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1. Introduction

Suppose that we are given a function u = u(x,τ) (x ≥ 0, τ ≥ 0) obtained from interpo-
lation of experimental data. We wish to fit u so as to satisfy the following equation of
Black-Scholes type:

uτ = α(τ)x2uxx +β(τ)xux + γ(τ)u, (1.1)

where α, β, and γ are unknown functions. We are interested in recovering these time-
dependent model parameters. Finding a method to solve this inverse problem is of prime
importance in several areas of application. For instance, it is a central concern in quanti-
tative finance to recover the implied volatility embedded in α through (1.1) [1–3].

In this paper, we show that this problem can be formulated as an inverse Stieltjes mo-
ment problem and demonstrate how to apply our method in the computation of the
implied volatility. We also present some results of numerical simulations illustrating our
method.
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2. The inverse Stieltjes moment problem

For each nonnegative integer n and for each τ ≥ 0, define the nth moment mn of u as

mn(τ) :=
∫∞

0
xnu(x,τ)dx. (2.1)

We assume that u is such that for all τ ≥ 0, u(0,τ) and ux(0,τ) are bounded, and that

lim
x→∞x

nu(x,τ)= lim
x→∞x

nux(x,τ)= 0 (2.2)

for all n. In applications involving the Black-Scholes equation [4], the function u is also
taken to be nonnegative.

Using integration by parts and the assumptions on u, we obtain

∫∞
0
xn+1ux(x,τ)dx =−(n+ 1)mn(τ),

∫∞
0
xn+2uxx(x,τ)dx =−(n+ 2)

∫∞
0
xn+1ux(x,τ)dx = (n+ 1)(n+ 2)mn(τ),

∫∞
0
xnuτ(x,τ)dx = d

dτ

∫∞
0
xnu(x,τ)dx =m′

n(τ).

(2.3)

Multiplying (1.1) by xn and using the above integrals, we see thatmn satisfies the ordinary
differential equation

m′
n(τ)= pn(τ)mn(τ), pn(τ) := (n+ 1)(n+ 2)α(τ)− (n+ 1)β(τ) + γ(τ). (2.4)

The corresponding initial condition is mn(0)= an := ∫∞0 xnu(x,0)dx. Thus, the moments
of u are expressible as

mn(τ)=
∫∞

0
xnu(x,τ)dx = an exp

[∫ τ
0
pn(s)ds

]
. (2.5)

In the classical Stieltjes moment problem [5], we are given the moments mn and we
seek the function u. In this case, however, we are given u and we want to find α, β, and
γ which are implicit in mn. Hence, the problem of the recovery of the time-dependent
model parameters of (1.1) is equivalent to an inverse Stieltjes moment problem.

Taking any three consecutive moments of u, we see from (2.4) that

(n+ 1)(n+ 2)α(τ)− (n+ 1)β(τ) + γ(τ)= mn
′(τ)

mn(τ)
,

(n+ 2)(n+ 3)α(τ)− (n+ 2)β(τ) + γ(τ)= mn+1
′(τ)

mn+1(τ)
,

(n+ 3)(n+ 4)α(τ)− (n+ 3)β(τ) + γ(τ)= mn+2
′(τ)

mn+2(τ)
.

(2.6)
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The solution of this linear system is

α(τ)= 1
2
mn

′(τ)
mn(τ)

− mn+1
′(τ)

mn+1(τ)
+

1
2
mn+2

′(τ)
mn+2(τ)

,

β(τ)= (n+ 3)
mn

′(τ)
mn(τ)

− (2n+ 5)
mn+1

′(τ)
mn+1(τ)

+ (n+ 2)
1
2
mn+2

′(τ)
mn+2(τ)

,

γ(τ)= 1
2

(n+ 2)(n+ 3)
mn

′(τ)
mn(τ)

− (n+ 1)(n+ 3)
mn+1

′(τ)
mn+1(τ)

+
1
2

(n+ 1)(n+ 2)
mn+2

′(τ)
mn+2(τ)

.

(2.7)

Since α, β, and γ should be independent of n, we can take n= 0 for simplicity.
In some applications, not all three functions are needed to be determined since some

are given. For example, suppose that β and γ are known and so only α is required. In this
case, only one moment is utilised in (2.4):

α(τ)= 1
(n+ 1)(n+ 2)

[
mn

′(τ)
mn(τ)

+ (n+ 1)β(τ)− γ(τ)
]
. (2.8)

Again, we can take n= 0 for simplicity. Alternatively, we can choose to express α in terms
of three consecutive moments using the first equation of (2.7), which does not make
explicit use of the given data β and γ but are “encapsulated” in the moments.

In the special case when α, β, and γ are all constants, then (2.5) simplifies to

mn(τ)= an exp
(
pnτ
)
. (2.9)

Isolating α yields

α= 1
(n+ 1)(n+ 2)

[
1
τ

log
mn(τ)
an

+ (n+ 1)β− γ
]
. (2.10)

We can also eliminate β and γ by solving for pn in (2.9) and considering three consecutive
moments, thus obtaining the linear system

(n+ 1)(n+ 2)α− (n+ 1)β+ γ = 1
τ

log
mn(τ)
an

,

(n+ 2)(n+ 3)α− (n+ 2)β+ γ = 1
τ

log
mn+1(τ)
an+1

,

(n+ 3)(n+ 4)α− (n+ 3)β+ γ = 1
τ

log
mn+2(τ)
an+2

.

(2.11)

Solving this system for α gives

α= 1
2τ

log
mn(τ)
an

− 1
τ

log
mn+1(τ)
an+1

+
1

2τ
log

mn+2(τ)
an+2

. (2.12)
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Note that we cannot use (2.8) nor the first equation of (2.7) directly to get (2.10) and
(2.12), respectively, since the quotient of a moment’s derivative and the moment is a
constant, so that the moment disappears from the expression and we obtain an identity.

3. An application to implied volatility calculation

Our result can be applied in a straightforward manner to address the problem of implied
volatility calculation [6] arising in option pricing theory. Specifically, we wish to recover
the volatility σ from (1.1) given that the other parameters are known. In this context,
(1.1) is called Dupire’s equation and u(x,τ) is the value of a European call option at the
strike price x and at time to maturity τ. The model parameters are

α(τ)= 1
2
σ(τ)2, β(τ)= q(τ)− r(τ), γ(τ)=−q(τ), (3.1)

where r is the riskless interest rate, q is the dividend yield (both known a priori), and σ
is the unknown volatility. The initial condition is u(x,0) =max(S− x,0), where S is the
asset price, which implies that

an =mn(0)=
∫∞

0
xnu(x,0)dx = Sn+2

(n+ 1)(n+ 2)
. (3.2)

Using (2.8), we obtain

σ(τ)2 = 2
(n+ 1)(n+ 2)

[
mn

′(τ)
mn(τ)

+ (n+ 2)q(τ)− (n+ 1)r(τ)
]
. (3.3)

Equation (3.3) gives a closed-form representation of the volatility parameter estimated
from market prices of options and when the values of r and q are available. An alternative
expression is obtained by using the first equation of (2.7):

σ(τ)2 = mn
′(τ)

mn(τ)
− 2

mn+1
′(τ)

mn+1(τ)
+
mn+2

′(τ)
mn+2(τ)

. (3.4)

When r, q, and σ are all constants, then (2.10) gives

σ2 = 2
(n+ 1)(n+ 2)

[
1
τ

log
mn(τ)
an

+ (n+ 2)q− (n+ 1)r
]

, (3.5)

whilst from (2.12) we have another representation in terms of three consecutive mo-
ments:

σ2 = 1
τ

[
log

an+1
2

anan+2
+ log

mn(τ)mn+2(τ)
mn+1(τ)2

]
, (3.6)

where an is given in (3.2).

4. Numerical results

For the numerical simulations, we assume that r and σ are constants and that q = 0. This
allows us to compare the numerical and theoretical values for the volatility. To obtain a
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numerical estimate of the implied volatility, we need to input a table of observed values
for the call price u versus the strike price x, that is, a table of the form

x x1 x2 ··· xM
u u1 u2 ··· uM

where the time to maturity τ, the riskless rate r, and the asset price S are assumed to be
given if we are to use the formula in (3.5). However, if we decide to utilise the alternative
formula (3.6), all we need is the time to maturity τ and the given table.

Next, we generate an interpolating function which passes through all the given data
points (x1,u1),(x2,u2), . . . , (xM ,uM) and satisfies the conditions u(0,τ)= S (see the Black-
Scholes formula (4.1) below) and limx→∞u(x,τ) = 0. For numerical calculations, in the
left-hand condition the strike price is replaced by a value very close to zero but positive
with the call price equal to S, whilst in the right-hand condition the strike price is replaced
by a sufficiently large positive value with the call price equal to a very small but positive
value. After we obtain the interpolating function, we compute the desired moments and
substitute into either (3.5) or (3.6) to estimate the implied volatility.

To generate the input table, we use the theoretical values obtained from the Black-
Scholes formula

u= SN(d1
)− xe−rτN(d2

)
,

d1 =
log(S/x) +

(
r + σ2/2

)
τ

σ
√
τ

,

d2 = d1− σ
√
τ.

(4.1)

Here, N is the cumulative distribution function of a standard normal variable. We as-
sume the parameter values r = 0.03, S= 150, τ = 0.3, and σ = 0.3. We take 12 values for
x (i.e., M = 10), choose x0 = 1.0× 10−6 and xM+1 = x11 = 2S, and compute the call price
for each such x. Figure 4.1 shows the calculated data points and the interpolating func-
tion generated by MATLAB. The estimated volatilities using (3.5) for n= 0,1,2,3 are also
shown for comparison. We can see a very good agreement in the estimated values and
the actual value used. In Figure 4.2, we use the same parameter values and data points as
in Figure 4.1 but estimate the volatility using (3.6) for n= 0,1. Note that here we do not
need the values of r and S, only that of τ, to calculate σ . This fact may be useful in practice
when, for example, only the call prices and the time to maturity are available. Again, we
see a very good agreement in the estimated values and the actual value used.

The usual method to compute the implied volatility from the Black-Scholes formula
is to use an iterative Newton-Raphson algorithm [7]. More precisely, assuming that r, S,
x, τ, and u are given, then (4.1) can be viewed as a nonlinear equation in σ , for which the
iterative root-finding algorithm of Newton and Raphson can be applied. The approximate
solution thus obtained is implicit. By contrast, the expressions for σ given in (3.5) or (3.6)
are explicit. Another difference between these two methods is that the Newton-Raphson
solution may be quite inaccurate if the option is far in the money or far out of the money
because then the option price is essentially independent of the volatility. The formulae
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Figure 4.1. Theoretical call prices and implied volatility using (3.5).
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Figure 4.2. Theoretical call prices and implied volatility using (3.6).

given in (3.5) or (3.6) can be advantageous in this case since the moneyness is not crucial
because the moments are essentially the average of the option prices.

On the other hand, as can be seen in the numerical results above, our method requires
as input more than one option price to be able to construct the interpolating function.
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This is not a real issue since in practice a list of observed values for the call price versus
the strike price is available anyway. Of course, the ideal scenario is to have as many data
points as possible to get a better fit for the interpolating function.

An effect of having to input a table of option prices with varying strikes is that the
observed prices will most likely have a skew or smile, and would therefore be incompati-
ble with the Black-Scholes model we are assuming. The question is whether the implied
volatility obtained is meaningful in the smile/skew case. For example, for a one-year op-
tion with forward price 100 and the following observed skew:

Strike 80 100 120

Observed market vol 20% 30% 40%

(with linear interpolation between the strikes), taking n = 0 in formula (3.5) roughly
gives the volatility as 37%. This result may not be easy to interpret; however, such a value
could serve as a good estimate or benchmark for the current volatility of the price of the
underlying asset or variable as it “summarises” the informational content of all available
market option prices. Such benchmark for the current volatility is important for other fi-
nancial modelling endeavours such as the calculation of value-at-risk, where only a single
estimate of the current volatility of a financial variable is needed.

5. Concluding remarks

In this paper, we showed that the problem of recovering the time-dependent parameters
of a Black-Scholes-type equation can be viewed as an inverse Stieltjes moment problem.
We showed how this can be applied to the problem of implied volatility calculation in
the time-varying case by giving an explicit analytical formula for the volatility. Numerical
results were also presented to illustrate the accuracy of our method.

A related problem is on recovering the local volatility surface (see, e.g., [8] and the
survey in [9]). In this case, Dupire’s equation takes the form of

uτ = 1
2
σ(x,τ)2x2uxx +

[
q(τ)− r(τ)

]
xux + q(τ)u, (5.1)

where now the volatility σ is a function of both the strike price and the time to maturity. If
we solve for σ in this equation, then we can obtain an expression for the volatility surface
in terms of the option price and its derivatives. The power of the Dupire formulation
lies in the fact that the function σ can fit every given smile or skew. Like the method
we proposed in this paper, Dupire’s method also requires an interpolation process. The
drawback is that numerical differentiation is very unstable, so a further regularisation
procedure has to be implemented. Although the problem we considered here is a special
case of the volatility surface problem, the method via moments we proposed relies on
integration, which is a smoothening process and does not need regularisation.
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