa,
which prey on the Bacteria, the Phytoplankton are actually simulating the competitor of
a competitor in order to survive. Recently, Hadley and Forbes [2] examined Stones’ [1]
model for the case when nutrients are unlimited. They found, using a dynamical systems
approach, that there are no limit cycles arising from a Hopf bifurcation in this case. There are,
however, oscillatory solutions arising from centre type behaviour. Nevertheless, these were
anticipated to be structurally unstable, in the sense that refinements to the model, such as
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the inclusion of nutrient-dependent growth rates, would replace these oscillations with some
other behaviours. This may be an indicator as to why the Phytoplankton do not employ this
survival strategy under every circumstance.

Much research has been performed on the stability of interacting populations in
biological models (e.g., see May [3], Murdoch et al. [4]), focusing on how populations are
drawn to attractors such as limit cycles or steady-states, or if and when extinction occurs.
Shertzer et al. [5] found that a simple mechanistic model of a four-species predator-prey
interaction agreed with data collected in a chemostat experiment. The model predicted limit
cycle, steady-states, and extinction behaviour present in the chemostat although the results
differed on the prediction of period and phase. The model was improved to include the ability
of prey to evolve defence mechanisms and was found to be accurate in all respects. Hutchison
[6] speculated that Plankton communities cannot come to equilibrium but continue to
develop to oscillatory solutions or chaos owing to all the external effects they are subject
to as their environment changes. Scheffer et al. [7] found that, even in homogeneous and
constant environments, various competition and predation models suggest that plankton
will never settle to equilibrium. This was also found in experimentation and that chaos quite
often resulted, even with low dimensional systems. This has the outcome of making long-
term predictions about such systems impossible. However, Verschoor et al. [8] subsequently
showed experimentally that bi-and tritrophic food chains with induced defences approached
a stable equilibrium without any oscillatory tendency, while those without defences in the
algae showed high-amplitude population. For a tritrophic model, van der Stap et al. [9]
showed that population stability of phytoplankton occurred when the phytoplankton had
a defence mechanism that affected the uptake interaction of the Zooplankton. From these
studies, it appears that qualitative behaviour, such as population stability oscillation and
chaos, is highly dependent on the number of species present and the conditions under which
the results were obtained.

There has been much work done on the effect of interaction functions in dynamical
systems. It has been shown by Gross et al. [10] that Holling II, or Michaelis-Menten, type
interaction functions can either destabilize or stabilize steady-states, dependent on the form
of the interaction function used. A change in stability is achieved by enriching one of the
populations. This was found to be an underlying idea in the “paradox of enrichment”
(Edwards and Brindley [11]). The “paradox of enrichment” was originally attributed to
Rosenzweig [12] and further refined by May [13] and Gilpin and Rosenzweig [14]. In this
paper we use a Michaelis-Menten term for the growth rates, which are consequently nutrient-
dependant. This will be discussed in more detail in Section 2, and a more comprehensive
discussion of this idea is given by Murray [15].

Other dynamical structures such as quasiperiodicity have also been found in higher
dimension food webs similar to the one being examined here. Ruan [16] examined a
three-level model involving Zooplankton, Phytoplankton, and nutrients in limited supply.
Modelling nutrients with both instantaneous and delayed recycling, they found that the
equilibrium point loses stability when a critical value is reached in nutrient levels and passes
via a Hopf-bifurcation into a limit cycle. On the other hand, Wang et al. [17] found in a three-
level food web with nonlinear nutrient dependence that there was limit cycle behaviour,
quasiperiodicity, and chaos.

In the present paper, we use methods from Dynamical Systems theory to analyse the
three-level trophic food web described by Stone [1] (for further discussion on Dynamical
Systems theory, see Murray [15] and Edelstein-Keshet [18]). This model displays the
interaction between Phytoplankton, Bacteria, Protozoa, Zooplankton, and Nutrients. In
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Figure 1: Stone’s Compartmental model showing interaction between components. The direction of the
arrows indicates a direct positive influence by one component on another. Here R, B, N, P , Z represent
protozoa, bacteria, nutrients, phytoplankton, and zooplankton, respectively.

particular we are looking for stability of the steady-state populations and possible self-
sustained oscillations. The model has been examined previously by Hadley and Forbes [2] in
the case when nutrients did not vary. In the present paper, we investigate the possibility that
the introduction of variable nutrient concentration in the system will generate instability in
the steady-state, causing self-sustained oscillations to occur in the solutions. We find a Hopf
bifurcation present in this nonlinear model, leading to oscillatory limit-cycle behaviour in the
system. We examine the stability of the limit cycles using Floquet theory.

The model is presented in Section 2 and for convenience, scaled (nondimensional)
populations and rates are introduced. In Section 3, we provide an analysis of the model
including a determination of the conditions under which a limit-cycle oscillation can arise
through Hopf bifurcation. A branch of limit cycles is located numerically in Section 4, and
Floquet theory is used to study the change in its stability as the breeding rate of bacteria is
altered. The paper concludes in Section 5 with a discussion of the results.

2. The Mathematical Model

The trophic web considered now is that illustrated in Figure 1, from Stones’ [1] original
paper, where the direction of the interaction is given by the arrows. There are five interacting
components, namely the Bacteria (B), Phytoplankton (P), Protozoa (R), Zooplankton (Z),
and Nutrients (N) as shown in Figure 1. The interactions in the diagram are described by the
system of five differential equations

dB

dt
= rb − erRB + eiBP,

dP

dt
= rpP − ezPZ − eiBP,
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dZ

dt
= ezPZ − dzZ,

dR

dt
= erRB − drR,

1
m

dN

dt
= −rbB − rpP + drR + dzZ.

(2.1)

It should be noted here that Stone’s model (Figure 1) assumes there is no cross feeding of
Protozoa on Phytoplankton or Zooplankton on Bacteria (Stone [1]). This is reflected in (2.1).
Here the growth rate of the Bacteria and the reproductive rate of the Phytoplankton, rb and
rp, respectively, depend on the nutrient concentration N. We are using a Michaelis-Menten
uptake term for nutrients by Bacteria and Phytoplankton, so that the rates are governed by

rb(N) =
kbN

ab + bbN
, rp(N) =

kpN

ap + bpN
. (2.2)

These terms reflect the saturation effects seen in the nutrient uptake process, whereby an
infinite supply of nutrients will not result in unlimited growth. The terms ai, bi, ki are
constants that determine the rate of uptake of the nutrients. In their paper Gross et al. [10]
showed a situation where, for Holling II type interaction functions like (2.2), enrichment
(increase in a population) destabilized the steady-state solutions of a general food chain
similar to the one being considered.

The quantity ei is the interaction rate between Phytoplankton and Bacteria. The
constants dr and dz are the mortality rates of the Protozoa and Zooplankton, respectively.
The final quantity m represents the mass of nutrients contained in each organism. All these
quantities are positive.

In their paper, Hadley and Forbes [2] assumed that N did not change and therefore
had some fixed value N0 say. For consistency with their results and using (2.2), we obtain the
initial value for the reproductive rates

rb0 =
kbN0

ab + bbN0
, rp0 =

kpN0

ap + bpN0
. (2.3)

We incorporate (2.3) into the nutrient-dependant reproductive rates by forming the ratio

rb(N)
rb0

=
kbN/(ab + bbN)
kbN0/(ab + bbN0)

. (2.4)

The nutrient-dependant reproductive rates rb(N) and rp(N) are now expressed in the
equivalent form

rb(N) =
rb0(N/N0)

1 + cb0(N/N0 − 1)
, rp(N) =

rp0(N/N0)
1 + cp0(N/N0 − 1)

. (2.5)
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In this way, if = N0, these rates would be the same as in the nutrient-independent case
examined by Hadley and Forbes [2]. Here cb0 = bbN0/(ab+bbN0) and cp0 = bpN0/(ap+bpN0)
are constants.

The system (2.1) is now recast in terms of dimensionless variables. In this case, the four
populations (B, P, Z, R) are scaled with respect to the quantity rp0/er , which is a naturally
occurring measure of population size. The nutrient concentration N is scaled with respect to
the quantity N0 which is arbitrary, and so this choice has no implications for the dynamics
of the system. Time t is made dimensionless using the quantity 1/rp0, which is a time scale
linked roughly to the life-cycle of the phytoplankton. In these nondimensional variables, (2.1)
become

dB

dt
= β

[
N

1 + cb0(N − 1)

]
B − RB + ηBP,

dP

dt
=

[
N

1 + cp0(N − 1)

]
P − αPZ − ηBP,

dZ

dt
= αPZ − δZ,

dR

dt
= RB − γR,

dN

dt
= μ

[
−

βNB

1 + cb0(N − 1)
− NP

1 + cp0(N − 1)
+ γR + δZ

]
.

(2.6)

The constant μ is such that 0 < μ < 1.
There are five nondimensional parameter groupings in the system (2.6). These are

α =
ez
er

, β =
rb0

rp0
, γ =

dr

rp0
, δ =

dz

rp0
, η =

ei
er
. (2.7)

The first parameter α represents the interaction rate between the Phytoplankton and the
Zooplankton. The second quantity β represents the growth rate of the Bacteria. The third
and fourth parameters γ and δ are the mortality rates of the Protozoa and the Zooplankton,
respectively. The last parameter η represents the interaction rate between Phytoplankton and
Bacteria. All these quantities are positive.

3. Analysis of the Model

3.1. Steady-State Populations

We now look for the steady-state solutions (B, P,Z, R,N) which satisfy

dB

dt
=

dP

dt
=

dZ

dt
=

dR

dt
=

dN

dt
= 0. (3.1)
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We choose Neq = N0, where now N0 represents some arbitrary dimensionless initial
concentration of nutrient. This yields the four equilibrium points

(
Beq, Peq, Zeq, Req,Neq

)
= (0, 0, 0, 0,N0),(

Beq, Peq, Zeq, Req,Neq
)
=
(
γ, 0, 0, βK,N0

)
,

(
Beq, Peq, Zeq, Req,Neq

)
=
(

0,
δ

α
,
K1

α
, 0,N0

)
,

(
Beq, Peq, Zeq, Req,Neq

)
=
(
γ,

δ

α
,K1 −

ηγ

α
, βK +

ηδ

α
,N0

)
,

(3.2)

where

K =
N0

1 + cb0(N0 − 1)
, K1 =

N0

1 + cp0(N0 − 1)
. (3.3)

In (3.3) the constants cb0 and cp0 are the nutrient uptake rates for the bacteria and
phytoplankton, respectively. The first steady-state in (3.2) represents the case where only
the nutrients remain, and all the species die out. The second and third steady-states are
where two species, a predator and prey coupling, survive. The fourth steady-state, which
is of most interest to our analysis, is where all the species survive. We will now look to
ascertain the stability of these states. It should be mentioned that two more steady-states were
found; however they contained negative values for some of the populations and as such were
unrealisable in an actual situation.

3.2. Stability of the Steady-States

When the time-dependent populations are close to any of the four steady-states in (3.2), the
small-amplitude behaviour may be determined by linearization, in the form

B(t) = Beq + εB1 +O
(
ε2
)
,

P(t) = Peq + εP1 +O
(
ε2
)
,

Z(t) = Zeq + εZ1 +O
(
ε2
)
,

R(t) = Req + εR1 +O
(
ε2
)
,

N(t) = Neq + εN1 +O
(
ε2
)
.

(3.4)

The constant ε represents how close the system is to one of its steady-states. We determine
the linearized system near an equilibrium point by substituting (3.4) into the governing
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equations (2.6) and retaining terms at the first order in ε. This results in the linear matrix
system

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

P1

Z1

R1

N1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 ηBeq 0 −Beq J15

−ηPeq J22 −αPeq 0 J25

0 αZeq αPeq − δ 0 0

Req 0 0 Beq − γ 0

−μβK −μK1 μδ μγ J55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

P1

Z1

R1

N1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

Here,

J11 = βK − Req + ηPeq,

J15 = β

(
−cb0NeqBeq(

1 + cb0
(
Neq − 1

))2
+

Beq

1 + cb0
(
Neq − 1

)
)
,

J22 = K1 − αZeq − ηBeq,

J25 =
−cp0NeqPeq(

1 + cp0
(
Neq − 1

))2
+

Peq

1 + cp0
(
Neq − 1

) ,

J55 = −μ(J15 + J25)

(3.6)

are defined for convenience.
We are only interested here in the last steady-state (γ, δ/α,K1 − ηγ/α, βK + ηδ/α,N0)

in (3.2), where all the populations survive. These values are substituted into (3.5) to produce
the Jacobian matrix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 γη 0 −γ E15

−ηδ
α

0 −δ 0 E25

0 E32 0 0 0

E41 0 0 0 0

−μβK −μK1 μδ μγ E55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.7)

In this expression (3.7), it has proved convenient to define the intermediate quantities

E15 =
βγ(1 − cb0)

(1 + cb0(N0 − 1))2
,

E25 =
δ
(
1 − cp0

)
α
(
1 + cp0(N0 − 1)

)2
,

E32 = K1 − ηγ,
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E41 = βK +
ηδ

α
,

E55 = −μ(E15 + E25).

(3.8)

The eigenvalues λ for the linearized system (3.5), with coefficient matrix (3.7), are found from
the characteristic equation

−λ5 +Q4λ
4 +Q3λ

3 +Q2λ
2 +Q1λ = 0, (3.9)

in which it is convenient to define

Q1 = −E32E41γδ + E25E41μγ
2η − μγK1E25E41 − E15E32

μδ2η

α
− E15E32μβδK,

Q2 = E41E55γ + E15E41μγ + E32E55δ + E25E32μδ + E55
η2δγ

α
− E25μβηγK + E15

μδη

α
K1,

Q3 = −E41γ − E32δ − E25μK1 −
η2δγ

α
− E15μβK,

Q4 = E55.

(3.10)

In order for there to be a Hopf bifurcation present, we need there to be at least one pair of
complex conjugate eigenvalues whose real part vanishes. For this to happen, (3.9) must be in
the form

(
λ + ip

)(
λ − ip

)(
−λ3 + b2λ

2 + b1λ
)
= 0. (3.11)

We now expand (3.11) into the form

−λ5 + b2λ
4 +
(
b1 − p2

)
λ3 + p2b2λ

2 + p2b1λ = 0. (3.12)

We perform a comparison between the corresponding coefficients of powers of λ given in
(3.9) and (3.12) so that

b2 = Q4, b1 − p2 = Q3, p2b2 = Q2, p2b1 = Q1, (3.13)
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Figure 2: The Hopf curve: The curve shows the location in (N0, β) space at which oscillatory solutions are
born. The smooth line shows the supercritical Hopf points and the dashed lines shows the subcritical Hopf
points. Here α = 0.4, γ = 1.2, δ = 0.4, η = 0.01, cb0 = 0.1, cp0 = 0.1, μ = 0.1.

and then solve these sets of criteria to find p and the coefficients b1 and b2 in terms of the
quantities in (3.10). This enables us to find the following conditions necessary for a Hopf
bifurcation to be present in the system (2.6);

(i)
Q2

Q4
> 0,

(ii) Q1Q4
2 −Q3Q2Q4 −Q2

2 = 0,

(iii) Q3
2 + 4Q1 > 0,

(iv) Q1 < 0.

(3.14)

The inequalities (i), (iii), and (iv) are a consequence of the need to ensure that the quantity
p2 in (3.13) remains positive, to satisfy the necessary conditions for the Hopf bifurcation. The
condition (ii) results from solving (3.13) for the quantities Q1, . . . , Q4. We solved the above
conditions numerically to find a set of parameter values consistent with a Hopf bifurcation.
The values for the parameters α, γ , δ were derived from Stones’ [1] paper. We found that by
varying the values of the parameters β and η from those derived in Stone’s original paper,
we were able to find a set of parameter values for which a Hopf bifurcation is possible in the
system. The parameters β and η were kept within the realms of physical possibility; they were
in fact less than the values determined from the rate constants used in Stone’s [1] paper. The
Hopf curve is shown below in Figure 2, and it indicates the location in the (N0−β) parameter-
space of the points for which conditions (3.14) are satisfied, and therefore gives the parameter
values at which nonlinear oscillatory limit cycles might be expected to be born.

Both the supercritical and subcritical limit cycles emerge to the right in Figure 2, as
stable and unstable structures, respectively. Self sustained oscillations born from a Hopf
bifurcation occur for values of β on or inside the curve for a given N0. The Hopf bifurcation
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first appears at N0 = 1.092. Each successive value of N0 (N0 > 1.092) has two Hopf points, a
supercritical (continuous line) and subcritical (dashed line) Hopf point. A stable limit cycle
emerges at a supercritical Hopf bifurcation, but the line of subcritical bifurcations at the top
of the diagram gives rise to unstable oscillatory behaviour. The supercritical and subcritical
branches converge again at N0 = 10.82, after which the Hopf criteria (3.14) are no longer
satisfied for the current parameter values.

Shertzer et al. [5] showed that predator-prey models of systems, where the prey has
developed defences to attack, have the best fit with experimentation and that limit cycles are
born from the terms modeling the defence mechanism. Our analysis shows that self-sustained
oscillations in the unforced system are possible. The oscillations take the form of limit cycles
arising out of a Hopf bifurcation (periodic oscillations of species over time in a closed system)
which will be investigated further in Section 4.

4. Numerical Results

We used MATLAB to solve the nonlinear system at the parameter values discussed in the
previous section. Once we were satisfied that apparently oscillatory solutions were present
then, using a shooting algorithm based on Newton’s method, we were able to find if the
resultant solutions were in fact periodic limit cycles. The method used will now be described
briefly here.

We rescaled (2.6) by introducing a new time variable

τ = t
2π
Pt

, (4.1)

where Pt is the period of oscillation and is as yet unknown. We made a guess for the initial
conditions [B(0), P(0), Z(0), R(0),N(0)] and Pt. Using MATLAB, we integrated the set of
rescaled equations to find the values [B(2π), P(2π), Z(2π), R(2π),N(2π)] after one complete
period. If the solution is truly periodic, then the initial conditions should match these values.
We used the equilibrium point Beq = γ as the initial value for B(0) as we know a periodic
solution set will include this point. We estimated the values of the other variables when
B(t) = γ using the numerical MATLAB code, and used these as initial values, including a
guess for the period Pt which was also estimated from the MATLAB results.

Newton’s method was used to adjust the estimates of P(0), Z(0), R(0), N(0), and Pt

so that the residual quantities B(0) − B(2π), P(0) − P(2π), Z(0) − Z(2π), R(0) − R(2π), and
N(0) −N(2π) are made arbitrarily small. We used a damped version of Newton’s method
whereby if the norm of the vector of residuals is not reduced then the length of the correction
step used in the method was halved. As limit cycles become more unstable, the method finds
it harder to converge to a solution. Integrating the system of equations backwards in time was
found to be necessary for highly unstable solutions, since this procedure converts an unstable
orbit into a stable one (in negative time).

After we have calculated a limit cycle, we then perform a linear perturbation to the
system (2.6) once they have been rescaled with respect to τ . The resultant coefficient matrix
is 2π-periodic in τ and so we can use Floquet theory to ascertain the stability of the limit cycle.
This method is described in Forbes [19]. In brief we found the eigenvalues of a monodromy
matrix, which give a measure of how close the perturbation is to the limit cycle. If |λi| < 1 for
all i, then the limit cycle is stable; however, if any one of the |λi| > 1, then the limit cycle is
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Figure 3: The amplitude of the limit cycles of B(t) formed at successive values of β for fixed N0 = 2. Here
α = 0.4, γ = 1.2, δ = 0.4, η = 0.01, cb0 = 0.1, cp0 = 0.1, μ = 0.1.

unstable. The result of our numerical analysis is now considered. We started with the initial
set of parameter values

α = 0.4, β = 0.34, γ = 1.2, δ = 0.4, η = 0.01,

cp0 = 0.1, cb0 = 0.1, N0 = 2.
(4.2)

The locations of the Hopf points were obtained from Figure 2.
Figure 2 indicates that as N0 increases from 1.092, the supercritical and subcritical

branches of Hopf values diverge along the β axis until they reach a minimum and maximum,
respectively, at about N0 = 2. These two branches then begin to converge again until they
meet at N0 = 10.82, at which point the Hopf criteria (3.14) fail. As previously mentioned, the
oscillatory solutions born from these two Hopf points give rise to nonlinear self-sustained
oscillations for values of β inside the curve in Figure 2, for each value of N0. The behaviour of
these limit cycles at a fixed value of N0 is now studied in more detail, by varying β beyond the
supercritical point and up to the subcritical value, as determined from Figure 2. The results
of these numerical calculations are presented in Figure 3.

Figure 3 illustrates the amplitude of the limit cycle oscillations for the Bacteria, as the
reproduction rate β is varied. At β = 0.3375, there is a supercritical Hopf bifurcation formed
(this stable structure travels to the right as N0 increases). This is precisely the value predicted
in Figure 2 for N0 = 2, and a stable limit cycle of very small amplitude emerges at this
point. We also checked this value by finding the eigenvalues of the Jacobian of the linear
perturbation model described in (3.5), where at this value of β there exists a purely complex
conjugate pair of eigenvalues. The solid line in Figure 3 represents the stable portion of the
nonlinear oscillatory solution branch. To follow this branch accurately, we reduced the error
tolerance (MATLAB) used for the integration solver to 10−9. This was done so as to improve
numerical accuracy.
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Figure 4: The unstable (dashed line) and stable (solid line) limit cycles for the solution B(t) at the same
value of β = 0.368.

The dashed lines in Figure 3 are the unstable portion of the nonlinear oscillatory
solution branch. These limit cycles were found by integrating backward in time in the
shooting method algorithm. As was mentioned previously, this was necessary as the limit
cycles in this region are highly unstable.

As can be seen from Figure 3, there is a second subcritical Hopf bifurcation at β =
0.3675 at which an unstable limit cycle oscillation emerges from the steady-state and travels
to the right as N0 increases. These unstable solutions are indicated with a dashed line. Again,
this value is in agreement with the predictions of our linear perturbation model (3.5) for
N0 = 2, as illustrated in Figure 2. Another feature that can be seen from Figure 3 is the
fold bifurcation occurring at β = 0.369. This is where the stable and the unstable limit cycle
branches, born from the two Hopf bifurcation points, join to create a single unified branch
of limit cycles. The Floquet multipliers have been computed for this nonlinear problem, and
their behaviour has been monitored carefully along the branch shown in Figure 3. At the
fold point, one of these multipliers takes the value one, and then its absolute value increases
beyond one as the solutions indicated with a dashed line are traversed, confirming that these
limit cycles are genuinely unstable.

The period of the limit cycles in Figure 3 has also been computed, and changes as β
varies. We found that for the supercritical Hopf point, β = 0.3375, the nondimensional period
is approximately 7.2236. This equates to about 14.5 days in dimensional terms. Similarly, for
the subcritical Hopf point at β = 0.375, the nondimensional period was determined to be
6.7416 or 13.5 days in dimensional terms. At the fold bifurcation, the nondimensional period
is 7.1079, which corresponds to 14.2 days.

We now look at two distinct solutions to the system occurring at the same value of β.
This serves to highlight the nonlinear dynamics of the complex system studied here.

Figure 4 shows that at the value β = 0.368, there are two independent solutions to
the system forming two distinct limit cycles, at the same values of the physical parameters.
For Bacteria at this value, the stable solution is shown with a solid line. As can be seen from
the graph, the amplitude of the stable orbit is much greater than the unstable counterpart,
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Figure 5: The eigenvalues of the stable limit cycle displayed on the unit circle.
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Figure 6: The eigenvalues of the unstable limit cycle displayed on the unit circle.

consistently with Figure 3. That two distinct limit cycles can be formed for the same
parameter value shows the complexity of the system. We examined the stability of the two
limit cycle solutions produced at β = 0.368 using Floquet theory. The results of this analysis
are illustrated in Figures 5 and 6.

Figure 5 shows the five eigenvalues (red dots) of the monodromy matrix formed when
we solve the linear perturbation to the limit cycle. These are shown against the unit circle
|λ| = 1 in the complex eigenvalue plane since this represents the border between stability and
instability in Floquet theory. When one of the eigenvalues crosses the unit circle, the solution
becomes unstable. Now in Figure 5 we see that one of the eigenvalues is equal to 1. It is known
that, for limit cycles, one Floquet multiplier must be equal to one. Physically, this corresponds
to the fact that a perturbation tangent to the limit cycle remains on it, representing a neutrally
stable event (Seydel [20]). This requirement, in fact, represents a very sensitive test of the
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Figure 7: The stable limit cycle (red) and the perturbation solutions (blue) for perturbations above and
below the limit cycle.
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Figure 8: The unstable limit cycle (red) and the perturbation solutions (blue) for perturbations above and
below the limit cycle.

numerical accuracy of our method. All the other eigenvalues lie inside the unit circle and
therefore the solution is stable. If we then consider Figure 6, we see that the eigenvalues
(indicated by red dots) have one pair of complex conjugates with real components that are
significantly greater than one. This therefore corresponds to an unstable limit cycle.

The instability of this solution means that as a result of a small perturbation ε, the
resultant solution will diverge from the limit cycle. In Figures 7 and 8, we can see this
pronounced change in stability.
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Figures 7 and 8 show a perturbation to both the stable and unstable limit cycles
formed at β = 0.368. We achieved this perturbation by changing the initial conditions. In
Figure 7, we firstly subtracted 0.2 from the initial value of the first species (Bacteria) and
subtracted 0.3 from the initial value of the second species (Phytoplankton) and resolved
the equations. In the second instance, we added 0.2 to the initial value of the Bacteria and
subtracted 0.3 from the initial value of the Phytoplankton. This is equivalent to making a
perturbation outside then inside the limit cycle. In Figure 8 we applied the same process
by firstly, adding 0.02 to the initial values of each of the four species and the nutrients
and resolving the equations, and in the second instance by subtracting 0.02. Each figure
shows the limit cycle run for a suitable time as well as the solutions of the perturbations
to the limit cycles. From the stable case seen in Figure 7, we see that the perturbation
solutions converge to the limit cycle (shown in red). This is as expected for a stable orbit.
In Figure 8 the solutions do not converge but instead oscillate and move away from the limit
cycle.

5. Discussion

This paper presented an investigation of the solutions to the system proposed by Stone [1].
The system predicts four steady-states (and two more with unphysically realizable negative
values for the populations). Of these equilibria, only one predicts long-term survival for all
four species. It is around this equilibrium point that we centred our study.

Hadley and Forbes [2] analyzed this same system, although in the special case in
which nutrient concentration was not allowed to vary. They showed that the system is
degenerate in that case, meaning the unforced equations gave rise to equilibrium points
that are centres (excluding the point where all populations vanish). It was suggested that
when nutrients are allowed to vary, the degeneracy might be removed and Hopf bifurcations
may occur instead of centre behaviour. This has been confirmed in the present investigation.
Here, for the fully populated equilibrium point, Hopf bifurcations were found for a range of
parameter values. Furthermore, the limit cycles found changed stability as we moved along
the solution branch. The Floquet multipliers calculated for these solutions along this branch
indicated that there was no period doubling bifurcation present, typically a route to chaos,
for the parameter values used.

The periods of the self-sustained oscillations found in this investigation are typically
of the order of half a month in dimensional values. This is significantly different to the case
in which nutrient supply is constant; for that (degenerate) case, Hadley and Forbes [2] found
that centre-type behaviour had periods corresponding to about one day. Thus, while diurnal
forcing can result in nonlinear resonances in the case of constant nutrient concentration,
it would not be expected to have much effect when nutrients are scarce, as in the present
investigation. Here, it is to be expected that seasonal, rather than diurnal, forcing would have
a more significant effect on the population dynamics. This is beyond the scope of the present
study, however.

It should also be noted that Figure 2 shows the Hopf curve appearing for a small value
for N and disappearing as N increases beyond a certain value. This may be an explanation as
to why the Phytoplankton stimulate the Bacteria when nutrients are low. The limit cycles only
appear for certain parameter values and particularly when N is relatively small. In effect, the
strategy does not work when N is abundant. This is consistent with the findings of Hadley
and Forbes [2] where no limit cycles were found in that case.
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In Section 3 we used the values for the interaction constants stated in Stones’ [1]
paper; the constants simulate the system in a stressed state so that phytoplankton releases
extracellular organic carbon (EOC). Although our interpretation of the relationship between
phytoplankton and bacteria is different to that of Stone [1], we have shown that in our
case the system finds a set of stable solutions of increasing amplitude for all populations,
which remains stable as the reproductive rate of bacteria increases up until the point a fold
bifurcation is reached and stability is lost. We must consider the fact that we have changed
the values for the interaction function η, between the bacteria and phytoplankton, making it
considerably less than that derived from Stones’ [1] dimensional rate constants. In addition,
the range of values chosen for the reproductive rate of the bacteria β is less than that chosen
by Stone [1]. These interaction functions are for the nondimensional system (2.6). A change
to β is achieved by increasing rb and a change in η can be achieved by either increasing er
and ez at the same rate or by decreasing ei. Although we have changed these values slightly
to find a Hopf bifurcation and limit cycles, we would consider it reasonable to assume that
they still fall within acceptable ranges for the biological processes they represent.

We have chosen a Michaelis-Menten term for the nutrient uptake. There are of course
other possibilities, although any law that limits the rate for large nutrient concentration might
reasonably be expected to behave at least qualitatively similarly to the results presented
here. We have not considered migration or alternative models for the interaction between the
bacteria and phytoplankton. Nevertheless, this study has shed some light on the dynamics of
this system. In addition, we have assumed that the mass of nutrient per organism is roughly
constant. The dynamics of this system may possibly become more elaborate if this assumption
were to be relaxed. However, these are considerations for further study.
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