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In the theorems of Galambos-Bojanić-Seneta’s type, the asymptotic behavior of the functions
c[x], x ≥ 1, for x → +∞, is investigated by the asymptotic behavior of the given sequence of
positive numbers (cn), as n → +∞ and vice versa. The main result of this paper is one theorem
of such a type for sequences of positive numbers (cn)which satisfy an asymptotic condition of the
Karamata type limn→∞ c[λn]/cn > 1, for λ > 1.
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1. Introduction

A function f : [a,+∞) �→ (0,+∞) (a > 0) is called O-regularly varying in the sense of Karamata
(see [1]) if it is measurable and if for every λ > 0,

kf(λ) := lim
x→+∞

f(λx)
f(x)

< +∞. (1.1)

Function kf(λ) (λ > 0) is called the index function of f , and ORVf is the class of all
O-regularly varying functions defined on some interval [a,+∞).

A function f ∈ ORVf is called O-regularly varying in the Schmidt sense (see [2, 3]) if

lim
λ→ 1

kf(λ) = 1. (1.2)

O-regularly varying functions in the Schmidt sense form the functional class IRVf

and IRVf � ORVf (see [3]). They represent an important object in the analysis of divergent
processes (see [4–9]). In particular, we have that the class RVf of regularly varying functions
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in the Karamata sense satisfies RVf � IRVf (see [3], and some of its applications can be found
in [10]).

A function f ∈ IRVf is called regularly varying in Karamata sense if kf(λ) = λρ for every
λ > 0 and a fixed ρ ∈ R. If ρ = 0, then f is called slowly varying in the Karamata sense , and all
such functions form the class SVf . We have that SVf � RVf (see [10]).

A sequence of positive numbers (cn) is called O-regularly varying in the Karamata sense
(i.e., it belongs to the class ORVs), if

kc(λ) = lim
n→+∞

c[λn]

cn
< +∞, (1.3)

for every λ > 0.
A sequence (cn) ∈ ORVs is calledO-regularly varying in the Schmidt sense (i.e., it belongs

to the class IRVs), if

lim
λ→ 1

kc(λ) = 1. (1.4)

The classes of sequences ORVs and IRVs have an important place in the qualitative
analysis of sequential divergent processes (see, e.g., [11–14]). Asymptotic properties of
sequences (1.3) and (1.4) are very important in the Theory of Tauberian theorems (see [7, 15]).

The class of regularly varying sequences in the Karamata sense RVs and similarly the
class of slowly varying sequences in the Karamata sense SVs are defined analogously to the
classes RVf and SVf . They are fundamenatal in the theory of sequentional regular variability
in general (see [16]).

Next, let (cn) be a strictly increasing, unbounded sequence of positive numbers. Then

δc(x) = max{n ∈ N | cn ≤ x}, (1.5)

for x ≥ c1, is the numerical function of the sequence (cn) (see, e.g., [17]).
In the sequel, let ∼ be the strong asymptotic equivalence of sequences and functions,

and let (pn) be the sequence of prime numbers in the increasing order. Since pn ∼ n ln n,
n → +∞ ((pn) ∈ IRVs) and since δp(x) ∼ (x/ ln x), x → +∞, (δp ∈ IRVf) (see, e.g., [17]),
the next question seems to be natural:

what is the largest proper subcclass of the class of all strictly increasing, unbounded
sequences from IRVs, such that the numerical function of every one of its elements belongs
to IRVf?

The next example shows that this question has some sense.

Example 1.1. Define c1 = ln 2/2 and cn = ln n, for n ≥ 2. Then (cn) is a strictly increasing,
unbounded sequence of positive numbers. Since ln x, x ≥ 2 belongs to the functional class
SVf (see, e.g., [10]), by a result from [18], we have that (cn) ∈ SVs. Hence, (cn) ∈ IRVs. Next,
since δc(x) ∼ h−1(x), x → +∞, where h(x), x ≥ 1, is continuous and strictly increasing, and
h(n) = cn (n ∈ N) (see, e.g., [17]), we can assume that h(x) = ln x for x ≥ 2, while for
x ∈ [1, 2) we can suppose that h is linear and continuous on [1, 2] such that h(1) = ln 2/2.
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Therefore, δc(x) ∼ ex, as x → +∞, so that δc belongs to de Haan class of rapidly varying
functions with index +∞ (the class R∞,f) (see, e.g., [19]). Hence, if λ > 1 we have

lim
x→+∞

δc(λx)
δc(x)

= +∞, (1.6)

so that δc does not belong to IRVf .

Knowing of asymptotic characteristics of a considered sequence and of its numerical
function can be of a great importance in many constructions of the asymptotic analysis (see,
e.g., [17]).

Next, we say that a function f : [a,+∞) �→ (0,+∞), a > 0, belongs to the class ARVf if
it is measurable and for every λ > 1 we have

kf(λ) = lim
x→+∞

f(λx)
f(x)

> 1. (1.7)

The function kf(λ), λ > 0, is the auxiliary index function of the function f(x), x ≥ a.
Condition (1.7) is equivalent with assumption that there exists an x0 = x0(λ) ≥ a and

c(λ) > 1 for λ > 1, so that for every λ > 1 and every x ≥ x0 it holds

f(λx) ≥ c(λ) · f(x). (1.8)

The class ARVf contains (as proper subclasses) the class of all regularly varying
functions in the Karamata sense whose index of variability is positive as well as the class
of all rapidly varying functions in de Haan sense whose index of variabilty is +∞, but it does
not contain any slowly varying function in the Kararamata sense.

We also have that ARVf ∩ IRVf /=∅ and ARVfΔIRVf /=∅. Besides, the class ARVf

considered in the space of the so-called ϕ-functions (see, e.g., [8]) is also an essential object
of the asymptotic and the functional analysis (see, e.g., [20]).

Next, let ARVs be the class of all positive numbers (cn) such that for every λ > 1 we
have

kc(λ) = lim
n→+∞

c[λn]

cn
> 1. (1.9)

The function kc(λ), λ > 0, is called the auxiliary index function of the sequence (cn).
The above condition is equivalent with fact that there is an n0 = n0(λ) ∈ N and a

function c(λ) > 1, λ > 1, such that for every λ > 1 and for every n ≥ n0 we have

c[λn] ≥ c(λ) · cn. (1.10)

The class ARVs contains (as proper subclasses) the class of all regularly varying
sequences in the Karamata sense whose index of variability is positive as well as the class
of all rapidly varying sequences in de Haan sense whose index is +∞, but does not contain
any slowly varying sequence in the Karamata sense (see [21, 22]).

We also have that ARVs ∩ IRVs /=∅ and ARVsΔIRVs /=∅.
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2. Main Results

The next theorem is a theorem of Galambos-Bojanic-Seneta type (see [16, 18]) for classes
ARVs and ARVf . The analogous theorems for regularly varying sequences and functions
in the Karamata sense, O-regularly varying sequences and functions in the Karamata sense,
sequences from the class IRVs and functions from the class IRVf , rapidly varying sequences
and functions in de Haan sense with index +∞, the Seneta sequences and functions (see, e.g.,
[23]) can be found, respectively, in [13, 16, 24–27].

Theorem 2.1. Let (cn) be a sequence of positive numbers. Then the next assertions are equivalent as
follows:

(a) (cn) ∈ ARVs,

(b) f(x) = c[x], x ≥ 1, belongs to the class ARVf .

Proof. (a) ⇒ (b) Let (cn) be a sequence of positive numbers and assume that (cn) ∈ ARVs,
thus that limn→+∞(c[λn]/cn) > 1 for every λ > 1. If λ > 1 is arbitrary fixed number, then
kc(α) > 1 for every α ∈ (1, λ). For arbitrary α ∈ (1, λ) define nα ∈ N in the following way:
nα = 1 if c[αn]/cn > 1 for every n ∈ N, and nα = 1 +max{n ∈ N | c[αn]/cn ≤ 1} else. One can
easily see that 1 ≤ nα < +∞ for every considered α.

Next, define a sequence of sets (Ak) by Ak = {α ∈ (1, λ) | nα > k} (k ∈ N). Then this
sequences is nonincreasing, thus Ak+1 ⊆ Ak (k ∈N) and

⋂∞
k=1Ak = ∅. We shall show that not

all subsetsAk (k ∈N) are dense in (1, λ). If α ∈ Ak for a fixed k ∈N, then c[(nα−1)α]/cnα−1 ≤ 1,
and there is a δα > 0 such that c[(nα−1)t]/cnα−1 = c[(nα−1)α]/cnα−1 ≤ 1, for every t ∈ [α, α + δα) �

(1, λ). Hence, every t ∈ (α, α + δα) belongs to Ak, since nt ≥ (nα − 1) + 1 > k. This gives
that (α, α + δα) ⊆ Ak if α ∈ Ak. Assuming now that a set Ak is dense in (1, λ), we get that
the set IntAk is also dense in (1, λ). If else, we assume that all sets Ak (k ∈ N) are dense in
(1, λ), we find that (IntAk) is a sequence of open dense subsets of the set (1, λ) of the second
category. Then we get that the set

⋂∞
k=1Ak is dense in (1, λ), so it must be nonempty, which is

a contradiction. Hence, we conclude that there is an n0 ∈ N, so that the set An0 is not dense
in (1, λ). Hence, there is an intervals [A,B] � (1, λ) (A < B) such that [A,B] ⊆ (1, λ) \An0 =
{α ∈ (1, λ) | nα ≤ n0}.

Therefore, for every α ∈ [A,B]we have nα ≤ n0. Hence, for every n ≥ n0 ≥ nα and every
α ∈ [A,B] we have c[αn]/cn > 1. Consequently, for any λ ∈ (1,+∞) and all sufficiently large
x ≥ x0 we have that c[λx]/c[x] = (c[t[η[x]]]/c[η[x]]) · (c[η[x]]/c[x]), where t = t(x) ∈ [A,B] and
η = 2λ/(A + B). Since η > 1, we get limx→+∞c[λx]/c[x] ≥ kc(η) > 1, so that f(x) = c[x] (x ≥ 1)
belongs to the class ARVf .

Since (b)⇒ (a) is immediate, we completed the proof.

The above theorem provides (analogously, as in cases given before Theorem 2.1) a
unique development of the theory of sequences from the class ARVs and theory of the
functions from the class ARVf . Thus, Theorem 2.1 can be used to interpret all asymptotic
behaviors of functions from the class ARVf (some of them are given in [28]) as behavior of
sequences from the class ARVs and vice versa.

Corollary 2.2. Let (cn) be a strictly increasing unbounded sequence of positive numbers. Then,

(a) (cn) ∈ ARVs if and only if δc(x) (x ≥ c1) ∈ IRVf ;

(b) (cn) ∈ IRVs if and only if δc(x) (x ≥ c1) ∈ ARVf .
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Proof. (a) Let (cn) be a strictly increasing unbounded sequence of positive numbers, and
assume that (cn) ∈ ARVs. Then by Theorem 2.1, f(x) = c[x], x ≥ 1, belongs to ARVf . f is
nondecreasing and unbounded for x ≥ 1. Let f←(x) = inf{y ≥ 1 | f(y) > x}, x ≥ c1, be
the generalized inverse (see [1]) of f . It is correctly defined nondecreasing and unbounded
function for x ≥ c1. It is also stepwise and right continuous. We also have that δc(x) =
f←(x) − 1 for x ≥ c1.

According to [22] we have that function f←(x), x ≥ c1, belongs to the class IRVf .
Since f← is nondecreasing and unbounded, we get limx→+∞(δc(x)/f←(x)) = 1, so that

δc(x), x ≥ c1, belongs to IRVf .
Next, let (cn) be a strictly increasing unbounded sequence of positive numbers, and let

δc(x), x ≥ c1, belong to IRVf . Besides, let f(x) = c[x], x ≥ 1. Since f←(x) = δc(x) + 1 for x ≥ c1,
we find that f← ∈ IRVf . According to [28] we have that function f(x), x ≥ 1, belongs to the
class ARVf . So by Theorem 2.1 we get that (cn) ∈ ARVc.

(b) Now, assume that (cn) is a strictly increasing unbounded sequence of positive
numbers and (cn) ∈ IRVs. Then by [13], f(x) = c[x], x ≥ 1, belongs to IRVf . Analogously
to (a), then δc(x) = f←(x) − 1, x ≥ c1. According to [29] (or [28]) we have that function
f←(x), x ≥ c1, belongs to the class ARVf , and consequently δc ∈ ARVf .

Next, let (cn) be a strictly increasing unbounded sequence of positive numbers, and
assume that δc ∈ ARVf . Besides, let f(x) = c[x], x ≥ 1. Since f←(x) = δc(x) + 1, for x ≥ c1,
then f← ∈ ARVf . According to [29] (or [28]) we have that function f(x), x ≥ 1, belongs to
the class IRVf . According to [13] the sequence (cn) (cn = f(n), n ∈N) belongs to IRVs.

Let K∗,ic,s be the class of all strictly increasing unbounded sequences from the class
IRVs ∩ ARVs (see [8]). This class contains (as a proper subclass) all strictly increasing
unbounded regularly varying sequences in the Karamata sense whose index of variability
is positive, and it does not contain any sequence from the class SVs, nor from the class R∞,s.

The next statement gives the answer to the question from the introduction of this
paper. It is a corollary of Corollary 2.2 (and, indirectly, of Theorem 2.1).

Corollary 2.3. The class K∗,ic,s is the largest proper subclass of the class of strictly increasing
unbounded sequences from the class IRVs, such that the numerical function of any its element belongs
to the class IRVf .

Proof. Let (cn) be a strictly increasing unbounded sequence of positive numbers from the class
IRVs ∩ARVs. Then by Corollaries 2.2(a) and 2.2(b), δc ∈ IRVf ∩ARVf , thus δc ∈ IRVf . Next,
assume that (cn) is a strictly increasing unbounded sequence of positive numbers from the
class IRVs \ARVs. Then by Corollary 2.2(b), δc ∈ ARVf , and by Corollary 2.2(a) δc /∈ IRVf .

This completes the proof.
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[13] D. Djurčić and A. Torgašev, “Representation theorems for sequences of the classes CRc and ERc,”

Siberian Mathematical Journal, vol. 45, no. 5, pp. 834–838, 2004.
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[27] D. Djurčić and A. Torgašev, “On the Seneta sequences,” Acta Mathematica Sinica, vol. 22, no. 3, pp.
689–692, 2006.
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