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For any n, the contour integral y = coshn+1x
∮
C(cosh(zs)/(sinh z − sinhx)n+1)dz, s2 = −λ, is asso-

ciated with differential equation d2y(x)/dx2 + (λ + n(n + 1)/cosh2x)y(x) = 0. Explicit solutions
for n = 1 are obtained. For n = 1, eigenvalues, eigenfunctions, spectral function, and eigenfunc-
tion expansions are explored. This differential equation which does have solution in terms of the
trigonometric functions does not seem to have been explored and it is also one of the purposes of
this paper to put it on record.
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1. Introduction

When one considers eigenfunction expansions associated with second-order ordinary differ-
ential equations, as Titchmarsh does in his book [1], one is concerned with solutions of the
equation

−d
2y(x)
dx2

+ q(x)y(x) = λy(x) (1.1)

along with certain boundary conditions, and one tends to say that the only case in which one
can solve this equation explicitly in elementary terms for all λ is the case q(x) = 0, when the
solutions are of course trigonometric functions.

Now in fact this is not true, and there is in particular one problemwhich does not seem to
have been explored, and it is the purpose of this paper to put it on record. Here is the problem:

d2y(x)
dx2

+
(
λ + n(n + 1)sech2x

)
y(x) = 0, (1.2)

which can be solved explicitly in elementary terms when n is integral. The explicit solution was
known to Kamke [2], but Kamke does not anyway explore the consequences for eigenfunction
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expansions nor does Titchmarsh discuss this problem, although he does discuss problems close
to it, for example,

d2y(x)
dx2

+
(
λ +

(
ν2 − 1

4

)
sec 2x

)
y(x) = 0, (1.3)

on (−π/2, π/2), which leads, when ν = n, to an expansion in series involving associated Leg-
endre functions.

It is perhaps worth remarking how our interest in this problem arises. In [3] there is the
question of travelling waves and steady solutions for a discrete reaction-diffusion equation of
the type

u′n = un+1 − 2un + un−1 + f(un), (1.4)

where the function f is “bistable”. That is, there exist three numbersU1,U2,U3,U1 < U2 < U3,
such that

f(U1) = f(U2) = f(U3) = 0 (1.5)

with f < 0 in (U1, U2) and f > 0 in (U2, U3). A prototypical f would be

f(u) = −A sin(u) + F, (1.6)

where A and F are positive constants and F < A, so that

U1 = sin−1
(
F

A

)
, U2 = π + sin−1

(
F

A

)
, U3 = 2π + sin−1

(
F

A

)
. (1.7)

Such equations arise in a number of different applications, for example, in dislocation theory
where un is the displacement of the nth atom in some material, or in neurobiology where un is
typically the electric potential of the nth nerve cell, and in both these applications the interest
is in monotonic solutions un with un→U1 as n→ −∞, un→U3 as n→∞ [3–6].

The basic question is whether there exist such solutions with the form of a travelling
wave, u(n − ct), c /= 0, or of a steady solution or standing wave, where c = 0, and there is
an important distinction between these two cases. For a travelling wave, c /= 0, un is clearly a
function of the continuous variable t, and indeed because of (1.4), a differentiable function of
t. This leads to the difference-differential equation

ut(x, t) = u(x + 1, t) − 2u(x, t) + u(x − 1, t) + f
(
u(x, t)

)
. (1.8)

If, however, c = 0, then, as in [3], we have to study the purely difference equation

u(x + 1, t) − 2u(x, t) + u(x − 1, t) + f
(
u(x, t)

)
= 0, (1.9)

and the solutions may be discontinuous since there is nothing that now connects values of u(x)
with values of u(x+δ) for |δ| < 1. It is best therefore to think of the solution of (1.9) as a number
of (monotonic) sequences uαn indexed by α, each satisfying

un+1 − 2un + un−1 + f(un) = 0. (1.10)
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The simplest case would be that there is just one such sequence (modulo the translation n→n+
k, k integral), but it is possible that there may be a finite number, or even a partial or total
continuum.

In view of applications, where the distance between atoms or nerve cells is small, it is
more natural to think of (1.8) in the form

ut(x, t) = u(x + ε, t) − 2u(x, t) + u(x − ε, t) + f(u(x, t)), (1.11)

where ε is small and represents the distance between atoms or nerve cells. A tempting approx-
imation is then

ut(x, t)∼ε2uxx(x, t) + f
(
u(x, t)

)
, (1.12)

and in order to make sense of the scaling, in [3] the authors introduced a factor ε2 in front of f .
This therefore leads to a comparison between the solutions of

u′n = un+1 − 2un + un−1 + ε2f(un) = 0, (1.13)

ut(x, t) = uxx(x, t) + f(u). (1.14)

For the continuous diffusion problem, the answer is both simple and well known [4, 5].
Given a function f that is bistable, there is just one possible wave-speed c, and this value

of c is 0, that is, there is a steady solution if and only if

∫U3

U1

f(u)du = 0. (1.15)

(The proof is a simple phase plane argument, and c = 0 implies (1.15) follows by multiplying
(1.14) by u′ and integrating.)

The solution in the discrete case is however different, as discussed in [6]. There may
continue to be steady solutions where (1.15) no longer holds. Consider specifically the case
(1.6), so that

u′n = un+1 − 2un + un−1 − ε2 sinun + F. (1.16)

The case corresponding to (1.15) is F = 0, but the authors, in [3], have shown that for F suffi-
ciently small, say |F| < Fcrit, there exist precisely two steady solutions of (1.16), and Fcrit, which
of course depends on ε, can be evaluated for small ε. Specifically,

Fcrit ∼Be−π2/ε, (1.17)

where the constant B = 64π
∫π
0 (sin

2(s)/s)ds is given. For |F| > Fcrit, the solutions move and
the equation has travelling wave solutions instead of steady solutions.

In order to prove results such as (1.17), one has to regard (1.16) as a singular perturbation
of the steady continuous-diffusion equation

uxx − sin u = 0, (1.18)
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for which the solution (satisfying u(−∞) = 0, u(∞) = 2π) isU = 4tan−1ex. If we linearize (1.18)
aboutU, we obtain

φ′′ − cos(U)φ = 0. (1.19)

But multiplying (1.18) by U′ and integrating lead to (1/2)(U′)2 = 1 − cos U, so that since
U′ = 2sech(x), we have cos U = 1− 2sech2(x). The linearization (1.19) thus becomes φ′′ + (−1+
2sech2x)φ = 0, which is of course (1.2) with λ = −1 and n = 1. Thus the selfadjoint operator T
given (in L2(−∞,∞)) by Tφ = −φ′′ − 2sech2(x)φ has an eigenvalue at −1, with eigenfunctionU′

(differentiation of (1.18) shows that U′ satisfies (1.19)). This fact, together with the additional
fact that the spectrum of T is continuous above 0 (since sech2(x) ∈ L(0,∞)), is highly relevant
to the work in [3] and led to our interest more generally in the spectral problem (1.2).

The explicit solution for any n using contour integrals different from what Kamke did is
known to [7]. For more information on this problem one can see [7, 8].

2. Preliminaries

We want to know expansion of an arbitrary function f(x) in terms of eigenfunctions. So one
needs to know the following. Let θ(x, λ) and φ(x, λ) be the solutions of (1.1) such that

φ(0, λ) = sinα, φ′(0, λ) = − cosα, θ(0, λ) = cosα, θ′(0, λ) = sinα, (2.1)

where α is real.Wx(φ, θ) =W0(φ, θ) = 1. The general solution of (1.1) is of the form

ψ(x, λ) = θ(x, λ) +m(λ)φ(x, λ) ∈ L2(0,∞). (2.2)

The spectrum is defined by means of the function

k(λ) = lim
δ→ 0

∫ λ

0
− I{m(u + iδ)}du, (2.3)

which exists for all real λ and k(λ) is a nondecreasing function. The expansion of a function
f(x) in terms of the spectral function depends on the following lemmas taken from [1].

Lemma 2.1. Without detailing, let the interval be (0,∞):

f(x) =
1
π

∫∞

0
φ(x, λ)dk(λ)

∫∞

0
φ(t, λ)f(t)dt. (2.4)

Ifm(λ) has poles, then

f(x) =
∞∑

N=0

φN(t)
∫∞

0
φN(t, λ)f(t)dt. (2.5)

Lemma 2.2. Without detailing, let the interval be (−∞,∞). If q(x) is an even function, thenm1(λ) =
−m2(λ). So the expansion formula is

f(x) =
1
π

∫∞

−∞
θ(x, λ)dξ

∫∞

−∞
θ(y, λ)f(y)dy +

1
π

∫∞

−∞
φ(x, λ)dζ

∫∞

−∞
φ(y, λ)f(y)dy, (2.6)
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where

ξ(λ) = lim
δ→ 0

∫λ

0
− I

{
1

m1(u + iδ) −m2(u + iδ)

}
du, ξ′(λ) = I

{
1

2m2(λ)

}
,

ζ(λ) = lim
δ→ 0

∫λ

0
− I

{
m1(u + iδ)m2(u + iδ)
m1(u + iδ) −m2(u + iδ)

}
du, ζ′(λ) = −1

2
I
{
m2(λ)

}
.

(2.7)

3. Main results

We are now dealing with (1.2) in the case where n is integral. Without loss of generality, we
may suppose n ≥ 0, but since n = 0 reduces (1.2) to the simple trigonometric case, we are in
fact interested only in n > 0. We first prove that a solution is given by

y = cosh n+1x

∮

C

cosh (zs)

(sinh z − sinhx)n+1
dz, s2 = −λ, (3.1)

where the contour C is taken round the point z = x and no other zero of sinh z − sinhx. This
is slight variant of a form which Titchmarsh uses in his discussion of (1.3). The proof below
will show (3.1), being continuous at least formally, to be a solution of (1.2) where n is not an
integer, but the difficulty then is to choose a suitable contour, since the integrand has a branch
point at z = x.

Remark 3.1. We also remark that it is obvious that we can express the solution (3.1) equivalently
ignoring some multiplicative constants as

y(x) = cosh n+1x
dn

(coshxdx)n

∮

C

cosh (zs)
sinh z − sinhx

dz. (3.2)

Theorem 3.2. The contour integral (3.1) satisfies the differential equation (1.2).

Proof. We see that

y′ = (n + 1) tanh(x)y + (n + 1)cosh n+2x

∮

C

cosh (zs)

(sinh z − sinhx)n+2
dz, (3.3)

y′′+n(n + 1)sech2(x)y=(n + 1)cosh n+1x

∮

C

cosh (zs)
{
(n + 1)sinh 2z + sinh z sinhx + n + 2

}

(sinh z − sinhx)n+3
dz.

(3.4)

Integrating (3.1) by parts,

y(x) =
n + 1
s2

∮

C

cosh (zs)
{
(n + 1)sinh 2z + sinh z sinhx + n + 2

}

(sinh z − sinhx)n+3
dz, (3.5)

so that

λy = −(n + 1)cosh n+1x

∮

C

cosh (zs)
{
(n + 1)sinh 2z + sinh z sinhx + n + 2

}

(sinh z − sinhx)n+3
dz. (3.6)

Comparing (3.4) and (3.6), we see that y′′ +n(n+1)sech2(x)y = −λy, so that y(x) satisfies (1.2),
as required.
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Remark 3.3. We now point out that the factor cosh (zs) played little part in the argument. Cer-
tainly, the argument would havewashed equally well if we had replaced cosh (zs) by sinh (zs):

y2(x) = cosh n+1x

∮

C

sinh (zs)

(sinh z − sinhx)n+1
dz. (3.7)

Theorem 3.4. The contour integral (3.7) satisfies the differential equation (1.2).

Proof. Proof is the same as the above theorem. So we omit it.

Remark 3.5. Furthermore, once the integrands have poles at z = x, the solution can be evaluated
by calculating the relevant residues. For example, in the trivial case n = 0, when we should
recover the trigonometric functions, the residues of

cosh (zs)
sinh z − sinhx

(3.8)

are
cosh (xs)
coshx

, (3.9)

so that the solution (3.7) becomes multiples of cos(x
√
λ) (similarly sin(x

√
λ)), as we expect.

We can generalize Theorems (3.2) and (3.4) by defining the following operator:

Tf(x) = cosh n+1x

∮

C

f(z)

(sinh z − sinhx)n+1
dz, (3.10)

where f is a differentiable function as long as one can pick up residue.

Corollary 3.6. If f(z) = cosh (zs)(sinh (zs)), then we obtain Theorems (3.2) and (3.4). The operator
T is also linear.

4. The explicit solution given by residues for n = 1

We now require the residues of

cosh (zs)

(sinh z − sinhx)2
,

sinh (zs)

(sinh z − sinhx)2
. (4.1)

Since
cosh (zs)

(sinh z − sinhx)2
=
{cosh (xs) + (z − x)s sinh (xs) + · · · }{1 − (z − x) tanh(x) + · · · }

(z − x)2cosh 2(x)
, (4.2)

we see that the residue at z = x is
s sinh (xs) − tanh(x) cosh (xs)

cosh 2(x)
, (4.3)

so that one solution is

y1 =
√
λ sin

(
x
√
λ
)
+ tanh(x) cos

(
x
√
λ
)
. (4.4)

By examining the residue of the second equation of (4.1), we see that a second solution is

y2 =
√
λ cos

(
x
√
λ
)
− tanh(x) sin

(
x
√
λ
)
. (4.5)
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Remark 4.1. The solution can also be obtained from (3.2). For we have already seen, from our
brief discussion of the case n = 0, that the integral in (3.2) is just a multiple of cos(x

√
λ)/ coshx

(or of sin(x
√
λ)/ coshx if we replace cosh (zs) by sinh (zs)) hence in the first case, (3.2) gives

a multiple of

cosh (x)
d

dx

(
cos(x

√
λ)

cosh (x)

)
= −

√
λ sin

(
x
√
λ
)
− tanh(x) cos(xλ), (4.6)

in accordance with (4.4).

Remark 4.2. WronskianW(y1(x), y2(x)) = −
√
λ(λ + 1). We now have two linearly independent

solutions.

Remark 4.3. The general solution is y(x) = c1y1(x) + c2y2(x).

Lemma 4.4. y1(x) is an odd function but y2(x) is an even function.

Proof.

y1(−x) = −y1(x), y2(−x) = y2(x). (4.7)

5. Eigenvalues and eigenfunctions for n = 1 when y(0) = y(b) = 0

Theorem 5.1. Eigenvalues with associated boundary conditions y(0) = y(b) = 0 are the zeros of

√
λ tan

(
b
√
λ
)
+ tanh(b) = 0; (5.1)

furthermore, one and only one eigenvalue lies in the interval
(
k − 1

2

)
π < b

√
λ <

(
k +

1
2

)
π (5.2)

for every integral k /= 0.

Proof. One can see from Remark 4.3 that if y(0) = 0, then c2 = 0. So that y(b) = 0 implies

√
λ sin

(
b
√
λ
)
+ tanh(b) cos

(
b
√
λ
)
= 0,

√
λ tan

(
b
√
λ
)
= − tanh(b). (5.3)

One can see immediately that the eigenvalues belong to the interval (5.2).
To prove the second part we use the following strategy. Multiply (5.1) by b and set x =

b
√
λ, then denote h(x) = x tan(x)+b tanh(b). So h′(x) = sec 2(x){(1/2) sin(2x)+x}.Notice that

h(x) is an even and does not intersect x-axis, where −1/2 < x < 1/2. If x < −1/2, then h′(x) < 0
and if x > 1/2, then h′(x) > 0. So the monotonicity of h(x) implies that h(x) has only one zero
belonging to the interval (5.2) for every integral k /= 0.

Remark 5.2. So yk is the eigenfunction in the form of (4.4):

yk =
√
λk sin

(
x
√
λk

)
+ tanh(x) cos

(
x
√
λk

)
. (5.4)
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Corollary 5.3. One can orthonormalize the eigenfunctions.

Proof.
∫b

0
y2
k
dx =

−4
√
λk tanh(b)cos2(b

√
λk) + 2

√
λk(λk + 1)b − (λk − 1) sin(2b

√
λk)

4
√
λk

. (5.5)

The orthonormalized eigenfunctions denoted by Φ(x, λk), Φ(x, λk) = (
√
λk sin(x

√
λk) +

tanh(x) cos(x
√
λk))/

√∫b
0y

2
k
dx.

Remark 5.4. An arbitrary function f(x) in terms of eigenfunctions follows:

f(x) =
∞∑

k=0

CkΦ(x, λk), whereCk =
∫b

0
f(x)Φ(x, λk)dx. (5.6)

6. Eigenvalues and eigenfunctions for n = 1 when y′(0) = y′(b) = 0

Theorem 6.1. The eigenvalues with y′(0) = y′(b) = 0 are the zeros of (6.1); furthermore, there exists
one and only one eigenvalue lying in the interval (5.2) for every integral k /= 0.

Proof. One can see from Remark 4.3 that if y′(0) = 0, then either c1 = 0 or λ = −1. If λ = −1, then
the associated eigenfunction is zero. So this is useless. Hence, c1 = 0. y′(b) = 0 implies

λ tan
(
b
√
λ
)
+ sech2(b) tan

(
b
√
λ
)
+
√
λ tanh(b) = 0. (6.1)

So it is obvious that the zeros (eigenvalues) belong to the interval (5.2).
Set x = b

√
λ. (b2λ = x2λ = x2/b2). Equation (6.1) is denoted by h(x):

h(x) =
(
x2

b2
+ sech2(b)

)
tan(x) +

x

b
tanh(b). (6.2)

It is enough to show that h(x) is monotonic:

h′(x) =
x2 + b2sech2(b) + x sin(2x)

b2cos2(x)
+
1
b
tanh(b). (6.3)

We see that h′(x) > 0 everywhere. We therefore conclude that h(x) is monotonic.

Remark 6.2. The associated eigenfunctions are

yk =
√
λk cos

(
x
√
λk

)
− tanh(x) sin

(
x
√
λk

)
. (6.4)

Corollary 6.3. One can orthonormalize the eigenfunctions.

Proof.
∫b

0
y2
kdx =

−4
√
λk tanh(b)sin2

(
b
√
λk

)
+ 2

√
λk(λk + 1)b + (λk − 1) sin(2b

√
λk)

4
√
λk

. (6.5)

The orthonormalized eigenfunctions denoted by Ψ(x, λk), Ψ(x, λk) = (
√
λk cos(x

√
λk) −

tanh(x) sin(x
√
λk))/

√∫b
0y

2
k
dx.

Remark 6.4. Therefore, an arbitrary f(x) in terms of orthonormalized eigenfunctions is

f(x) =
∞∑

k=0

CkΨ(x, λk), Ck =
∫b

0
f(x)Ψ(x, λk)dx. (6.6)
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7. Spectral function m(λ) over (0,∞) and expansion

Now let θ(x, λ) and φ(x, λ) be the solutions of

d2y

dx2
+
{
λ + 2sech2(x)

}
y = 0, (7.1)

which satisfy (2.1); so that

φ(x, λ) = −cosα{
√
λ sin(x

√
λ) + tanh x cos(x

√
λ)}

λ + 1
+
sinα{

√
λ cos(x

√
λ) − tanh x sin(x

√
λ)}√

λ
,

(7.2)

θ(x, λ) =
sinα{

√
λ sin(x

√
λ) + tanh x cos(x

√
λ)}

λ + 1
+
cosα{

√
λ cos(x

√
λ) − tanh x sin(x

√
λ)}√

λ
.

(7.3)

Now we need to findm(λ). This suggests that

ψ(x, λ) = θ(x, λ) +m(λ)φ(x, λ) ∈ L2(0,∞). (7.4)

To get demanded result, one needs to find the asymptotics of θ(x, λ) and φ(x, λ) as x→∞ and
I
√
λ > 0:

φ(x, λ)∼ {−
√
λ cosα +

√
λ(λ + 1) sinα + i(−λ cosα − (λ + 1) sinα)}e−ix

√
λ

2
√
λ(λ + 1)

=M1(λ)e−ix
√
λ,

θ(x, λ)∼ {
√
λ sinα +

√
λ(λ + 1) cosα + i(λ sinα − (λ + 1) cosα)}e−ix

√
λ

2
√
λ(λ + 1)

=M(λ)e−ix
√
λ.

(7.5)

Finally, we must arrange the linear combination so that the terms e−ix
√
λ cancel. That is,M(λ)+

m(λ)M1(λ) = 0. Hence,

m(λ) =
−i
√
λ(λ + 1) − (λ2 + λ + 1) sinα cosα

λcos2α + (λ + 1)2sin2α
,

Im(λ) =

⎧
⎪⎨

⎪⎩

−
√
λ (λ + 1)

λcos2α + (λ + 1)2sin2α
whenλ > 0,

0 whenλ < 0.

(7.6)

We see that the spectrum is continuous for λ > 0. But we have a point spectrum for λ < 0. So
that an arbitrary f(x) is a linear combination of integrand and series. The spectral function is
calculated from (2.3). Hence,

dk(λ) =

⎧
⎪⎨

⎪⎩

√
λ(λ + 1)

λcos2α + (λ + 1)2sin2α
whenλ > 0,

0 whenλ < 0.
(7.7)
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In particular, if α = 0, then

dk(λ) =

⎧
⎪⎨

⎪⎩

λ + 1√
λ

whenλ > 0,

0 whenλ < 0.
(7.8)

So that in this case there is no eigenvalue for λ < 0. From Lemma 2.1, one can see the expansion
of

f(x) =
1
π

∫∞

0

√
λ sin(x

√
λ) + tanh x cos(x

√
λ)√

λ
dλ

∫∞

0

√
λ sin(y

√
λ) + tanh y cos(y

√
λ)

λ + 1
f(y)dy.

(7.9)

Similarly, if α = π/2, then

Im(λ) =

⎧
⎪⎨

⎪⎩

−
√
λ

λ + 1
whenλ > 0,

0 whenλ < 0..
(7.10)

(7.11)

Hence, there exits only one eigenvalue at λ = −1 and the corresponding eigenfunction φ(x,−1)
where φ(x, λ) is (7.2). So the spectrum calculated by (2.3) is

dk(λ) =

⎧
⎪⎨

⎪⎩

√
λ

λ + 1
whenλ > 0,

0 whenλ < 0..
(7.12)

Therefore, from Lemma 2.1, an expansion of function f(x) in terms of eigenfunctions and spec-
tral function follows:

f(x) =
1
π

∫∞

0

√
λ cos(x

√
λ) − tanh x sin(x

√
λ)

λ + 1
dλ

×
∫∞

0

√
λ cos(y

√
λ) − tanh y sin(y

√
λ)√

λ
f(y)dy + c1sech(x),

(7.13)

where c1 is a constant. So we have proved the following theorem regarding the nature ofm(λ).

Theorem 7.1. If α = 0, there is no eigenvalue where λ < 0. If α = π/2, then there exists only one
eigenvalue at λ = −1 and the corresponding eigenfunction is φ(x,−1) = sech(x).

Finally, one can ask what is the range of α in the case of λ < 0 and n = 1.

Theorem 7.2. If 0 < α < π/2, then there are precisely two eigenvalues except at α = π/4. Hence there
are two eigenfunctions, namely, φ(x, λ1) and φ(x, λ2).
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Proof. We check the zeros of both the numerator and denominator of (7.6). After working out
the algebra, we see that the zeros of the numerator and the denominator are

μ1 =
−(2 + tan2α) + tanα

√
4 + tan2α + 1

2
, μ2 =

−(2 + tan2α) − tanα
√
4 + tan2α + 1

2
,

λ1 =
−(2tan2α + 1) +

√
4tan2α + 1

2tan2α
, λ2 =

−(2tan2α + 1) −
√
4tan2α + 1

2tan2α
.

(7.14)

If m(λ) has poles, then they are the eigenvalues. If so, the eigenfunctions are φ(x, λ1) and
φ(x, λ2). Finally, there is one thing to be proved in this case α = π/4. To do this, we expand the
zeros around α = π/4 and at the end α→π/4:

λ1 =
−3 +√

5
2

+
20 − 12

√
5

10

(
α − π

4

)
+
−400 + 352

√
5

100

(
α − π

4

)2

+O
{(

α − π

4

)3}
,

λ2 =
−3 − √

5
2

+
20 + 12

√
5

10

(
α − π

4

)
+
−400 − 352

√
5

100

(
α − π

4

)2

+O
{(

α − π

4

)3}
.

(7.15)

Similarly,

μ1 =
−3 +√

6
2

+
7
√
6 − 12
6

(
α − π

4

)
+
−288 + 118

√
6

36

(
α − π

4

)2

+O
{(

α − π

4

)3}
,

μ2 =
−3 − √

6
2

+
−7√6 − 12

6

(
α − π

4

)
+
−288 − 118

√
6

36

(
α − π

4

)2

+O
{(

α − π

4

)3}
.

(7.16)

That completes the proof.

8. Expansion over (−∞,∞)

Now consider the interval (−∞,∞) instead of (0,∞). From (2.7) the following can be calcu-
lated:

gξ′(λ) =

⎧
⎪⎨

⎪⎩

√
λ(λ + 1)

2λ sin2α + 2(λ + 1)2cos2α
whenλ > 0,

0 whenλ < 0,

ζ′(λ) =

⎧
⎪⎨

⎪⎩

(λ + 1)
√
λ

2λ cos2α + 2(λ + 1)2sin2α
whenλ > 0,

0 whenλ < 0.

(8.1)

Now one can use (7.2), (7.3), and (8.1) gets the following expansion from Lemma (2.2):

f(x)

=
1
π

{∫∞

0

√
λ cos(x

√
λ)−tanh x sin(x

√
λ)

2(λ + 1)
dλ

∫∞

−∞

√
λ cos(y

√
λ)−tanh y sin(y

√
λ)√

λ
f(y)dy

+
∫∞

0

√
λ sin(x

√
λ)+tanh x cos(x

√
λ)

2
√
λ

dλ

∫∞

−∞

√
λ sin(y

√
λ)+tanh y cos(y

√
λ)

λ + 1
f(y)dy

}
+c1sech(x),

(8.2)

where c1 is a constant.
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